
Zilog - Z8F2421VN020SC00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor eZ8

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 31

Program Memory Size 24KB (24K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature 0°C ~ 70°C (TA)

Mounting Type Surface Mount

Package / Case 44-LCC (J-Lead)

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f2421vn020sc00tr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/z8f2421vn020sc00tr-4427187
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

8

Pin Configurations

Figure 2 through Figure 7 on page 13 display the pin configurations for all of the packages
available in the Z8 Encore! XP 64K Series Flash Microcontrollers. For description of the
signals, see Table 3 on page 14. Timer 3 is not available in the 40-pin and 44-pin pack-
ages.

Figure 2. Z8 Encore! XP 64K Series Flash Microcontrollers in 40-Pin Dual Inline Package (PDIP)

PD5 / TXD1
PC4 / MOSI
PA4 / RXD0
PA5 / TXD0
PA6 / SCL
PA7 / SDA
PD6 / CTS1
PC3 / SCK
VSS

PD4/RXD1
PD3 / DE1

PC5 / MISO
PA3 / CTS0

PA2/DE0
PA1 /T0OUT

PA0 / T0IN
PC2 / SS

1 40

VDD
RESET

PC6 / T2IN *
DBG
PC1 / T1OUT

VSS
PD1
PD0

PC0 / T1INXOUT
AVSSXIN
VREFAVDD
PB2 / ANA2
PB3 / ANA3
PB7 / ANA7

PB0 / ANA0
PB1 / ANA1
PB4 / ANA4

20 21 PB6 / ANA6PB5 / ANA5

5

10

15

35

30

25

VDD

* T2OUT is not supported.Note: Timer 3 is not supported.
PS019919-1207 Signal and Pin Descriptions

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

37
111 = 7 bits

Diagnostic Mode Control
0 = Reading from SPIBRH, SPIBRL

returns reload values
1 = Reading from SPIBRH, SPIBRL
 returns current BRG count value

Reserved

SPI Diagnostic State
SPIDST (F64H - Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

SPI State

Transmit Clock Enable
0 = Internal transmit clock enable
 signal is deasserted
1 = Internal transmit clock enable
 signal is asserted

Shift Clock Enable
0 = Internal shift clock enable signal
 is deasserted
1 = Internal shift clock enable signal
 is asserted

SPI Baud Rate Generator High Byte
SPIBRH (F66H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

SPI Baud Rate divisor [15:8]

SPI Baud Rate Generator Low Byte
SPIBRL (F67H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

SPI Baud Rate divisor [7:0]

SPI Mode
SPIMODE (F63H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

ADC Control
ADCCTL (F70H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Analog Input Select
0000 = ANA0 0001 = ANA1
0010 = ANA2 0011 = ANA3
0100 = ANA4 0101 = ANA5
0110 = ANA6 0111 = ANA7
1000 = ANA8 1001 = ANA9
1010 = ANA10 1011 = ANA11
11xx = Reserved

Continuous Mode Select
0 = Single-shot conversion
1 = Continuous conversion

External VREF select
0 = Internal voltage reference
selected
1 = External voltage reference
selected

Reserved

Conversion Enable
0 = Conversion is complete
1 = Begin conversion

ADC Data High Byte
ADCD_H (F72H - Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

ADC Data [9:2]

ADC Data Low Bits
ADCD_L (F73H - Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

Reserved

ADC Data [1:0]
PS019919-1207 Control Register Summary

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

58
Architecture

Figure 10 displays a simplified block diagram of a GPIO port pin. In Figure 10, the ability
to accommodate alternate functions and variable port current drive strength are not illus-
trated.

