E·XFL

Zilog - Z8F2422VS020SC00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	46
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f2422vs020sc00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

zilog

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
F61	SPI Control	SPICTL	00	137
F62	SPI Status	SPISTAT	01	139
F63	SPI Mode	SPIMODE	00	140
F64	SPI Diagnostic State	SPIDST	00	141
F65	Reserved	_	XX	
F66	SPI Baud Rate High Byte	SPIBRH	FF	142
F67	SPI Baud Rate Low Byte	SPIBRL	FF	142
F68-F6F	Reserved		XX	
Analog-to-Digit	al Converter			
F70	ADC Control	ADCCTL	20	179
F71	Reserved		XX	
F72	ADC Data High Byte	ADCD_H	XX	180
F73	ADC Data Low Bits	ADCD_L	XX	180
F74-FAF	Reserved		XX	
DMA 0				
FB0	DMA0 Control	DMA0CTL	00	167
FB1	DMA0 I/O Address	DMA0IO	XX	169
FB2	DMA0 End/Start Address High Nibble	DMA0H	XX	169
FB3	DMA0 Start Address Low Byte	DMA0START	XX	170
FB4	DMA0 End Address Low Byte	DMA0END	XX	170
DMA 1				
FB8	DMA1 Control	DMA1CTL	00	167
FB9	DMA1 I/O Address	DMA1IO	XX	169
FBA	DMA1 End/Start Address High Nibble	DMA1H	XX	169
FBB	DMA1 Start Address Low Byte	DMA1START	XX	170
FBC	DMA1 End Address Low Byte	DMA1END	XX	170
DMA ADC				
FBD	DMA_ADC Address	DMAA_ADDR	XX	171
FBE	DMA_ADC Control	DMAACTL	00	172
FBF	DMA_ADC Status	DMAASTAT	00	173
Interrupt Control	oller			
FC0	Interrupt Request 0	IRQ0	00	71
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	74
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	74
FC3	Interrupt Request 1	IRQ1	00	72
FC4	IRQ1 Enable High Bit	IRQ1ENH	00	75
FC5	IRQ1 Enable Low Bit	IRQ1ENL	00	75
FC6	Interrupt Request 2	IRQ2	00	73
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	76
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	76
FC9-FCC	Reserved	_	XX	

Table 7. Z8 Encore! XP 64K Series Flash Microcontrollers Register File Address Map (Continued)

AF[7:0]—Port Alternate Function enabled

- 0 = The port pin is in NORMAL mode and the DDx bit in the Port A–H Data Direction sub-register determines the direction of the pin.
- 1 = The alternate function is selected. Port pin operation is controlled by the alternate function.

Port A–H Output Control Sub-Registers

The Port A–H Output Control sub-register (Table 18) is accessed through the Port A–H Control register by writing 03H to the Port A–H Address register. Setting the bits in the Port A–H Output Control sub-registers to 1 configures the specified port pins for open-drain operation. These sub-registers affect the pins directly and, as a result, alternate functions are also affected.

Table 18. Port A-H Output Control Sub-Registers

BITS	7	6	5	4	3	2	1	0			
FIELD	POC7	POC7 POC6 POC5 POC4 POC3 POC2 POC1 POC0									
RESET	0										
R/W		R/W									
ADDR	lf 03F	If 03H in Port A–H Address Register, accessible through Port A–H Control Register									

POC[7:0]—Port Output Control

These bits function independently of the alternate function bit and disables the drains if set to 1.

0 = The drains are enabled for any output mode.

1 = The drain of the associated pin is disabled (open-drain mode).

Port A-H High Drive Enable Sub-Registers

The Port A–H High Drive Enable sub-register (Table 19) is accessed through the Port A–H Control register by writing 04H to the Port A–H Address register. Setting the bits in the Port A–H High Drive Enable sub-registers to 1 configures the specified port pins for high current output drive operation. The Port A–H High Drive Enable sub-register affects the pins directly and, as a result, alternate functions are also affected.

