

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	31
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f2421vn020sc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

l^2C

The I²C controller makes the Z8 Encore! XP compatible with the I²C protocol. The I²C controller consists of two bidirectional bus lines, a serial data (SDA) line and a serial clock (SCL) line.

Serial Peripheral Interface

The serial peripheral interface allows the Z8 Encore! XP to exchange data between other peripheral devices such as EEPROMs, A/D converters and ISDN devices. The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire interface.

Timers

Up to four 16-bit reloadable timers can be used for timing/counting events or for motor control operations. These timers provide a 16-bit programmable reload counter and operate in One-Shot, Continuous, Gated, Capture, Compare, Capture and Compare, and PWM modes. Only 3 timers (Timers 0-2) are available in the 44-pin packages.

Interrupt Controller

The 64K Series products support up to 24 interrupts. These interrupts consist of 12 internal and 12 GPIO pins. The interrupts have 3 levels of programmable interrupt priority.

Reset Controller

The Z8 Encore! can be reset using the RESET pin, Power-On Reset, Watchdog Timer, STOP mode exit, or Voltage Brownout (VBO) warning signal.

On-Chip Debugger

The Z8 Encore! XP features an integrated On-Chip Debugger. The OCD provides a rich set of debugging capabilities, such as reading and writing registers, programming the Flash, setting breakpoints and executing code. A single-pin interface provides communication to the OCD.

DMA Controller

The 64K Series features three channels of DMA. Two of the channels are for register RAM to and from I/O operations. The third channel automatically controls the transfer of data from the ADC to the memory.

Figure 8. Power-On Reset Operation

Voltage Brownout Reset

The devices in the 64K Series provide low Voltage Brownout protection. The VBO circuit senses when the supply voltage drops to an unsafe level (below the VBO threshold voltage) and forces the device into the Reset state. While the supply voltage remains below the Power-On Reset voltage threshold (V_{POR}), the VBO block holds the device in the Reset state.

After the supply voltage again exceeds the Power-On Reset voltage threshold, the devices progress through a full system reset sequence, as described in the Power-On Reset section. Following Power-On Reset, the POR status bit in the Watchdog Timer Control (WDTCTL) register is set to 1. Figure 9 displays Voltage Brownout operation. For the VBO and POR threshold voltages (V_{VBO} and V_{POR}), see Electrical Characteristics on page 215.

The Voltage Brownout circuit can be either enabled or disabled during STOP mode. Operation during STOP mode is set by the VBO_AO Option Bit. For information on configuring VBO_AO, see Option Bits page 195.

zilog

On-Chip Debugger Initiated Reset

A Power-On Reset can be initiated using the On-Chip Debugger by setting the RST bit in the OCD Control register. The On-Chip Debugger block is not reset but the rest of the chip goes through a normal system reset. The RST bit automatically clears during the system reset. Following the system reset the POR bit in the WDT Control register is set.

Stop Mode Recovery

STOP mode is entered by the eZ8 executing a STOP instruction. For detailed STOP mode information, see Low-Power Modes on page 47. During Stop Mode Recovery, the devices are held in reset for 66 cycles of the Watchdog Timer oscillator followed by 16 cycles of the system clock. Stop Mode Recovery only affects the contents of the Watchdog Timer Control register. Stop Mode Recovery does not affect any other values in the Register File, including the Stack Pointer, Register Pointer, Flags, peripheral control registers, and general-purpose RAM.

The eZ8[™] CPU fetches the Reset vector at Program Memory addresses 0002H and 0003H and loads that value into the Program Counter. Program execution begins at the Reset vector address. Following Stop Mode Recovery, the STOP bit in the Watchdog Timer Control Register is set to 1. Table 10 lists the Stop Mode Recovery sources and resulting actions.

