
Zilog - Z8F2422AR020SC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor eZ8

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 46

Program Memory Size 24KB (24K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V

Data Converters A/D 12x10b

Oscillator Type Internal

Operating Temperature 0°C ~ 70°C (TA)

Mounting Type Surface Mount

Package / Case 64-LQFP

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f2422ar020sc

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/z8f2422ar020sc-4427127
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

v

Information Area . 21

Register File Address Map . 23

Control Register Summary . 28

Reset and Stop Mode Recovery . 47

Overview . 47
Reset Types . 47
Reset Sources . 48

Power-On Reset . 49
Voltage Brownout Reset . 50
Watchdog Timer Reset . 51
External Pin Reset . 51
On-Chip Debugger Initiated Reset . 52

Stop Mode Recovery . 52
Stop Mode Recovery Using Watchdog Timer Time-Out 52
Stop Mode Recovery Using a GPIO Port Pin Transition HALT 53

Low-Power Modes . 55

Overview . 55
STOP Mode . 55
HALT Mode . 56

General-Purpose I/O . 57

Overview . 57
GPIO Port Availability By Device . 57
Architecture . 58
GPIO Alternate Functions . 59
GPIO Interrupts . 60
GPIO Control Register Definitions . 61

Port A–H Address Registers . 61
Port A–H Control Registers . 62
Port A–H Input Data Registers . 66
Port A–H Output Data Register . 66

Interrupt Controller . 67

Overview . 67
Interrupt Vector Listing . 67
Architecture . 69
Operation . 69
PS019919-1207 Table of Contents

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

22
Table 6. Z8 Encore! XP 64K Series Flash Microcontrollers Information Area Map

Program Memory
Address (Hex) Function

FE00H-FE3FH Reserved

FE40H-FE53H Part Number
20-character ASCII alphanumeric code
Left justified and filled with zeros (ASCII Null character)

FE54H-FFFFH Reserved
PS019919-1207 Address Space

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

31
UART0 Transmit Data
U0TXD (F40H - Write Only)
D7 D6 D5 D4 D3 D2 D1 D0

UART0 transmitter data byte [7:0]

UART0 Receive Data
U0RXD (F40H - Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

UART0 receiver data byte [7:0]

UART0 Status 0
U0STAT0 (F41H - Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

CTS signal
Returns the level of the CTS signal

Transmitter Empty
0 = Data is currently transmitting
1 = Transmission is complete

Transmitter Data Register Empty
0 = Transmit Data Register is full
1 = Transmit Data register is empty

Break Detect
0 = No break occurred
1 = A break occurred

Framing Error
0 = No framing error occurred
1 = A framing occurred

Overrun Error
0 = No overrun error occurred
1 = An overrun error occurred

Parity Error
0 = No parity error occurred
1 = A parity error occurred

Receive Data Available
0 = Receive Data Register is empty
1 = A byte is available in the Receive
 Data Register

UART0 Control 0
U0CTL0 (F42H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Loop Back Enable
0 = Normal operation
1 = Transmit data is looped back to
 the receiver

Stop Bit Select
0 = Transmitter sends 1 Stop bit
1 = Transmitter sends 2 Stop bits

Send Break
0 = No break is sent
1 = Output of the transmitter is zero

Parity Select
0 = Even parity
1 = Odd parity

Parity Enable
0 = Parity is disabled
1 = Parity is enabled

CTS Enable
0 = CTS signal has no effect on the
 transmitter
1 = UART recognizes CTS signal as
a
 transmit enable control signal

Receive Enable
0 = Receiver disabled
1 = Receiver enabled

Transmit Enable
0 = Transmitter disabled
1 = Transmitter enabled
PS019919-1207 Control Register Summary

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

32
UART0 Control 1
U0CTL1 (F43H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Infrared Encoder/Decoder Enable
0 = Infrared endec is disabled
1 = Infrared endec is enabled

Received Data Interrupt Enable
0 = Received data and errors
generate
 interrupt requests
1 = Only errors generate interrupt
 requests. Received data does
not.