Figure 10. GPIO Port Pin Block Diagram

Z8X4823 80-pin [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [3:0]

Z8X6421 40-pin [7:0] [7:0] [6:0] [6:3,
1:0]

- - - -

Z8X6421 44-pin [7:0] [7:0] [7:0] [6:0] - - - -

Z8X6422 64- and 68-pin [7:0] [7:0] [7:0] [7:0] [7:0] [7] [3] [3:0]

Z8X6423 80-pin [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [3:0]

Table 11. Port Availability by Device and Package Type (Continued)

Device Packages Port A Port B Port C Port D Port E Port F Port G Port H

DQ

D Q

GND

VDD
Port Output Control

Port Data Direction

Port Output
Data Register

Port Input
Data Register

Port
Pin

DATA
Bus

System
Clock

System
Clock

Schmitt-Trigger
PS019919-1207 General-Purpose I/O

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

67
Interrupt Controller
Overview

The interrupt controller on the 64K Series products prioritizes the interrupt requests from
the on-chip peripherals and the GPIO port pins. The features of the interrupt controller
include the following:

• 24 unique interrupt vectors:
– 12 GPIO port pin interrupt sources
– 12 on-chip peripheral interrupt sources

• Flexible GPIO interrupts
– Eight selectable rising and falling edge GPIO interrupts
– Four dual-edge interrupts

• Three levels of individually programmable interrupt priority

• Watchdog Timer can be configured to generate an interrupt

Interrupt requests (IRQs) allow peripheral devices to suspend CPU operation in an orderly
manner and force the CPU to start an interrupt service routine (ISR). Usually this interrupt
service routine is involved with the exchange of data, status information, or control
information between the CPU and the interrupting peripheral. When the service routine is
completed, the CPU returns to the operation from which it was interrupted.

The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupts,
the interrupt control has no effect on operation. For more information on interrupt
servicing by the eZ8 CPU, refer to eZ8™ CPU Core User Manual (UM0128) available for
download at www.zilog.com.

Interrupt Vector Listing

Table 23 lists all of the interrupts available in order of priority. The interrupt vector is
stored with the most-significant byte (MSB) at the even Program Memory address and the
least-significant byte (LSB) at the following odd Program Memory address.
PS019919-1207 Interrupt Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

81
Timers
Overview

The 64K Series products contain up to four 16-bit reloadable timers that can be used for
timing, event counting, or generation of pulse width modulated signals. The timers’ fea-
tures include:

• 16-bit reload counter

• Programmable prescaler with prescale values from 1 to 128

• PWM output generation

• Capture and compare capability

• External input pin for timer input, clock gating, or capture signal. External input pin
signal frequency is limited to a maximum of one-fourth the system clock frequency.

• Timer output pin

• Timer interrupt

In addition to the timers described in this chapter, the Baud Rate Generators for any
unused UART, SPI, or I2C peripherals may also be used to provide basic timing function-
ality. For information on using the Baud Rate Generators as timers, see the respective
serial communication peripheral. Timer 3 is unavailable in the 44-pin package devices.

Architecture

Figure 12 displays the architecture of the timers.
PS019919-1207 Timers

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

97
Watchdog Timer
Overview

The Watchdog Timer (WDT) helps protect against corrupt or unreliable software, power
faults, and other system-level problems which may place the Z8 Encore! XP into unsuit-
able operating states. The features of Watchdog Timer include:

• On-chip RC oscillator.

• A selectable time-out response.

• WDT Time-out response: Reset or interrupt.

• 24-bit programmable time-out value.

Operation

The Watchdog Timer (WDT) is a retriggerable one-shot timer that resets or interrupts the
64K Series devices when the WDT reaches its terminal count. The Watchdog Timer uses
its own dedicated on-chip RC oscillator as its clock source. The Watchdog Timer has only
two modes of operation—ON and OFF. Once enabled, it always counts and must be
refreshed to prevent a time-out. An enable can be performed by executing the WDT
instruction or by setting the WDT_AO Option Bit. The WDT_AO bit enables the Watchdog
Timer to operate all the time, even if a WDT instruction has not been executed.

The Watchdog Timer is a 24-bit reloadable downcounter that uses three 8-bit registers in
the eZ8™ CPU register space to set the reload value. The nominal WDT time-out period is
given by the following equation:

where the WDT reload value is the decimal value of the 24-bit value given by
{WDTU[7:0], WDTH[7:0], WDTL[7:0]} and the typical Watchdog Timer RC oscillator
frequency is 10 kHz. The Watchdog Timer cannot be refreshed once it reaches 000002H.
The WDT Reload Value must not be set to values below 000004H. Table 47 provides
information on approximate time-out delays for the minimum and maximum WDT reload
values.