Table 10. Stop Mode Re	covery Sources and	Resulting Action
------------------------	--------------------	-------------------------

Operating Mode	Stop Mode Recovery Source	Action
STOP mode	Watchdog Timer time-out when configured for Reset	Stop Mode Recovery
	Watchdog Timer time-out when configured for interrupt	Stop Mode Recovery followed by interrupt (if interrupts are enabled)
	Data transition on any GPIO Port pin enabled as a Stop Mode Recovery source	Stop Mode Recovery

Stop Mode Recovery Using Watchdog Timer Time-Out

If the Watchdog Timer times out during STOP mode, the device undergoes a Stop Mode Recovery sequence. In the Watchdog Timer Control register, the WDT and STOP bits are set to 1. If the Watchdog Timer is configured to generate an interrupt upon time-out and the 64K Series devices are configured to respond to interrupts, the eZ8 CPU services the Watchdog Timer interrupt request following the normal Stop Mode Recovery sequence.

Low-Power Modes

Overview

The 64K Series products contain power-saving features. The highest level of power reduction is provided by STOP mode. The next level of power reduction is provided by the HALT mode.

STOP Mode

Execution of the eZ8[™] CPU's STOP instruction places the device into STOP mode. In STOP mode, the operating characteristics are:

- Primary crystal oscillator is stopped; the XIN pin is driven High and the XOUT pin is driven Low.
- System clock is stopped.
- eZ8 CPU is stopped.
- Program counter (PC) stops incrementing.
- The Watchdog Timer and its internal RC oscillator continue to operate, if enabled for operation during STOP mode.
- The Voltage Brownout protection circuit continues to operate, if enabled for operation in STOP mode using the associated Option Bit.
- All other on-chip peripherals are idle.

To minimize current in STOP mode, all GPIO pins that are configured as digital inputs must be driven to one of the supply rails (V_{CC} or GND), the Voltage Brownout protection must be disabled, and the Watchdog Timer must be disabled. The devices can be brought out of STOP mode using Stop Mode Recovery. For more information on Stop Mode Recovery, see Reset and Stop Mode Recovery on page 47.

Caution: STOP mode must not be used when driving the 64K Series devices with an external clock driver source.

Priority	Program Memory Vector Address	Interrupt Source
Highest	0002H	Reset (not an interrupt)
	0004H	Watchdog Timer (see Watchdog Timer on page 97)
	0006H	Illegal Instruction Trap (not an interrupt)
	0008H	Timer 2
	000AH	Timer 1
	000CH	Timer 0
	000EH	UART 0 receiver
	0010H	UART 0 transmitter
	0012H	l ² C
	0014H	SPI
	0016H	ADC
	0018H	Port A7 or Port D7, rising or falling input edge
	001AH	Port A6 or Port D6, rising or falling input edge
	001CH	Port A5 or Port D5, rising or falling input edge
	001EH	Port A4 or Port D4, rising or falling input edge
	0020H	Port A3 or Port D3, rising or falling input edge
	0022H	Port A2 or Port D2, rising or falling input edge
	0024H	Port A1 or Port D1, rising or falling input edge
	0026H	Port A0 or Port D0, rising or falling input edge
	0028H	Timer 3 (not available in 44-pin packages)
	002AH	UART 1 receiver
	002CH	UART 1 transmitter
	002EH	DMA
	0030H	Port C3, both input edges
	0032H	Port C2, both input edges
	0034H	Port C1, both input edges
Lowest	0036H	Port C0, both input edges

Table 23. Interrupt Vectors in Order of Priority

T1I—Timer 1 Interrupt Request

0 = No interrupt request is pending for Timer 1.

1 = An interrupt request from Timer 1 is awaiting service.

T0I—Timer 0 Interrupt Request

0 = No interrupt request is pending for Timer 0.

1 = An interrupt request from Timer 0 is awaiting service.

U0RXI—UART 0 Receiver Interrupt Request

0 = No interrupt request is pending for the UART 0 receiver.

1 = An interrupt request from the UART 0 receiver is awaiting service.

U0TXI-UART 0 Transmitter Interrupt Request

0 = No interrupt request is pending for the UART 0 transmitter.

1 = An interrupt request from the UART 0 transmitter is awaiting service.