Baud Rate Registers Control
Refer to UART chapter for operation

Driver Enable Polarity
0 = DE signal is active High
1 = DE signal is active Low

Multiprocessor Bit Transmit
0 = Send a 0 as the multiprocessor
bit
1 = Send a 1 as the multiprocessor
bit

Multiprocessor Mode [0]
See Multiprocessor Mode [1] below

Multiprocessor (9-bit) Enable
0 = Multiprocessor mode is disabled
1 = Multiprocessor mode is enabled

Multiprocessor Mode [1]
with Multiprocess Mode bit 0:
00 = Interrupt on all received bytes
01 = Interrupt only on address bytes
10 = Interrupt on address match and
 following data
11 = Interrupt on data following an
 address match

UART0 Status 1
U0STAT1 (F44H - Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

Mulitprocessor Receive
Returns value of last multiprocessor
bit

New Frame
0 = Current byte is not start of frame
1 = Current byte is start of new
frame

Reserved

UART0 Address Compare
U0ADDR (F45H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

UART0 Address Compare [7:0]

UART0 Baud Rate Generator High Byte
U0BRH (F46H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

UART0 Baud Rate divisor [15:8]

UART0 Baud Rate Generator Low Byte
U0BRL (F47H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

UART0 Baud Rate divisor [7:0]

UART1 Transmit Data
U1TXD (F48H - Write Only)
D7 D6 D5 D4 D3 D2 D1 D0

UART1 transmitter data byte[7:0]

UART1 Receive Data
U1RXD (F48H - Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

 UART receiver data byte [7:0]
PS019919-1207 Control Register Summary

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

35
I2C Status
I2CSTAT (F51H - Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

NACK Interrupt
0 = No action required to service
NAK
1 = START/STOP not set after NAK

Data Shift State
0 = Data is not being transferred
1 = Data is being transferred

Transmit Address State
0 = Address is not being transferred
1 = Address is being transferred

Read
0 = Write operation
1 = Read operation

10-Bit Address
0 = 7-bit address being transmitted
1 = 10-bit address being transmitted

Acknowledge
0 = Acknowledge not
 transmitted/received
1 = For last byte, Acknowledge was
 transmitted/received

Receive Data Register Full
0 = I2C has not received data
1 = Data register contains received
data

Transmit Data Register Empty
0 = Data register is full
1 = Data register is empty

I2C Control
I2CCTL (F52H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

I2C Signal Filter Enable
0 = Digital filtering disabled
1 = Low-pass digital filters enabled
 on SDA and SCL input signals

Flush Data
0 = No effect
1 = Clears I2C Data register

Send NAK
0 = Do not send NAK
1 = Send NAK after next byte
received
 from slave

Enable TDRE Interrupts
0 = Do not generate an interrupt
when
 the I2C Data register is empty
1 = Generate an interrupt when the
I2C
 Transmit Data register is empty

Baud Rate Generator Interrupt
0 = Interrupts behave as set by I2C
 control
1 = BRG generates an interrupt
when
 it counts down to zero

Send Stop Condition
0 = Do not issue Stop condition after
 data transmission is complete
1 = Issue Stop condition after data
 transmission is complete

Send Start Condition
0 = Do not send Start Condition
1 = Send Start Condition

I2C Enable
0 = I2C is disabled
1 = I2C is enabled

I2C Baud Rate Generator High Byte
I2CBRH (F53H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

I2C Baud Rate divisor [15:8]

I2C Baud Rate Generator Low Byte
I2CBRL (F54H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

I2C Baud Rate divisor [7:0]
PS019919-1207 Control Register Summary

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

36
SPI Data
SPIDATA (F60H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

SPI Data [7:0]

SPI Control
SPICTL (F61H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

SPI Enable
0 = SPI disabled
1 = SPI enabled

Master Mode Enabled
0 = SPI configured in Slave mode
1 = SPI configured in Master mode

Wire-OR (open-drain) Mode
0 = SPI signals not configured for
 open-drain
1 = SPI signals (SCK, SS, MISO,
and
 MOSI) configured for open-
drain

Clock Polarity
0 = SCK idles Low
1 = SPI idles High

Phase Select
Sets the phase relationship of the
data
to the clock.