WDT Time-out Period (ms) WDT Reload Value
10

--=
PS019919-1207 Watchdog Timer

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

115
TXD—Transmit Data
UART transmitter data byte to be shifted out through the TXDx pin.

UART Receive Data Register
Data bytes received through the RXDx pin are stored in the UART Receive Data register
(Table 53). The Read-only UART Receive Data register shares a Register File address
with the Write-only UART Transmit Data register.

RXD—Receive Data
UART receiver data byte from the RXDx pin

UART Status 0 Register
The UART Status 0 and Status 1 registers (Table 54 and Table 55 on page 117) identify the
current UART operating configuration and status.

RDA—Receive Data Available
This bit indicates that the UART Receive Data register has received data. Reading the
UART Receive Data register clears this bit.
0 = The UART Receive Data register is empty.
1 = There is a byte in the UART Receive Data register.

Table 53. UART Receive Data Register (UxRXD)

BITS 7 6 5 4 3 2 1 0

FIELD RXD

RESET X

R/W R

ADDR F40H and F48H

Table 54. UART Status 0 Register (UxSTAT0)

BITS 7 6 5 4 3 2 1 0

FIELD RDA PE OE FE BRKD TDRE TXE CTS

RESET 0 1 X

R/W R

ADDR F41H and F49H
PS019919-1207 UART

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

129
Serial Peripheral Interface
Overview

The Serial Peripheral Interface is a synchronous interface allowing several SPI-type
devices to be interconnected. SPI-compatible devices include EEPROMs, Analog-to-
Digital Converters, and ISDN devices. Features of the SPI include:

• Full-duplex, synchronous, character-oriented communication

• Four-wire interface

• Data transfers rates up to a maximum of one-half the system clock frequency

• Error detection

• Dedicated Baud Rate Generator

Architecture

The SPI may be configured as either a Master (in single or multi-master systems) or a
Slave as displayed in Figure 22 through Figure 24.

Figure 22. SPI Configured as a Master in a Single Master, Single Slave System

SPI Master

8-bit Shift Register
Bit 0 Bit 7

MISO

MOSI

SCK

SSTo Slave’s SS Pin

From Slave

To Slave

To Slave
Baud Rate
Generator
PS019919-1207 Serial Peripheral Interface

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

136
defined to be 1 through 8 bits by the NUMBITS field in the SPI Mode register. In slave
mode it is not necessary for SS to deassert between characters to generate the interrupt.
The SPI in Slave mode can also generate an interrupt if the SS signal deasserts prior to
transfer of all the bits in a character (see description of slave abort error above). Writing a
1 to the IRQ bit in the SPI Status Register clears the pending SPI interrupt request. The
IRQ bit must be cleared to 0 by the Interrupt Service Routine to generate future interrupts.
To start the transfer process, an SPI interrupt may be forced by software writing a 1 to the
STR bit in the SPICTL register.

If the SPI is disabled, an SPI interrupt can be generated by a Baud Rate Generator time-
out. This timer function must be enabled by setting the BIRQ bit in the SPICTL register.
This Baud Rate Generator time-out does not set the IRQ bit in the SPISTAT register, just
the SPI interrupt bit in the interrupt controller.

SPI Baud Rate Generator
In SPI Master mode, the Baud Rate Generator creates a lower frequency serial clock
(SCK) for data transmission synchronization between the Master and the external Slave.
The input to the Baud Rate Generator is the system clock. The SPI Baud Rate High and
Low Byte registers combine to form a 16-bit reload value, BRG[15:0], for the SPI Baud
Rate Generator. The SPI baud rate is calculated using the following equation:

Minimum baud rate is obtained by setting BRG[15:0] to 0000H for a clock divisor value
of (2 X 65536 = 131072).