T1I—Timer 1 Interrupt Request

0 = No interrupt request is pending for Timer 1.

1 = An interrupt request from Timer 1 is awaiting service.

T0I—Timer 0 Interrupt Request

0 = No interrupt request is pending for Timer 0.

1 = An interrupt request from Timer 0 is awaiting service.

U0RXI—UART 0 Receiver Interrupt Request

0 = No interrupt request is pending for the UART 0 receiver.

1 = An interrupt request from the UART 0 receiver is awaiting service.

U0TXI-UART 0 Transmitter Interrupt Request

0 = No interrupt request is pending for the UART 0 transmitter.

1 = An interrupt request from the UART 0 transmitter is awaiting service.

I²CI— I²C Interrupt Request

0 = No interrupt request is pending for the I²C.

1 = An interrupt request from the I²C is awaiting service.

SPII—SPI Interrupt Request

0 = No interrupt request is pending for the SPI.

1 = An interrupt request from the SPI is awaiting service.

ADCI—ADC Interrupt Request

0 = No interrupt request is pending for the Analog-to-Digital Converter.

1 = An interrupt request from the Analog-to-Digital Converter is awaiting service.

Interrupt Request 1 Register

The Interrupt Request 1 (IRQ1) register (Table 25) stores interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ1 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 1 register to determine if any interrupt requests are pending.

BITS	7	6	5	4	3	2	1	0			
FIELD	PAD7I	PAD6I	PAD5I	i PAD4I PAD3I PAD2I PAD1I							
RESET	0										
R/W		R/W									
ADDR		FC3H									

Table 25.	Interrupt	Request 1	Register	(IRQ1)
-----------	-----------	------------------	----------	--------

Follow the steps below for configuring a timer for COMPARE mode and initiating the count:

- 1. Write to the Timer Control 1 register to:
 - Disable the timer
 - Configure the timer for COMPARE mode
 - Set the prescale value
 - Set the initial logic level (High or Low) for the Timer Output alternate function, if desired
- 2. Write to the Timer High and Low Byte registers to set the starting count value.
- 3. Write to the Timer Reload High and Low Byte registers to set the Compare value.
- 4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 6. Write to the Timer Control 1 register to enable the timer and initiate counting.

In COMPARE mode, the system clock always provides the timer input. The Compare time is given by the following equation:

COMPARE Mode Time (s) = $\frac{(Compare Value - Start Value) \times Prescale}{System Clock Frequency (Hz)}$

GATED Mode

In GATED mode, the timer counts only when the Timer Input signal is in its active state (asserted), as determined by the TPOL bit in the Timer Control 1 register. When the Timer Input signal is asserted, counting begins. A timer interrupt is generated when the Timer Input signal is deasserted or a timer reload occurs. To determine if a Timer Input signal deassertion generated the interrupt, read the associated GPIO input value and compare to the value stored in the TPOL bit.

The timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. When reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes (assuming the Timer Input signal is still asserted). Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer reset.

Follow the steps below for configuring a timer for GATED mode and initiating the count:

- 1. Write to the Timer Control 1 register to:
 - Disable the timer
 - Configure the timer for GATED mode

1 = Timer Output is forced High (1) when the timer is disabled. When enabled, the Timer Output is forced Low (0) upon PWM count match and forced High (1) upon Reload.

CAPTURE mode

0 =Count is captured on the rising edge of the Timer Input signal.

1 = Count is captured on the falling edge of the Timer Input signal.

COMPARE mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

GATED mode

- 0 = Timer counts when the Timer Input signal is High (1) and interrupts are generated on the falling edge of the Timer Input.
- 1 = Timer counts when the Timer Input signal is Low (0) and interrupts are generated on the rising edge of the Timer Input.

CAPTURE/COMPARE mode

- 0 = Counting is started on the first rising edge of the Timer Input signal. The current count is captured on subsequent rising edges of the Timer Input signal.
- 1 = Counting is started on the first falling edge of the Timer Input signal. The current count is captured on subsequent falling edges of the Timer Input signal.