BRG Timer Interrupt Request
0 = BRG timer function is disabled
1 = BRG time-out interrupt is
enabled

Start an SPI Interrupt Request
0 = No effect
1 = Generate an SPI interrupt
request

Interrupt Request Enable
0 = SPI interrupt requests are
disabled
1 = SPI interrupt requests are
enabled

SPI Status
SPISTAT (F62H - Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

Slave Select
0 = If Slave, SS pin is asserted
1 = If Slave, SS pin is not asserted

Transmit Status
0 = No data transmission in progress
1 = Data transmission now in
progress

Reserved

Slave Mode Transaction Abort
0 = No slave mode transaction abort
 detected
1 = Slave mode transaction abort
was
 detected

Collision
0 = No multi-master collision
detected
1 = Multi-master collision was
detected

Overrun
0 = No overrun error detected
1 = Overrun error was detected

Interrupt Request
0 = No SPI interrupt request pending
1 = SPI interrupt request is pending

SPI Mode
SPIMODE (F63H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Slave Select Value
 If Master and SPIMODE[1] = 1:
 0 = SS pin driven Low
 1 = SS pin driven High

Slave Select I/O
 0 = SS pin configured as an input
 1 = SS pin configured as an output
 (Master mode only)

Number of Data Bits Per Character
000 = 8 bits
001 = 1 bit
010 = 2 bits
011 = 3 bits
100 = 4 bits
101 = 5 bit
110 = 6 bits
PS019919-1207 Control Register Summary

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

66
Port A–H Input Data Registers
Reading from the Port A–H Input Data registers (Table 21) returns the sampled values
from the corresponding port pins. The Port A–H Input Data registers are Read-only.

PIN[7:0]—Port Input Data
Sampled data from the corresponding port pin input.
0 = Input data is logical 0 (Low).
1 = Input data is logical 1 (High).

Port A–H Output Data Register
The Port A–H Output Data register (Table 22) writes output data to the pins.

POUT[7:0]—Port Output Data
These bits contain the data to be driven out from the port pins. The values are only driven
if the corresponding pin is configured as an output and the pin is not configured for alter-
nate function operation.
0 = Drive a logical 0 (Low).
1= Drive a logical 1 (High). High value is not driven if the drain has been disabled by
 setting the corresponding Port Output Control register bit to 1.

Table 21. Port A–H Input Data Registers (PxIN)

BITS 7 6 5 4 3 2 1 0

FIELD PIN7 PIN6 PIN5 PIN4 PIN3 PIN2 PIN1 PIN0

RESET X

R/W R

ADDR FD2H, FD6H, FDAH, FDEH, FE2H, FE6H, FEAH, FEEH

Table 22. Port A–H Output Data Register (PxOUT)

BITS 7 6 5 4 3 2 1 0

FIELD POUT7 POUT6 POUT5 POUT4 POUT3 POUT2 POUT1 POUT0

RESET 0

R/W R/W

ADDR FD3H, FD7H, FDBH, FDFH, FE3H, FE7H, FEBH, FEFH
PS019919-1207 General-Purpose I/O

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

67
Interrupt Controller
Overview

The interrupt controller on the 64K Series products prioritizes the interrupt requests from
the on-chip peripherals and the GPIO port pins. The features of the interrupt controller
include the following:

• 24 unique interrupt vectors:
– 12 GPIO port pin interrupt sources
– 12 on-chip peripheral interrupt sources

• Flexible GPIO interrupts
– Eight selectable rising and falling edge GPIO interrupts
– Four dual-edge interrupts

• Three levels of individually programmable interrupt priority

• Watchdog Timer can be configured to generate an interrupt

Interrupt requests (IRQs) allow peripheral devices to suspend CPU operation in an orderly
manner and force the CPU to start an interrupt service routine (ISR). Usually this interrupt
service routine is involved with the exchange of data, status information, or control
information between the CPU and the interrupting peripheral. When the service routine is
completed, the CPU returns to the operation from which it was interrupted.

The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupts,
the interrupt control has no effect on operation. For more information on interrupt
servicing by the eZ8 CPU, refer to eZ8™ CPU Core User Manual (UM0128) available for
download at www.zilog.com.