When the SPI is disabled, the Baud Rate Generator can function as a basic 16-bit timer
with interrupt on time-out. Follow the steps below to configure the Baud Rate Generator
as a timer with interrupt on time-out:

1. Disable the SPI by clearing the SPIEN bit in the SPI Control register to 0.

2. Load the desired 16-bit count value into the SPI Baud Rate High and Low Byte
registers.

3. Enable the Baud Rate Generator timer function and associated interrupt by setting the
BIRQ bit in the SPI Control register to 1.

When configured as a general purpose timer, the interrupt interval is calculated using the
following equation:

SPI Baud Rate (bits/s) System Clock Frequency (Hz)
2 BRG[15:0]×

--=

Interrupt Interval (s) System Clock Period (s) BRG[15:0]×=
PS019919-1207 Serial Peripheral Interface

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

146
Transmit interrupts occur when the TDRE bit of the I2C Status register sets and the TXI
bit in the I2C Control register is set. Transmit interrupts occur under the following condi-
tions when the transmit data register is empty:

• The I2C Controller is enabled.

• The first bit of the byte of an address is shifting out and the RD bit of the I2C Status
register is deasserted.

• The first bit of a 10-bit address shifts out.

• The first bit of write data shifts out.
Writing to the I2C Data register always clears the TRDE bit to 0. When TDRE is asserted,
the I2C Controller pauses at the beginning of the Acknowledge cycle of the byte currently
shifting out until the Data register is written with the next value to send or the STOP or
START bits are set indicating the current byte is the last one to send.

The fourth interrupt source is the baud rate generator. If the I2C Controller is disabled
(IEN bit in the I2CCTL register = 0) and the BIRQ bit in the I2CCTL register = 1, an inter-
rupt is generated when the baud rate generator counts down to 1. This allows the I2C baud
rate generator to be used by software as a general purpose timer when IEN = 0.

Software Control of I2C Transactions
Software can control I2C transactions by using the I2C Controller interrupt, by polling the
I2C Status register or by DMA. Note that not all products include a DMA Controller.

To use interrupts, the I2C interrupt must be enabled in the Interrupt Controller. The TXI bit
in the I2C Control register must be set to enable transmit interrupts.

To control transactions by polling, the interrupt bits (TDRE, RDRF and NCKI) in the I2C
Status register should be polled. The TDRE bit asserts regardless of the state of the TXI
bit.

Either or both transmit and receive data movement can be controlled by the DMA
Controller. The DMA Controller channel(s) must be initialized to select the I2C transmit
and receive requests. Transmit DMA requests require that the TXI bit in the I2C Control
register be set.

A transmit (write) DMA operation hangs if the slave responds with a Not
Acknowledge before the last byte has been sent. After receiving the Not
Acknowledge, the I2C Controller sets the NCKI bit in the Status register and
pauses until either the STOP or START bits in the Control register are set.

Note:

Caution:
PS019919-1207 I2C Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

152
The first seven bits transmitted in the first byte are 11110XX. The two bits XX are the two
most-significant bits of the 10-bit address. The lowest bit of the first byte transferred is the
read/write control bit (=0). The transmit operation is carried out in the same manner as 7-
bit addressing.

Follow the steps below for a transmit operation on a 10-bit addressed slave:

1. Software asserts the IEN bit in the I2C Control register.

2. Software asserts the TXI bit of the I2C Control register to enable Transmit interrupts.

3. The I2C interrupt asserts because the I2C Data register is empty.

4. Software responds to the TDRE interrupt by writing the first slave address byte to the
I2C Data register. The least-significant bit must be 0 for the write operation.

5. Software asserts the START bit of the I2C Control register.

6. The I2C Controller sends the START condition to the I2C slave.

7. The I2C Controller loads the I2C Shift register with the contents of the I2C Data
register.

8. After one bit of address is shifted out by the SDA signal, the Transmit interrupt is
asserted.

9. Software responds by writing the second byte of address into the contents of the I2C
Data register.

10. The I2C Controller shifts the rest of the first byte of address and write bit out the SDA
signal.

11. If the I2C slave acknowledges the first address byte by pulling the SDA signal low
during the next high period of SCL, the I2C Controller sets the ACK bit in the I2C
Status register. Continue with step 12.