<u>^</u> (

Caution: When the Timer Output alternate function TxOUT on a GPIO port pin is enabled, TxOUT will change to whatever state the TPOL bit is in. The timer does not need to be enabled for that to happen. Also, the Port data direction sub register is not needed to be set to output on TxOUT. Changing the TPOL bit with the timer enabled and running does not immediately change the TxOUT.

PRES—Prescale value.

The timer input clock is divided by 2^{PRES} , where PRES can be set from 0 to 7. The prescaler is reset each time the Timer is disabled. This insures proper clock division each time the Timer is restarted.

- 000 = Divide by 1
- 001 = Divide by 2
- 010 = Divide by 4
- 011 = Divide by 8
- 100 = Divide by 16
- 101 = Divide by 32

POR-Power-On Reset Indicator

If this bit is set to 1, a Power-On Reset event occurred. This bit is reset to 0 if a WDT timeout or Stop Mode Recovery occurs. This bit is also reset to 0 when the register is read.

STOP—Stop Mode Recovery Indicator

If this bit is set to 1, a Stop Mode Recovery occurred. If the STOP and WDT bits are both set to 1, the Stop Mode Recovery occurred due to a WDT time-out. If the STOP bit is 1 and the WDT bit is 0, the Stop Mode Recovery was not caused by a WDT time-out. This bit is reset by a Power-On Reset or a WDT time-out that occurred while not in STOP mode. Reading this register also resets this bit.

WDT-Watchdog Timer Time-Out Indicator

If this bit is set to 1, a WDT time-out occurred. A Power-On Reset resets this pin. A Stop Mode Recovery from a change in an input pin also resets this bit. Reading this register resets this bit.

EXT-External Reset Indicator

If this bit is set to 1, a Reset initiated by the external $\overline{\text{RESET}}$ pin occurred. A Power-On Reset or a Stop Mode Recovery from a change in an input pin resets this bit. Reading this register resets this bit.

Reserved

These bits are reserved and must be 0.

SM—STOP Mode Configuration Indicator

0 = Watchdog Timer and its internal RC oscillator will continue to operate in STOP Mode.

1 = Watchdog Timer and its internal RC oscillator will be disabled in STOP Mode.

Watchdog Timer Reload Upper, High and Low Byte Registers

The Watchdog Timer Reload Upper, High and Low Byte (WDTU, WDTH, WDTL) registers (see Table 49 on page 102 through Table 51 on page 102) form the 24-bit reload value that is loaded into the Watchdog Timer when a WDT instruction executes. The 24-bit reload value is {WDTU[7:0], WDTH[7:0], WDTL[7:0]}. Writing to these registers sets the desired Reload Value. Reading from these registers returns the current Watchdog Timer count value.

zilog 114

(BRG[15:0]) that sets the data transmission rate (baud rate) of the UART. The UART data rate is calculated using the following equation:

UART Data Rate (bits/s) = $\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$

When the UART is disabled, the Baud Rate Generator can function as a basic 16-bit timer with interrupt on time-out. To configure the Baud Rate Generator as a timer with interrupt on time-out, complete the following procedure:

- 1. Disable the UART by clearing the REN and TEN bits in the UART Control 0 register to 0.
- 2. Load the desired 16-bit count value into the UART Baud Rate High and Low Byte registers.
- 3. Enable the Baud Rate Generator timer function and associated interrupt by setting the BRGCTL bit in the UART Control 1 register to 1.

When configured as a general purpose timer, the interrupt interval is calculated using the following equation:

Interrupt Interval(s) = System Clock Period (s) × BRG[15:0]

UART Control Register Definitions

The UART control registers support the UART and the associated Infrared Encoder/ Decoders. For more information on the infrared operation, see Infrared Encoder/Decoder on page 125.