Interrupt Vector Listing

Table 23 lists all of the interrupts available in order of priority. The interrupt vector is
stored with the most-significant byte (MSB) at the even Program Memory address and the
least-significant byte (LSB) at the following odd Program Memory address.
PS019919-1207 Interrupt Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

71
The following style of coding to generate software interrupts by setting bits in
the Interrupt Request registers is NOT recommended. All incoming interrupts
that are received between execution of the first LDX command and the last
LDX command are lost.

Poor coding style that can result in lost interrupt requests:
LDX r0, IRQ0
OR r0, MASK
LDX IRQ0, r0

To avoid missing interrupts, the following style of coding to set bits in the
Interrupt Request registers is recommended:

Good coding style that avoids lost interrupt requests:
ORX IRQ0, MASK

Interrupt Control Register Definitions

For all interrupts other than the Watchdog Timer interrupt, the interrupt control registers
enable individual interrupts, set interrupt priorities, and indicate interrupt requests.

Interrupt Request 0 Register
The Interrupt Request 0 (IRQ0) register (Table 24) stores the interrupt requests for both
vectored and polled interrupts. When a request is presented to the interrupt controller, the
corresponding bit in the IRQ0 register becomes 1. If interrupts are globally enabled (vec-
tored interrupts), the interrupt controller passes an interrupt request to the eZ8™ CPU. If
interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt
Request 0 register to determine if any interrupt requests are pending

T2I—Timer 2 Interrupt Request
0 = No interrupt request is pending for Timer 2.
1 = An interrupt request from Timer 2 is awaiting service.

Table 24. Interrupt Request 0 Register (IRQ0)

BITS 7 6 5 4 3 2 1 0

FIELD T2I T1I T0I U0RXI U0TXI I2CI SPII ADCI

RESET 0

R/W R/W

ADDR FC0H

Caution:
PS019919-1207 Interrupt Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

84
2. Write to the Timer High and Low Byte registers to set the starting count value (usually
0001H), affecting only the first pass in CONTINUOUS mode. After the first timer
Reload in CONTINUOUS mode, counting always begins at the reset value of 0001H.

3. Write to the Timer Reload High and Low Byte registers to set the Reload value.

4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to
the relevant interrupt registers.

5. If using the Timer Output function, configure the associated GPIO port pin for the
Timer Output alternate function.

6. Write to the Timer Control 1 register to enable the timer and initiate counting.

In CONTINUOUS mode, the system clock always provides the timer input. The timer
period is given by the following equation:

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte
registers, the ONE-SHOT mode equation must be used to determine the first time-out
period.

COUNTER Mode
In COUNTER mode, the timer counts input transitions from a GPIO port pin. The timer
input is taken from the GPIO Port pin Timer Input alternate function. The TPOL bit in the
Timer Control 1 Register selects whether the count occurs on the rising edge or the falling
edge of the Timer Input signal. In COUNTER mode, the prescaler is disabled.

The input frequency of the Timer Input signal must not exceed one-fourth the
system clock frequency.

Upon reaching the Reload value stored in the Timer Reload High and Low Byte registers,
the timer generates an interrupt, the count value in the Timer High and Low Byte registers
is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is
enabled, the Timer Output pin changes state (from Low to High or from High to Low) at
timer Reload.

Follow the steps below for configuring a timer for COUNTER mode and initiating the
count:

1. Write to the Timer Control 1 register to:
– Disable the timer
– Configure the timer for COUNTER mode

CONTINUOUS Mode Time-Out Period (s) Reload Value Prescale×
System Clock Frequency (Hz)
--=

Caution:
PS019919-1207 Timers

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

89
– Set the prescale value

2. Write to the Timer High and Low Byte registers to set the starting count value. This
only affects the first pass in GATED mode. After the first timer reset in GATED mode,
counting always begins at the reset value of 0001H.

3. Write to the Timer Reload High and Low Byte registers to set the Reload value.

4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to
the relevant interrupt registers.

5. Configure the associated GPIO port pin for the Timer Input alternate function.

6. Write to the Timer Control 1 register to enable the timer.

7. Assert the Timer Input signal to initiate the counting.

CAPTURE/COMPARE Mode
In CAPTURE/COMPARE mode, the timer begins counting on the first external Timer
Input transition. The desired transition (rising edge or falling edge) is set by the TPOL bit
in the Timer Control 1 Register. The timer input is the system clock.