If the slave does not acknowledge the first address byte, the I2C Controller sets the
NCKI bit and clears the ACK bit in the I2C Status register. Software responds to the
Not Acknowledge interrupt by setting the STOP and FLUSH bits and clearing the TXI
bit. The I2C Controller sends the STOP condition on the bus and clears the STOP and
NCKI bits. The transaction is complete (ignore the following steps).

12. The I2C Controller loads the I2C Shift register with the contents of the I2C Data
register.

13. The I2C Controller shifts the second address byte out the SDA signal. After the first
bit has been sent, the Transmit interrupt is asserted.

14. Software responds by writing a data byte to the I2C Data register.

15. The I2C Controller completes shifting the contents of the shift register on the SDA
signal.
PS019919-1207 I2C Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

156
15. The I2C Controller sends the repeated START condition.

16. The I2C Controller loads the I2C Shift register with the contents of the I2C Data
register (third address transfer).

17. The I2C Controller sends 11110B followed by the two most significant bits of the
slave read address and a 1 (read).

18. The I2C slave sends an acknowledge by pulling the SDA signal Low during the next
high period of SCL

If the slave were to Not Acknowledge at this point (this should not happen because the
slave did acknowledge the first two address bytes), software would respond by setting
the STOP and FLUSH bits and clearing the TXI bit. The I2C Controller sends the
STOP condition on the bus and clears the STOP and NCKI bits. The transaction is
complete (ignore the following steps).

19. The I2C Controller shifts in a byte of data from the I2C slave on the SDA signal. The
I2C Controller sends a Not Acknowledge to the I2C slave if the NAK bit is set (last
byte), else it sends an Acknowledge.

20. The I2C Controller asserts the Receive interrupt (RDRF bit set in the Status register).

21. Software responds by reading the I2C Data register which clears the RDRF bit. If there
is only one more byte to receive, set the NAK bit of the I2C Control register.

22. If there are one or more bytes to transfer, return to step 19.

23. After the last byte is shifted in, a Not Acknowledge interrupt is generated by the I2C
Controller.

24. Software responds by setting the STOP bit of the I2C Control register.

25. A STOP condition is sent to the I2C slave and the STOP and NCKI bits are cleared.

I2C Control Register Definitions

I2C Data Register
The I2C Data register (see Table 70 on page 157) holds the data that is to be loaded into
the I2C Shift register during a write to a slave. This register also holds data that is loaded
from the I2C Shift register during a read from a slave. The I2C Shift Register is not acces-
sible in the Register File address space, but is used only to buffer incoming and outgoing
data.
PS019919-1207 I2C Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

166
Configuring DMA0 and DMA1 for Data Transfer
Follow the steps below to configure and enable DMA0 or DMA1:

1. Write to the DMAx I/O Address register to set the Register File address identifying the
on-chip peripheral control register. The upper nibble of the 12-bit address for on-chip
peripheral control registers is always FH. The full address is {FH, DMAx_IO[7:0]}.

2. Determine the 12-bit Start and End Register File addresses. The 12-bit Start Address
is given by {DMAx_H[3:0], DMA_START[7:0]}. The 12-bit End Address is given by
{DMAx_H[7:4], DMA_END[7:0]}.

3. Write the Start and End Register File address high nibbles to the DMAx End/Start
Address High Nibble register.

4. Write the lower byte of the Start Address to the DMAx Start/Current Address register.

5. Write the lower byte of the End Address to the DMAx End Address register.

6. Write to the DMAx Control register to complete the following:
– Select loop or single-pass mode operation
– Select the data transfer direction (either from the Register File RAM to the on-

chip peripheral control register; or from the on-chip peripheral control register to
the Register File RAM)

– Enable the DMAx interrupt request, if desired
– Select Word or Byte mode
– Select the DMAx request trigger
– Enable the DMAx channel

DMA_ADC Operation
DMA_ADC transfers data from the ADC to the Register File. The sequence of operations
in a DMA_ADC data transfer is:

1. ADC completes conversion on the current ADC input channel and signals the DMA
controller that two-bytes of ADC data are ready for transfer.