UART Transmit Data Register

Data bytes written to the UART Transmit Data register (Table 52) are shifted out on the TXDx pin. The Write-only UART Transmit Data register shares a Register File address with the Read-only UART Receive Data register.

BITS	7	6	5	4	3	2	1	0		
FIELD				Tک	(D					
RESET	X									
R/W		W								
ADDR	F40H and F48H									

Table 52. UART Transmit Data Register (UxTXD)

Table 59. UART Baud Rate High Byte Register (UxBRH)

BITS	7	6	5	4	3	2	1	0			
FIELD		BRH									
RESET	1										
R/W		R/W									
ADDR	F46H and F4EH										

Table 60. UART Baud Rate Low Byte Register (UxBRL)

BITS	7	6	5	4	3	2	1	0		
FIELD	BRL									
RESET	1									
R/W	R/W									
ADDR				F47H ar	nd F4FH					

For a given UART data rate, the integer baud rate divisor value is calculated using the following equation:

UART Baud Rate Divisor Value (BRG) = $Round\left(\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Data Rate (bits/s)}}\right)$

The baud rate error relative to the desired baud rate is calculated using the following equation:

UART Baud Rate Error (%) = $100 \times \left(\frac{\text{Actual Data Rate} - \text{Desired Data Rate}}{\text{Desired Data Rate}}\right)$

For reliable communication, the UART baud rate error must never exceed 5 percent. Table 61 provides information on data rate errors for popular baud rates and commonly used crystal oscillator frequencies.

Z8 Encore! XP[®] 64K Series Flash Microcontrollers Product Specification

9.60	23	9.73	1.32	 9.60	12	9.60	0.00
4.80	47	4.76	-0.83	 4.80	24	4.80	0.00
2.40	93	2.41	0.23	 2.40	48	2.40	0.00
1.20	186	1.20	0.23	 1.20	96	1.20	0.00
0.60	373	0.60	-0.04	 0.60	192	0.60	0.00
0.30	746	0.30	-0.04	 0.30	384	0.30	0.00

Table 61. UART Baud Rates (Continued)

124

Figure 23. SPI Configured as a Master in a Single Master, Multiple Slave System

Figure 24. SPI Configured as a Slave

Operation

The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire interface (serial clock, transmit, receive and Slave select). The SPI block consists of a transmit/receive shift register, a Baud Rate (clock) Generator and a control unit.

In order for a receive (read) DMA transaction to send a Not Acknowledge on the last byte, the receive DMA must be set up to receive n-1 bytes, then software must set the NAK bit and receive the last (nth) byte directly.

Start and Stop Conditions

The master (I^2C) drives all Start and Stop signals and initiates all transactions. To start a transaction, the I²C Controller generates a START condition by pulling the SDA signal Low while SCL is High. To complete a transaction, the I²C Controller generates a Stop condition by creating a low-to-high transition of the SDA signal while the SCL signal is high. The START and STOP bits in the I²C Control register control the sending of the Start and Stop conditions. A master is also allowed to end one transaction and begin a new one by issuing a Restart. This is accomplished by setting the START bit at the end of a transaction, rather than the STOP bit. Note that the Start condition not sent until the START bit is set and data has been written to the I²C Data register.

Master Write and Read Transactions

The following sections provide a recommended procedure for performing I²C write and read transactions from the I²C Controller (master) to slave I²C devices. In general software should rely on the TDRE, RDRF and NCKI bits of the status register (these bits generate interrupts) to initiate software actions. When using interrupts or DMA, the TXI bit is set to start each transaction and cleared at the end of each transaction to eliminate a 'trailing' Transmit interrupt.

Caution should be used in using the ACK status bit within a transaction because it is difficult for software to tell when it is updated by hardware.

When writing data to a slave, the I²C pauses at the beginning of the Acknowledge cycle if the data register has not been written with the next value to be sent (TDRE bit in the I²C Status register = 1). In this scenario where software is not keeping up with the I²C bus (TDRE asserted longer than one byte time), the Acknowledge clock cycle for byte n is delayed until the Data register is written with byte n + 1, and appears to be grouped with the data clock cycles for byte n+1. If either the START or STOP bit is set, the I²C does not pause prior to the Acknowledge cycle because no additional data is sent.