Every subsequent desired transition (after the first) of the Timer Input signal captures the
current count value. The Capture value is written to the Timer PWM High and Low Byte
Registers. When the Capture event occurs, an interrupt is generated, the count value in the
Timer High and Low Byte registers is reset to 0001H, and counting resumes.

If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the
Timer Reload High and Low Byte registers. Upon reaching the Compare value, the timer
generates an interrupt, the count value in the Timer High and Low Byte registers is reset to
0001H and counting resumes.

Follow the steps below for configuring a timer for CAPTURE/COMPARE mode and initi-
ating the count:

1. Write to the Timer Control 1 register to:
– Disable the timer
– Configure the timer for CAPTURE/COMPARE mode
– Set the prescale value
– Set the Capture edge (rising or falling) for the Timer Input

2. Write to the Timer High and Low Byte registers to set the starting count value
(typically 0001H).

3. Write to the Timer Reload High and Low Byte registers to set the Compare value.

4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to
the relevant interrupt registers.

5. Configure the associated GPIO port pin for the Timer Input alternate function.
PS019919-1207 Timers

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

98

Watchdog Timer Refresh
When first enabled, the Watchdog Timer is loaded with the value in the Watchdog Timer
Reload registers. The Watchdog Timer then counts down to 000000H unless a WDT
instruction is executed by the eZ8™ CPU. Execution of the WDT instruction causes the
downcounter to be reloaded with the WDT Reload value stored in the Watchdog Timer
Reload registers. Counting resumes following the reload operation.

When the 64K Series devices are operating in DEBUG Mode (through the On-Chip
Debugger), the Watchdog Timer is continuously refreshed to prevent spurious Watchdog
Timer time-outs.

Watchdog Timer Time-Out Response
The Watchdog Timer times out when the counter reaches 000000H. A time-out of the
Watchdog Timer generates either an interrupt or a Reset. The WDT_RES Option Bit
determines the time-out response of the Watchdog Timer. For information on
programming of the WDT_RES Option Bit, see Option Bits on page 195.

WDT Interrupt in Normal Operation
If configured to generate an interrupt when a time-out occurs, the Watchdog Timer issues
an interrupt request to the interrupt controller and sets the WDT status bit in the Watchdog
Timer Control register. If interrupts are enabled, the eZ8 CPU responds to the interrupt
request by fetching the Watchdog Timer interrupt vector and executing code from the
vector address. After time-out and interrupt generation, the Watchdog Timer counter rolls
over to its maximum value of FFFFFH and continues counting. The Watchdog Timer
counter is not automatically returned to its Reload Value.

WDT Interrupt in STOP Mode
If configured to generate an interrupt when a time-out occurs and the 64K Series devices
are in STOP mode, the Watchdog Timer automatically initiates a Stop Mode Recovery and
generates an interrupt request. Both the WDT status bit and the STOP bit in the Watchdog
Timer Control register are set to 1 following WDT time-out in STOP mode. For more
information on Stop Mode Recovery, see Reset and Stop Mode Recovery on page 47.

Table 47. Watchdog Timer Approximate Time-Out Delays

WDT Reload Value WDT Reload Value
Approximate Time-Out Delay

(with 10 kHz typical WDT oscillator frequency)

(Hex) (Decimal) Typical Description

000004 4 400 µs Minimum time-out delay

FFFFFF 16,777,215 1677.5 s Maximum time-out delay
PS019919-1207 Watchdog Timer

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

104

Operation

Data Format
The UART always transmits and receives data in an 8-bit data format, least-significant bit
first. An even or odd parity bit can be optionally added to the data stream. Each character
begins with an active Low Start bit and ends with either 1 or 2 active High Stop bits.
Figure 14 and Figure 15 on page 105 displays the asynchronous data format employed by
the UART without parity and with parity, respectively.

Figure 13. UART Block Diagram

Receive Shifter

Receive Data

Transmit Data

Transmit Shift
TXD

RXD

System Bus

Parity Checker

Parity Generator

Receiver Control

Control Registers

Transmitter Control

CTS

Status Register

Register

Register

Register

Baud Rate
Generator

DE

with address compare
PS019919-1207 UART

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

112
Receiver Interrupts
The receiver generates an interrupt when any of the following occurs:

• A data byte has been received and is available in the UART Receive Data register.
This interrupt can be disabled independent of the other receiver interrupt sources. The
received data interrupt occurs once the receive character has been received and placed
in the Receive Data register. Software must respond to this received data available
condition before the next character is completely received to avoid an overrun error.