I²CI— I²C Interrupt Request

0 = No interrupt request is pending for the I²C.

1 = An interrupt request from the I²C is awaiting service.

SPII—SPI Interrupt Request

0 = No interrupt request is pending for the SPI.

1 = An interrupt request from the SPI is awaiting service.

ADCI—ADC Interrupt Request

0 = No interrupt request is pending for the Analog-to-Digital Converter.

1 = An interrupt request from the Analog-to-Digital Converter is awaiting service.

Interrupt Request 1 Register

The Interrupt Request 1 (IRQ1) register (Table 25) stores interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ1 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 1 register to determine if any interrupt requests are pending.

BITS	7	6	5	4	3	2	1	0		
FIELD	PAD7I	PAD6I	PAD5I	PAD4I	PAD3I	PAD2I	PAD1I	PAD0I		
RESET		0								
R/W		R/W								
ADDR	FC3H									

Table 25.	Interrupt	Request 1	Register	(IRQ1)
-----------	-----------	------------------	----------	--------

PADxI—Port A or Port D Pin x Interrupt Request

0 = No interrupt request is pending for GPIO Port A or Port D pin *x*.

1 = An interrupt request from GPIO Port A or Port D pin x is awaiting service.

where *x* indicates the specific GPIO Port pin number (0 through 7). For each pin, only 1 of either Port A or Port D can be enabled for interrupts at any one time. Port selection (A or D) is determined by the values in the Interrupt Port Select Register.

Interrupt Request 2 Register

The Interrupt Request 2 (IRQ2) register (Table 26) stores interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ2 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 1 register to determine if any interrupt requests are pending.

BITS	7	6	5	4	3	2	1	0		
FIELD	Т3І	U1RXI	U1TXI	DMAI	PC3I	PC2I	PC1I	PC0I		
RESET		0								
R/W		R/W								
ADDR		FC6H								

Table 26. Interrupt Request 2 Register (IRQ2)

T3I—Timer 3 Interrupt Request

0 = No interrupt request is pending for Timer 3.

1 = An interrupt request from Timer 3 is awaiting service.

U1RXI—UART 1 Receive Interrupt Request

0 = No interrupt request is pending for the UART1 receiver.

1 = An interrupt request from UART1 receiver is awaiting service.

U1TXI-UART 1 Transmit Interrupt Request

0 = No interrupt request is pending for the UART 1 transmitter.

1 = An interrupt request from the UART 1 transmitter is awaiting service.

DMAI—DMA Interrupt Request

0 = No interrupt request is pending for the DMA.

1 = An interrupt request from the DMA is awaiting service.

PCxI—Port C Pin x Interrupt Request

0 = No interrupt request is pending for GPIO Port C pin x.

1 = An interrupt request from GPIO Port C pin x is awaiting service.

Timers

Overview

The 64K Series products contain up to four 16-bit reloadable timers that can be used for timing, event counting, or generation of pulse width modulated signals. The timers' features include:

- 16-bit reload counter
- Programmable prescaler with prescale values from 1 to 128
- PWM output generation
- Capture and compare capability
- External input pin for timer input, clock gating, or capture signal. External input pin signal frequency is limited to a maximum of one-fourth the system clock frequency.
- Timer output pin
- Timer interrupt

In addition to the timers described in this chapter, the Baud Rate Generators for any unused UART, SPI, or I^2C peripherals may also be used to provide basic timing functionality. For information on using the Baud Rate Generators as timers, see the respective serial communication peripheral. Timer 3 is unavailable in the 44-pin package devices.

Architecture

Figure 12 displays the architecture of the timers.

configuration bits. In general, the address compare feature reduces the load on the CPU, since it does not need to access the UART when it receives data directed to other devices on the multi-node network. The following three MULTIPROCESSOR modes are available in hardware:

- Interrupt on all address bytes.
- Interrupt on matched address bytes and correctly framed data bytes.
- Interrupt only on correctly framed data bytes.