When a Not Acknowledge condition is received during a write (either during the address or data phases), the I²C Controller generates the Not Acknowledge interrupt (NCKI = 1) and pause until either the STOP or START bit is set. Unless the Not Acknowledge was received on the last byte, the Data register will already have been written with the next address or data byte to send. In this case the FLUSH bit of the Control register should be set at the same time the STOP or START bit is set to remove the stale transmit data and enable subsequent Transmit interrupts.

When reading data from the slave, the I²C pauses after the data Acknowledge cycle until the receive interrupt is serviced and the RDRF bit of the status register is cleared by

Option Bits

Overview

Option Bits allow user configuration of certain aspects of the 64K Series operation. The feature configuration data is stored in the Flash Memory and read during Reset. The features available for control via the Option Bits are:

- Watchdog Timer time-out response selection-interrupt or Reset.
- Watchdog Timer enabled at Reset.
- The ability to prevent unwanted read access to user code in Flash Memory.
- The ability to prevent accidental programming and erasure of the user code in Flash Memory.
- Voltage Brownout configuration-always enabled or disabled during STOP mode to reduce STOP mode power consumption.
- Oscillator mode selection-for high, medium, and low power crystal oscillators, or external RC oscillator.

Operation

Option Bit Configuration By Reset

Each time the Option Bits are programmed or erased, the device must be Reset for the change to take place. During any reset operation (System Reset, Reset, or Stop Mode Recovery), the Option Bits are automatically read from the Flash Memory and written to Option Configuration registers. The Option Configuration registers control operation of the devices within the 64K Series. Option Bit control is established before the device exits Reset and the eZ8 CPU begins code execution. The Option Configuration registers are not part of the Register File and are not accessible for read or write access.

Option Bit Address Space

The first two bytes of Flash Memory at addresses 0000H (see Table 98 on page 196) and 0001H (see Table 99 on page 197) are reserved for the user Option Bits. The byte at Flash Memory address 0000H configures user options. The byte at Flash Memory address 0001H is reserved for future use and must remain unprogrammed.

On-Chip Oscillator

Overview

The products in the 64K Series feature an on-chip oscillator for use with external crystals with frequencies from 32 kHz to 20 MHz. In addition, the oscillator can support external RC networks with oscillation frequencies up to 4 MHz or ceramic resonators with oscillation frequencies up to 20 MHz. This oscillator generates the primary system clock for the internal eZ8TM CPU and the majority of the on-chip peripherals. Alternatively, the X_{IN} input pin can also accept a CMOS-level clock input signal (32 kHz–20 MHz). If an external clock generator is used, the X_{OUT} pin must be left unconnected.

When configured for use with crystal oscillators or external clock drivers, the frequency of the signal on the X_{IN} input pin determines the frequency of the system clock (that is, no internal clock divider). In RC operation, the system clock is driven by a clock divider (divide by 2) to ensure 50% duty cycle.

Operating Modes

The 64K Series products support four different oscillator modes:

- On-chip oscillator configured for use with external RC networks (<4 MHz).
- Minimum power for use with very low frequency crystals (32 kHz to 1.0 MHz).
- Medium power for use with medium frequency crystals or ceramic resonators (0.5 MHz to 10.0 MHz).
- Maximum power for use with high frequency crystals or ceramic resonators (8.0 MHz to 20.0 MHz).

The oscillator mode is selected through user-programmable Option Bits. For more information, see Option Bits on page 195.