In MULTIPROCESSOR mode (MPEN = 1), the receive data interrupts are dependent on
the multiprocessor configuration and the most recent address byte.

• A break is received

• An overrun is detected

• A data framing error is detected

UART Overrun Errors
When an overrun error condition occurs the UART prevents overwriting of the valid data
currently in the Receive Data register. The Break Detect and Overrun status bits are not
displayed until after the valid data has been read.

After the valid data has been read, the UART Status 0 register is updated to indicate the
overrun condition (and Break Detect, if applicable). The RDA bit is set to 1 to indicate that
the Receive Data register contains a data byte. However, because the overrun error
occurred, this byte may not contain valid data and should be ignored. The BRKD bit indi-
cates if the overrun was caused by a break condition on the line. After reading the status
byte indicating an overrun error, the Receive Data register must be read again to clear the
error bits is the UART Status 0 register. Updates to the Receive Data register occur only
when the next data word is received.

UART Data and Error Handling Procedure
Figure 18 on page 113 displays the recommended procedure for use in UART receiver
interrupt service routines.

Note:
PS019919-1207 UART

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

132
The Master and Slave are each capable of exchanging a character of data during a
sequence of NUMBITS clock cycles (see NUMBITS field in the SPI Mode Register on
page 140). In both Master and Slave SPI devices, data is shifted on one edge of the SCK
and is sampled on the opposite edge where data is stable. Edge polarity is determined by
the SPI phase and polarity control.

Slave Select
The active Low Slave Select (SS) input signal selects a Slave SPI device. SS must be Low
prior to all data communication to and from the Slave device. SS must stay Low for the
full duration of each character transferred. The SS signal may stay Low during the transfer
of multiple characters or may deassert between each character.

When the SPI is configured as the only Master in an SPI system, the SS pin can be set as
either an input or an output. For communication between the Z8F642x family Z8R642x
family device’s SPI Master and external Slave devices, the SS signal, as an output, can
assert the SS input pin on one of the Slave devices. Other GPIO output pins can also be
employed to select external SPI Slave devices.

When the SPI is configured as one Master in a multi-master SPI system, the SS pin must
be set as an input. The SS input signal on the Master must be High. If the SS signal goes
Low (indicating another Master is driving the SPI bus), a Collision error Flag is set in the
SPI Status register.

SPI Clock Phase and Polarity Control
The SPI supports four combinations of serial clock phase and polarity using two bits in the
SPI Control register. The clock polarity bit, CLKPOL, selects an active high or active Low
clock and has no effect on the transfer format. Table 62 lists the SPI Clock Phase and
Polarity Operation parameters. The clock phase bit, PHASE, selects one of two fundamen-
tally different transfer formats. For proper data transmission, the clock phase and polarity
must be identical for the SPI Master and the SPI Slave. The Master always places data on
the MOSI line a half-cycle before the receive clock edge (SCK signal), in order for the
Slave to latch the data.

Table 62. SPI Clock Phase (PHASE) and Clock Polarity (CLKPOL) Operation

PHASE CLKPOL
SCK Transmit

Edge
SCK Receive

Edge
SCK Idle

State

0 0 Falling Rising Low

0 1 Rising Falling High

1 0 Rising Falling Low

1 1 Falling Rising High
PS019919-1207 Serial Peripheral Interface

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

147
In order for a receive (read) DMA transaction to send a Not Acknowledge
on the last byte, the receive DMA must be set up to receive n-1 bytes, then
software must set the NAK bit and receive the last (nth) byte directly.

Start and Stop Conditions
The master (I2C) drives all Start and Stop signals and initiates all transactions. To start a
transaction, the I2C Controller generates a START condition by pulling the SDA signal
Low while SCL is High. To complete a transaction, the I2C Controller generates a Stop
condition by creating a low-to-high transition of the SDA signal while the SCL signal is
high. The START and STOP bits in the I2C Control register control the sending of the
Start and Stop conditions. A master is also allowed to end one transaction and begin a new
one by issuing a Restart. This is accomplished by setting the START bit at the end of a
transaction, rather than the STOP bit. Note that the Start condition not sent until the
START bit is set and data has been written to the I2C Data register.