These modes are selected with MPMD[1:0] in the UART Control 1 Register. For all MULTIPROCESSOR modes, bit MPEN of the UART Control 1 Register must be set to 1.

The first scheme is enabled by writing 01b to MPMD[1:0]. In this mode, all incoming address bytes cause an interrupt, while data bytes never cause an interrupt. The interrupt service routine must manually check the address byte that caused triggered the interrupt. If it matches the UART address, the software clears MPMD[0]. At this point, each new incoming byte interrupts the CPU. The software is then responsible for determining the end of the frame. It checks for end-of-frame by reading the MPRX bit of the UART Status 1 Register for each incoming byte. If MPRX=1, a new frame has begun. If the address of this new frame is different from the UART's address, then set MPMD[0] to 1 causing the UART interrupts to go inactive until the next address byte. If the new frame's address matches the UART's, the data in the new frame is processed as well.

The second scheme is enabled by setting MPMD[1:0] to 10b and writing the UART's address into the UART Address Compare Register. This mode introduces more hardware control, interrupting only on frames that match the UART's address. When an incoming address byte does not match the UART's address, it is ignored. All successive data bytes in this frame are also ignored. When a matching address byte occurs, an interrupt is issued and further interrupts now occur on each successive data byte. The first data byte in the frame contains the NEWFRM=1 in the UART Status 1 Register. When the next address byte occurs, the hardware compares it to the UART's address. If there is a match, the interrupts continue sand the NEWFRM bit is set for the first byte of the new frame. If there is no match, then the UART ignores all incoming bytes until the next address match.

The third scheme is enabled by setting MPMD[1:0] to 11b and by writing the UART's address into the UART Address Compare Register. This mode is identical to the second scheme, except that there are no interrupts on address bytes. The first data byte of each frame is still accompanied by a NEWFRM assertion.

External Driver Enable

The UART provides a Driver Enable (DE) signal for off-chip bus transceivers. This feature reduces the software overhead associated with using a GPIO pin to control the transceiver when communicating on a multi-transceiver bus, such as RS-485.

Driver Enable is an active High signal that envelopes the entire transmitted data frame including parity and Stop bits as displayed in Figure 17. The Driver Enable signal asserts

Z8 Encore! XP[®] 64K Series Flash Microcontrollers Product Specification

zilog ₁₁₃

Figure 18. UART Receiver Interrupt Service Routine Flow

Baud Rate Generator Interrupts

If the Baud Rate Generator interrupt enable is set, the UART Receiver interrupt asserts when the UART Baud Rate Generator reloads. This action allows the Baud Rate Generator to function as an additional counter if the UART functionality is not employed.

UART Baud Rate Generator

The UART Baud Rate Generator creates a lower frequency baud rate clock for data transmission. The input to the Baud Rate Generator is the system clock. The UART Baud Rate High and Low Byte registers combine to create a 16-bit baud rate divisor value

zilog

- 120
- 1 = Infrared Encoder/Decoder is enabled. The UART transmits and receives data through the Infrared Encoder/Decoder.

UART Address Compare Register

The UART Address Compare register (Table 58) stores the multi-node network address of the UART. When the MPMD[1] bit of UART Control Register 0 is set, all incoming address bytes are compared to the value stored in the Address Compare register. Receive interrupts and RDA assertions only occur in the event of a match.

Table 58. UART Address Compare Register (UxADDR)

BITS	7	6	5	4	3	2	1	0			
FIELD	COMP_ADDR										
RESET		0									
R/W		R/W									
ADDR				F45H ar	nd F4DH						

COMP_ADDR—Compare Address

This 8-bit value is compared to the incoming address bytes.

UART Baud Rate High and Low Byte Registers

The UART Baud Rate High and Low Byte registers (see Table 59 and Table 60 on page 121) combine to create a 16-bit baud rate divisor value (BRG[15:0]) that sets the data transmission rate (baud rate) of the UART. To configure the Baud Rate Generator as a timer with interrupt on time-out, complete the following procedure:

- 1. Disable the UART by clearing the REN and TEN bits in the UART Control 0 register to 0.
- 2. Load the desired 16-bit count value into the UART Baud Rate High and Low Byte registers.
- 3. Enable the Baud Rate Generator timer function and associated interrupt by setting the BRGCTL bit in the UART Control 1 register to 1.