Crystal Oscillator Operation

Figure 40 on page 212 displays a recommended configuration for connection with an external fundamental-mode, parallel-resonant crystal operating at 20 MHz. Recommended 20 MHz crystal specifications are provided in Table 104 on page 212. Resistor R1 is optional and limits total power dissipation by the crystal. The printed circuit board layout

Z8 Encore! XP[®] 64K Series Flash Microcontrollers Product Specification

zilog

225

Figure 48 displays the maximum current consumption in STOP mode with the VBO disabled and Watchdog Timer enabled versus the power supply voltage. All GPIO pins are configured as outputs and driven High. Disabling the Watchdog Timer and its internal RC oscillator in STOP mode will provide some additional reduction in STOP mode current consumption. This small current reduction would be indistinguishable on the scale of Figure 48.

Figure 48. Maximum STOP Mode Idd with VBO Disabled versus Power Supply Voltage

General-Purpose I/O Port Input Data Sample Timing

Figure 50 displays timing of the GPIO Port input sampling. Table 114 lists the GPIO port input timing.

Figure 50. Port Input Sample Timing

Table 114. GPIO Port Input Timing

		Delay	/ (ns)
Parameter	Abbreviation	Min	Max
T _{S_PORT}	Port Input Transition to XIN Fall Setup Time (Not pictured)	5	-
T _{H_PORT}	XIN Fall to Port Input Transition Hold Time (Not pictured)	6	-
T _{SMR}	GPIO Port Pin Pulse Width to Insure Stop Mode Recovery (for GPIO Port Pins enabled as SMR sources)	1 μs	

250

Table 132. Rotate and Shift Instructions (Continued)

Mnemonic	Operands	Instruction				
SRL dst		Shift Right Logical				
SWAP	dst	Swap Nibbles				

eZ8 CPU Instruction Summary

Table 133 summarizes the eZ8 CPU instructions. The table identifies the addressing modes employed by the instruction, the effect upon the Flags register, the number of CPU clock cycles required for the instruction fetch, and the number of CPU clock cycles required for the instruction.

Assembly		Address Mode		_ Oncode(s)	Flags						_ Fetch	Instr
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	V	D	н	Cycles	Cycles
ADC dst, src	$dst \leftarrow dst + src + C$	r	r	12	*	*	*	*	0	*	2	3
	-	r	lr	13							2	4
	-	R	R	14							3	3
	-	R	IR	15							3	4
	-	R	IM	16							3	3
	-	IR	IM	17							3	4
ADCX dst, sro	$dst \leftarrow dst + src + C$	ER	ER	18	*	*	*	*	0	*	4	3
	-	ER	IM	19							4	3
ADD dst, src	$dst \gets dst + src$	r	r	02	*	*	*	*	0	*	2	3
	-	r	lr	03							2	4
	-	R	R	04							3	3
	-	R	IR	05							3	4
	-	R	IM	06							3	3
		IR	IM	07							3	4
ADDX dst, sro	$dst \leftarrow dst + src$	ER	ER	08	*	*	*	*	0	*	4	3
	-	ER	IM	09							4	3

Table 133. eZ8 CPU Instruction Summary

Z8 Encore! XP[®] 64K Series Flash Microcontrollers Product Specification

Opcode Maps

A description of the opcode map data and the abbreviations are provided in Figure 59 and Table 134 on page 262. Figure 60 on page 263 and Figure 61 on page 264 provide information on each of the $eZ8^{TM}$ CPU instructions.

Figure 59. Opcode Map Cell Description

Z8 Encore! XP[®] 64K Series Flash Microcontrollers Product Specification

Packaging

Figure 62 displays the 40-pin Plastic Dual-inline Package (PDIP) available for the Z8X1601, Z8X2401, Z8X3201, Z8X4801, and Z8X6401 devices.