Master Write and Read Transactions
The following sections provide a recommended procedure for performing I2C write and
read transactions from the I2C Controller (master) to slave I2C devices. In general
software should rely on the TDRE, RDRF and NCKI bits of the status register (these bits
generate interrupts) to initiate software actions. When using interrupts or DMA, the TXI
bit is set to start each transaction and cleared at the end of each transaction to eliminate a
‘trailing’ Transmit interrupt.

Caution should be used in using the ACK status bit within a transaction because it is
difficult for software to tell when it is updated by hardware.

When writing data to a slave, the I2C pauses at the beginning of the Acknowledge cycle if
the data register has not been written with the next value to be sent (TDRE bit in the I2C
Status register = 1). In this scenario where software is not keeping up with the I2C bus
(TDRE asserted longer than one byte time), the Acknowledge clock cycle for byte n is
delayed until the Data register is written with byte n + 1, and appears to be grouped with
the data clock cycles for byte n+1. If either the START or STOP bit is set, the I2C does not
pause prior to the Acknowledge cycle because no additional data is sent.

When a Not Acknowledge condition is received during a write (either during the address
or data phases), the I2C Controller generates the Not Acknowledge interrupt (NCKI = 1)
and pause until either the STOP or START bit is set. Unless the Not Acknowledge was
received on the last byte, the Data register will already have been written with the next
address or data byte to send. In this case the FLUSH bit of the Control register should be
set at the same time the STOP or START bit is set to remove the stale transmit data and
enable subsequent Transmit interrupts.

When reading data from the slave, the I2C pauses after the data Acknowledge cycle until
the receive interrupt is serviced and the RDRF bit of the status register is cleared by
PS019919-1207 I2C Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

149
Write Transaction with a 7-Bit Address
Figure 29 displays the data transfer format for a 7-bit addressed slave. Shaded regions
indicate data transferred from the I2C Controller to slaves and unshaded regions indicate
data transferred from the slaves to the I2C Controller.

Figure 29. 7-Bit Addressed Slave Data Transfer Format

Follow the steps below for a transmit operation to a 7-bit addressed slave:

1. Software asserts the IEN bit in the I2C Control register.

2. Software asserts the TXI bit of the I2C Control register to enable Transmit interrupts.

3. The I2C interrupt asserts, because the I2C Data register is empty

4. Software responds to the TDRE bit by writing a 7-bit slave address plus write bit (=0)
to the I2C Data register.

5. Software asserts the START bit of the I2C Control register.

6. The I2C Controller sends the START condition to the I2C slave.

7. The I2C Controller loads the I2C Shift register with the contents of the I2C Data
register.

8. After one bit of address has been shifted out by the SDA signal, the Transmit interrupt
is asserted (TDRE = 1).

9. Software responds by writing the transmit data into the I2C Data register.

10. The I2C Controller shifts the rest of the address and write bit out by the SDA signal.

11. If the I2C slave sends an acknowledge (by pulling the SDA signal low) during the next
high period of SCL the I2C Controller sets the ACK bit in the I2C Status register.
Continue with step 12.

If the slave does not acknowledge, the Not Acknowledge interrupt occurs (NCKI bit is
set in the Status register, ACK bit is cleared). Software responds to the Not
Acknowledge interrupt by setting the STOP and FLUSH bits and clearing the TXI bit.
The I2C Controller sends the STOP condition on the bus and clears the STOP and
NCKI bits. The transaction is complete (ignore the following steps).

12. The I2C Controller loads the contents of the I2C Shift register with the contents of the
I2C Data register.

S Slave Address W = 0 A Data A Data A Data A/A P/S
PS019919-1207 I2C Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

215
Electrical Characteristics
Absolute Maximum Ratings

Stresses greater than those listed in Table 105 may cause permanent damage to the device.
These ratings are stress ratings only. Operation of the device at any condition outside those
indicated in the operational sections of these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
For improved reliability, unused inputs must be tied to one of the supply voltages (VDD or
VSS).