When configured as a general purpose timer, the UART BRG interrupt interval is calculated using the following equation:

UART BRG Interrupt Interval(s) = System Clock Period (s) × BRG[15:0]

Table 59. UART Baud Rate High Byte Register (UxBRH)

BITS	7	6	5	4	3	2	1	0			
FIELD	BRH										
RESET		1									
R/W		R/W									
ADDR		F46H and F4EH									

Table 60. UART Baud Rate Low Byte Register (UxBRL)

BITS	7	6	5	4	3	2	1	0			
FIELD		BRL									
RESET		1									
R/W		R/W									
ADDR				F47H ar	nd F4FH						

For a given UART data rate, the integer baud rate divisor value is calculated using the following equation:

UART Baud Rate Divisor Value (BRG) = $Round\left(\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Data Rate (bits/s)}}\right)$

The baud rate error relative to the desired baud rate is calculated using the following equation:

UART Baud Rate Error (%) = $100 \times \left(\frac{\text{Actual Data Rate} - \text{Desired Data Rate}}{\text{Desired Data Rate}}\right)$

For reliable communication, the UART baud rate error must never exceed 5 percent. Table 61 provides information on data rate errors for popular baud rates and commonly used crystal oscillator frequencies. Z8 Encore! XP[®] 64K Series Flash Microcontrollers Product Specification

ADC Control Register Definitions

ADC Control Register

The ADC Control register selects the analog input channel and initiates the analog-to-digital conversion.

Table 86. ADC Control Register (ADCCTL)

BITS	7	6	5	4	3	2	1	0	
FIELD	CEN	Reserved	VREF	CONT	ANAIN[3:0]				
RESET	0 1 0								
R/W		R/W							
ADDR				F7	0H				

CEN—Conversion Enable

0 = Conversion is complete. Writing a 0 produces no effect. The ADC automatically clears this bit to 0 when a conversion has been completed.

1 = Begin conversion. Writing a 1 to this bit starts a conversion. If a conversion is already in progress, the conversion restarts. This bit remains 1 until the conversion is complete.

Reserved—Must be 0.

VREF

0 = Internal voltage reference generator enabled. The VREF pin should be left unconnected (or capacitively coupled to analog ground) if the internal voltage reference is selected as the ADC reference voltage.

1 = Internal voltage reference generator disabled. An external voltage reference must be provided through the VREF pin.

CONT

0 = Single-shot conversion. ADC data is output once at completion of the 5129 system clock cycles.

1 = Continuous conversion. ADC data updated every 256 system clock cycles.

ANAIN—Analog Input Select

These bits select the analog input for conversion. Not all Port pins in this list are available in all packages for the Z8F642x family Z8R642x family of products. For information on the Port pins available with each package style, see Signal and Pin Descriptions on page 7. Do not enable unavailable analog inputs.

0000 = ANA0 0001 = ANA1 0010 = ANA2 0011 = ANA3

zilog

192

Flash Sector Protect Register

The Flash Sector Protect register (Table 95) protects Flash memory sectors from being programmed or erased from user code. The Flash Sector Protect register shares its Register File address with the Page Select register. The Flash Sector protect register can be accessed only after writing the Flash Control register with 5EH.

User code can only write bits in this register to 1 (bits cannot be cleared to 0 by user code).

Table 95. Flash Sector Protect Register (FPROT)

BITS	7	6	5	4	3	2	1	0		
FIELD	SECT7	SECT6	SECT5	SECT4	SECT3	SECT2	SECT1	SECT0		
RESET	0									
R/W	R/W1									
ADDR	FF9H									
Note: R/W	1 = Register i	s accessible f	for Read oper	ations. Regis	ter can be wri	tten to 1 only	(via user cod	e).		