2. DMA_ADC requests control of the system bus (address and data) from the eZ8 CPU.

3. After the eZ8 CPU acknowledges the bus request, DMA_ADC transfers the two-byte
ADC output value to the Register File and then returns system bus control back to the
eZ8 CPU.

4. If the current ADC Analog Input is the highest numbered input to be converted:
– DMA_ADC resets the ADC Analog Input number to 0 and initiates data

conversion on ADC Analog Input 0.
– If configured to generate an interrupt, DMA_ADC sends an interrupt request to

the Interrupt Controller
PS019919-1207 Direct Memory Access Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

199
On-Chip Debugger
Overview

The 64K Series products contain an integrated On-Chip Debugger (OCD) that provides
advanced debugging features including:

• Reading and writing of the Register File

• Reading and writing of Program and Data Memory

• Setting of Breakpoints

• Execution of eZ8 CPU instructions

Architecture

The On-Chip Debugger consists of four primary functional blocks: transmitter, receiver,
auto-baud generator, and debug controller. Figure 36 displays the architecture of the
On-Chip Debugger.

Figure 36. On-Chip Debugger Block Diagram

Auto-Baud
Detector/Generator

Transmitter

Receiver

Debug Controller

System
Clock

DBG
Pin

eZ8TM CPU
Control
PS019919-1207 On-Chip Debugger

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

203
OCD Serial Errors
The On-Chip Debugger can detect any of the following error conditions on the DBG pin:

• Serial Break (a minimum of nine continuous bits Low).

• Framing Error (received Stop bit is Low).

• Transmit Collision (OCD and host simultaneous transmission detected by the OCD).

When the OCD detects one of these errors, it aborts any command currently in progress,
transmits a Serial Break 4096 system clock cycles long back to the host, and resets the
Auto-Baud Detector/Generator. A Framing Error or Transmit Collision may be caused by
the host sending a Serial Break to the OCD. Because of the open-drain nature of the
interface, returning a Serial Break break back to the host only extends the length of the
Serial Break if the host releases the Serial Break early.

The host transmits a Serial Break on the DBG pin when first connecting to the 64K Series
devices or when recovering from an error. A Serial Break from the host resets the Auto-
Baud Generator/Detector but does not reset the OCD Control register. A Serial Break
leaves the device in DEBUG mode if that is the current mode. The OCD is held in Reset
until the end of the Serial Break when the DBG pin returns High. Because of the open-
drain nature of the DBG pin, the host can send a Serial Break to the OCD even if the OCD
is transmitting a character.

Breakpoints
Execution Breakpoints are generated using the BRK instruction (opcode 00H). When the
eZ8 CPU decodes a BRK instruction, it signals the On-Chip Debugger. If Breakpoints are
enabled, the OCD idles the eZ8 CPU and enters DEBUG mode. If Breakpoints are not
enabled, the OCD ignores the BRK signal and the BRK instruction operates as an NOP.

If breakpoints are enabled, the OCD can be configured to automatically enter DEBUG
mode, or to loop on the break instruction. If the OCD is configured to loop on the BRK
instruction, then the CPU is still enabled to service DMA and interrupt requests.

The loop on BRK instruction can be used to service interrupts in the background. For
interrupts to be serviced in the background, there cannot be any breakpoints in the inter-
rupt service routine. Otherwise, the CPU stops on the breakpoint in the interrupt routine.
For interrupts to be serviced in the background, interrupts must also be enabled. Debug-
ging software should not automatically enable interrupts when using this feature, since
interrupts are typically disabled during critical sections of code where interrupts should
not occur (such as adjusting the stack pointer or modifying shared data).