Table 105. Absolute Maximum Ratings

Parameter Minimum Maximum Units Notes

Ambient temperature under bias -40 +125 C

Storage temperature -65 +150 C

Voltage on any pin with respect to VSS -0.3 +5.5 V 1

Voltage on VDD pin with respect to VSS -0.3 +3.6 V

Maximum current on input and/or inactive output pin -5 +5 µA

Maximum output current from active output pin -25 +25 mA

80-Pin QFP Maximum Ratings at –40 °C to 70 °C

Total power dissipation 550 mW

Maximum current into VDD or out of VSS 150 mA

80-Pin QFP Maximum Ratings at 70 °C to 125 °C

Total power dissipation 200 mW

Maximum current into VDD or out of VSS 56 mA

68-Pin PLCC Maximum Ratings at –40 °C to 70 °C

Total power dissipation 1000 mW

Maximum current into VDD or out of VSS 275 mA

68-Pin PLCC Maximum Ratings at 70 °C to 125 °C

Total power dissipation 500 mW
PS019919-1207 Electrical Characteristics

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

241
eZ8™ CPU Instruction Set
Assembly Language Programming Introduction

The eZ8 CPU assembly language provides a means for writing an application program
without having to be concerned with actual memory addresses or machine instruction
formats. A program written in assembly language is called a source program. Assembly
language allows the use of symbolic addresses to identify memory locations. It also allows
mnemonic codes (opcodes and operands) to represent the instructions themselves. The
opcodes identify the instruction while the operands represent memory locations, registers,
or immediate data values.

Each assembly language program consists of a series of symbolic commands called
statements. Each statement can contain labels, operations, operands and comments.

Labels can be assigned to a particular instruction step in a source program. The label
identifies that step in the program as an entry point for use by other instructions.

The assembly language also includes assembler directives that supplement the machine
instruction. The assembler directives, or pseudo-ops, are not translated into a machine
instruction. Rather, the pseudo-ops are interpreted as directives that control or assist the
assembly process.

The source program is processed (assembled) by the assembler to obtain a machine
language program called the object code. The object code is executed by the eZ8 CPU. An
example segment of an assembly language program is detailed in the following example.

Assembly Language Source Program Example
JP START ; Everything after the semicolon is a comment.

START: ; A label called “START”. The first instruction (JP START) in this
; example causes program execution to jump to the point within the
; program where the START label occurs.

LD R4, R7 ; A Load (LD) instruction with two operands. The first operand,
; Working Register R4, is the destination. The second operand,
; Working Register R7, is the source. The contents of R7 is
; written into R4.

LD 234H, #%01 ; Another Load (LD) instruction with two operands.
; The first operand, Extended Mode Register Address 234H,
; identifies the destination. The second operand, Immediate Data
PS019919-1207 eZ8™ CPU Instruction Set

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

245
eZ8 CPU Instruction Classes

eZ8 CPU instructions can be divided functionally into the following groups:

• Arithmetic

• Bit Manipulation

• Block Transfer

• CPU Control

• Load

• Logical

• Program Control

• Rotate and Shift

0011 3 ULE Unsigned Less Than or Equal (C OR Z) = 1

0100 4 OV Overflow V = 1

0101 5 Ml Minus S = 1

0110 6 Z Zero Z = 1

0110 6 EQ Equal Z = 1

0111 7 C Carry C = 1

0111 7 ULT Unsigned Less Than C = 1

1000 8 T (or blank) Always True –

1001 9 GE Greater Than or Equal (S XOR V) = 0

1010 A GT Greater Than (Z OR (S XOR V)) = 0

1011 B UGT Unsigned Greater Than (C = 0 AND Z = 0) = 1

1100 C NOV No Overflow V = 0

1101 D PL Plus S = 0

1110 E NZ Non-Zero Z = 0

1110 E NE Not Equal Z = 0

1111 F NC No Carry C = 0

1111 F UGE Unsigned Greater Than or Equal C = 0

Table 124. Condition Codes (Continued)

Binary Hex
Assembly
Mnemonic Definition Flag Test Operation
PS019919-1207 eZ8™ CPU Instruction Set