Figure 62. 40-Lead Plastic Dual-Inline Package (PDIP)

270

Ordering Information

Part Number	Flash	RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	I ² C	SPI	UARTs with IrDA	Description
20F042X with 64 KD Flash, 10-Dit Analog-to-Digital Converter										
			00	00	0	0	4	-		
28F6421PM020SC	64 KB	4 KB	29	23	3	8	1	1	2	PDIP 40-pin package
Z8F6421AN020SC	64 KB	4 KB	31	23	3	8	1	1	2	LQFP 44-pin package
Z8F6421VN020SC	64 KB	4 KB	31	23	3	8	1	1	2	PLCC 44-pin package
Z8F6422AR020SC	64 KB	4 KB	46	24	4	12	1	1	2	LQFP 64-pin package
Z8F6422VS020SC	64 KB	4 KB	46	24	4	12	1	1	2	PLCC 68-pin package
Z8F6423FT020SC	64 KB	4 KB	60	24	4	12	1	1	2	QFP 80-pin package
Extended Temperature: -40 °C to +105 °C										
Z8F6421PM020EC	64 KB	4 KB	29	23	3	8	1	1	2	PDIP 40-pin package
Z8F6421AN020EC	64 KB	4 KB	31	23	3	8	1	1	2	LQFP 44-pin package
Z8F6421VN020EC	64 KB	4 KB	31	23	3	8	1	1	2	PLCC 44-pin package
Z8F6422AR020EC	64 KB	4 KB	46	24	4	12	1	1	2	LQFP 64-pin package
Z8F6422VS020EC	64 KB	4 KB	46	24	4	12	1	1	2	PLCC 68-pin package
Z8F6423FT020EC	64 KB	4 KB	60	24	4	12	1	1	2	QFP 80-pin package
Automotive/Industrial Temperature: -40 °C to +125 °C										
Z8F6421PM020AC	64 KB	4 KB	29	23	3	8	1	1	2	PDIP 40-pin package
Z8F6421AN020AC	64 KB	4 KB	31	23	3	8	1	1	2	LQFP 44-pin package
Z8F6421VN020AC	64 KB	4 KB	31	23	3	8	1	1	2	PLCC 44-pin package
Z8F6422AR020AC	64 KB	4 KB	46	24	4	12	1	1	2	LQFP 64-pin package
Z8F6422VS020AC	64 KB	4 KB	46	24	4	12	1	1	2	PLCC 68-pin package
Z8F6423FT020AC	64 KB	4 KB	60	24	4	12	1	1	2	QFP 80-pin package

281

SUB 246 SUBX 246 SWAP 250 TCM 247 **TCMX 247** TM 247 TMX 247 **TRAP 249** watch-dog timer refresh 248 XOR 249 **XORX 249** instructions, eZ8 classes of 245 interrupt control register 79 interrupt controller 5, 67 architecture 67 interrupt assertion types 70 interrupt vectors and priority 70 operation 69 register definitions 71 software interrupt assertion 70 interrupt edge select register 78 interrupt port select register 78 interrupt request 0 register 71 interrupt request 1 register 72 interrupt request 2 register 73 interrupt return 249 interrupt vector listing 67 interrupts not acknowledge 145 receive 145 **SPI 135** transmit 145 **UART 111** introduction 1 IR 243 Ir 243 IrDA architecture 125 block diagram 125 control register definitions 128 operation 126 receiving data 127 transmitting data 126 **IRET 249**

IRQ0 enable high and low bit registers 74 IRQ1 enable high and low bit registers 75 IRQ2 enable high and low bit registers 76 IRR 243 Irr 243

J

JP 249 jump, conditional, relative, and relative conditional 249

L

LD 248 LDC 248 LDCI 247, 248 LDE 248 LDEI 247, 248 LDX 248 LEA 248 load 248 load constant 247 load constant to/from program memory 248 load constant with auto-increment addresses 248 load effective address 248 load external data 248 load external data to/from data memory and autoincrement addresses 247 load external to/from data memory and auto-increment addresses 248 load instructions 248 load using extended addressing 248 logical AND 248 logical AND/extended addressing 248 logical exclusive OR 249 logical exclusive OR/extended addressing 249 logical instructions 248 logical OR 248 logical OR/extended addressing 248 low power modes 55 LOFP 44 lead 266 64 lead 267