SECT*n*—Sector Protect

0 = Sector *n* can be programmed or erased from user code.

1 = Sector *n* is protected and cannot be programmed or erased from user code.

* User code can only write bits from 0 to 1.

Flash Frequency High and Low Byte Registers

The Flash Frequency High and Low Byte registers (Table 96 and Table 97) combine to form a 16-bit value, FFREQ, to control timing for Flash program and erase operations. The 16-bit Flash Frequency registers must be written with the system clock frequency in kHz for Program and Erase operations. Calculate the Flash Frequency value using the following equation:

 $FFREQ[15:0] = \{FFREQH[7:0], FFREQL[7:0]\} = \frac{System Clock Frequency}{1000}$

Caution: Flash programming and erasure is not supported for system clock frequencies below 20 kHz, above 20 MHz, or outside of the valid operating frequency range for the device. The Flash Frequency High and Low Byte registers must be loaded with the correct value to insure proper program and erase times.

Table 96. Flash Frequency High Byte Register (FFREQH)

BITS	7	6	5	4	3	2	1	0
FIELD	FFREQH							
RESET	0							
R/W	R/W							
ADDR	FFAH							

Table 97. Flash Frequency Low Byte Register (FFREQL)

BITS	7	6	5	4	3	2	1	0
FIELD	FFREQL							
RESET	0							
R/W	R/W							
ADDR	FFBH							

FFREQH and FFREQL—Flash Frequency High and Low Bytes

These 2 bytes, {FFREQH[7:0], FFREQL[7:0]}, contain the 16-bit Flash Frequency value.

Figure 42. Typical RC Oscillator Frequency as a Function of the External Capacitance with a 45 $k\Omega$ Resistor

Caution: When using the external RC oscillator mode, the oscillator may stop oscillating if the power supply drops below 2.7 V, but before the power supply drops to the voltage brown-out threshold. The oscillator will resume oscillation as soon as the supply voltage exceeds 2.7 V.

General-Purpose I/O Port Output Timing

Figure 51 and Table 115 provide timing information for GPIO Port pins.

Figure 51. GPIO Port Output Timing

		Delay (ns)		
Parameter	Abbreviation	Minimum	Maximum	
GPIO Port	pins			
T ₁	XIN Rise to Port Output Valid Delay	-	20	
T ₂	XIN Rise to Port Output Hold Time	2	_	

Table 115. GPIO Port Output Timing

Table 130. Logical Instructions (Continued)

Mnemonic	Operands	Instruction
XOR	dst, src	Logical Exclusive OR
XORX	dst, src	Logical Exclusive OR using Extended Addressing

Table 131. Program Control Instructions

Mnemonic	Operands	Instruction
BRK	_	On-Chip Debugger Break
BTJ	p, bit, src, DA	Bit Test and Jump
BTJNZ	bit, src, DA	Bit Test and Jump if Non-Zero
BTJZ	bit, src, DA	Bit Test and Jump if Zero
CALL	dst	Call Procedure
DJNZ	dst, src, RA	Decrement and Jump Non-Zero
IRET	_	Interrupt Return
JP	dst	Jump
JP cc	dst	Jump Conditional
JR	DA	Jump Relative
JR cc	DA	Jump Relative Conditional
RET	_	Return
TRAP	vector	Software Trap

Mnemonic	Operands	Instruction
BSWAP	dst	Bit Swap
RL	dst	Rotate Left
RLC	dst	Rotate Left through Carry
RR	dst	Rotate Right
RRC	dst	Rotate Right through Carry
SRA	dst	Shift Right Arithmetic

Z8 Encore! XP[®] 64K Series Flash Microcontrollers Product Specification

Opcode Maps

A description of the opcode map data and the abbreviations are provided in Figure 59 and Table 134 on page 262. Figure 60 on page 263 and Figure 61 on page 264 provide information on each of the $eZ8^{TM}$ CPU instructions.

Figure 59. Opcode Map Cell Description