Software can poll the IDLE bit of the OCDSTAT register to determine if the OCD is loop-
ing on a BRK instruction. When software wants to stop the CPU on the BRK instruction it
is looping on, software should not set the DBGMODE bit of the OCDCTL register. The
CPU may have vectored to and be in the middle of an interrupt service routine when this
bit gets set. Instead, software must clear the BRKLP bit. This action allows the CPU to
PS019919-1207 On-Chip Debugger

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

239
Figure 57 and Table 121 provide timing information for UART pins for the case where the
Clear To Send input signal (CTS) is not used for flow control. In this example, it is
assumed that the Driver Enable polarity has been configured to be Active Low and is
represented here by DE. DE asserts after the UART Transmit Data Register has been
written. DE remains asserted for multiple characters as long as the Transmit Data register
is written with the next character before the current character has completed.

Figure 57. UART Timing without CTS

Table 121. UART Timing without CTS

Parameter Abbreviation

Delay (ns)

Minimum Maximum

T1 DE Assertion to TXD Falling Edge (Start)
Delay

1 Bit period 1 Bit period +
 1 * XIN period

T2 End of Stop Bit(s) to DE Deassertion Delay 1 * XIN period 2 * XIN period

T1

TXD
(Output)

DE
(Output)

Start Bit 0

T2

Bit 7 Parity StopBit 1

End of
Stop Bit(s)
PS019919-1207 Electrical Characteristics

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

243
.

Table 123 contains additional symbols that are used throughout the Instruction Summary
and Instruction Set Description sections.

Table 122. Notational Shorthand

Notation Description Operand Range

b Bit b b represents a value from 0 to 7 (000B to 111B).

cc Condition Code — Refer to Condition Codes overview in the eZ8
CPU User Manual.

DA Direct Address Addrs Addrs. represents a number in the range of
0000H to FFFFH

ER Extended Addressing Register Reg Reg. represents a number in the range of 000H to
FFFH

IM Immediate Data #Data Data is a number between 00H to FFH

Ir Indirect Working Register @Rn n = 0 –15

IR Indirect Register @Reg Reg. represents a number in the range of 00H to
FFH

Irr Indirect Working Register Pair @RRp p = 0, 2, 4, 6, 8, 10, 12, or 14

IRR Indirect Register Pair @Reg Reg. represents an even number in the range
00H to FEH

p Polarity p Polarity is a single bit binary value of either 0B or
1B.

r Working Register Rn n = 0 – 15

R Register Reg Reg. represents a number in the range of 00H to
FFH

RA Relative Address X X represents an index in the range of +127 to
 -128 which is an offset relative to the address of
the next instruction

rr Working Register Pair RRp p = 0, 2, 4, 6, 8, 10, 12, or 14

RR Register Pair Reg Reg. represents an even number in the range of
00H to FEH

Vector Vector Address Vector Vector represents a number in the range of 00H
to FFH

X Indexed #Index The register or register pair to be indexed is offset
by the signed Index value (#Index) in a +127 to
-128 range.
PS019919-1207 eZ8™ CPU Instruction Set

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

250
eZ8 CPU Instruction Summary

Table 133 summarizes the eZ8 CPU instructions. The table identifies the addressing
modes employed by the instruction, the effect upon the Flags register, the number of CPU
clock cycles required for the instruction fetch, and the number of CPU clock cycles
required for the instruction execution.

.

SRL dst Shift Right Logical

SWAP dst Swap Nibbles

Table 133. eZ8 CPU Instruction Summary

Assembly
Mnemonic Symbolic Operation

Address
Mode

Opcode(s)
(Hex)

Flags
Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H

ADC dst, src dst ← dst + src + C r r 12 * * * * 0 * 2 3

r Ir 13 2 4

R R 14 3 3

R IR 15 3 4

R IM 16 3 3

IR IM 17 3 4

ADCX dst, src dst ← dst + src + C ER ER 18 * * * * 0 * 4 3

ER IM 19 4 3

ADD dst, src dst ← dst + src r r 02 * * * * 0 * 2 3

r Ir 03 2 4

R R 04 3 3

R IR 05 3 4

R IM 06 3 3

IR IM 07 3 4

ADDX dst, src dst ← dst + src ER ER 08 * * * * 0 * 4 3

ER IM 09 4 3

Table 132. Rotate and Shift Instructions (Continued)

Mnemonic Operands Instruction
PS019919-1207 eZ8™ CPU Instruction Set

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

254
LDC dst, src dst ← src r Irr C2 - - - - - - 2 5

Ir Irr C5 2 9

Irr r D2 2 5

LDCI dst, src dst ← src
r ← r + 1
rr ← rr + 1

Ir Irr C3 - - - - - - 2 9

Irr Ir D3 2 9

LDE dst, src dst ← src r Irr 82 - - - - - - 2 5

Irr r 92 2 5

LDEI dst, src dst ← src
r ← r + 1
rr ← rr + 1

Ir Irr 83 - - - - - - 2 9

Irr Ir 93 2 9

LDWX dst, src dst ← src ER ER 1F E8 - - - - - - 5 4

LDX dst, src dst ← src r ER 84 - - - - - - 3 2

Ir ER 85 3 3

R IRR 86 3 4

IR IRR 87 3 5

r X(rr) 88 3 4

X(rr) r 89 3 4

ER r 94 3 2

ER Ir 95 3 3

IRR R 96 3 4

IRR IR 97 3 5

ER ER E8 4 2

ER IM E9 4 2

LEA dst,
X(src)

dst ← src + X r X(r) 98 - - - - - - 3 3

rr X(rr) 99 3 5

MULT dst dst[15:0] ←
 dst[15:8] * dst[7:0]

RR F4 - - - - - - 2 8

NOP No operation 0F - - - - - - 1 2

Table 133. eZ8 CPU Instruction Summary (Continued)

Assembly
Mnemonic Symbolic Operation

Address
Mode

Opcode(s)
(Hex)

Flags
Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
PS019919-1207 eZ8™ CPU Instruction Set

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

283
Operational Description 103
OR 248
ordering information 270
ORX 248
oscillator signals 15

P
p 243
packaging

LQFP
44 lead 266
64 lead 267

PDIP 265
PLCC

44 lead 267
68 lead 268

QFP 269
part number description 275
part selection guide 2
PC 244
PDIP 265
peripheral AC and DC electrical characteristics 226
PHASE=0 timing (SPI) 133
PHASE=1 timing (SPI) 134
pin characteristics 16
PLCC

44 lead 267
68-lead 268

polarity 243
POP 248
pop using extended addressing 248
POPX 248
port availability, device 57
port input timing (GPIO) 232
port output timing, GPIO 233
power supply signals 16
power-down, automatic (ADC) 176
power-on and voltage brown-out 226
power-on reset (POR) 49
program control instructions 249
program counter 244
program memory 20
PUSH 248

push using extended addressing 248
PUSHX 248
PWM mode 94
PxADDR register 61
PxCTL register 62

Q
QFP 269

R
R 243
r 243
RA

register address 243
RCF 247
receive

10-bit data format (I2C) 154
7-bit data transfer format (I2C) 153
IrDA data 127

receive interrupt 145
receiving UART data-interrupt-driven method 108
receiving UART data-polled method 107
register 140, 169, 243

ADC control (ADCCTL) 179
ADC data high byte (ADCDH) 180
ADC data low bits (ADCDL) 180
baud low and high byte (I2C) 160, 161, 163
baud rate high and low byte (SPI) 142
control (SPI) 137
control, I2C 158
data, SPI 137
DMA status (DMAA_STAT) 173
DMA_ADC address 171
DMA_ADC control DMAACTL) 172
DMAx address high nibble (DMAxH) 169
DMAx control (DMAxCTL) 167
DMAx end/address low byte (DMAxEND) 170
DMAx start/current address low byte register
(DMAxSTART) 170
flash control (FCTL) 190
flash high and low byte (FFREQH and FRE-
EQL) 192
PS019919-1207 Index

