

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

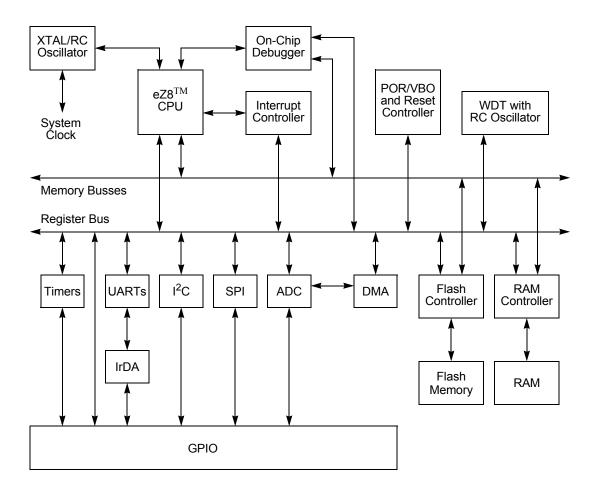
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	29
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.620", 15.75mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f3221pm020ec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



IIART	103
UART Overview Architecture Operation Data Format Transmitting Data using the Polled Method Transmitting Data using the Interrupt-Driven Method Receiving Data using the Polled Method Receiving Data using the Interrupt-Driven Method Clear To Send (CTS) Operation	103 104 104 105 106 107 108 109
MULTIPROCESSOR (9-bit) Mode	
External Driver Enable	
UART Baud Rate Generator	
UART Control Register Definitions	
UART Transmit Data Register	
UART Receive Data Register	
UART Status 0 Register	115
UART Status 1 Register	116
UART Control 0 and Control 1 Registers	
UART Address Compare Register	
UART Baud Rate High and Low Byte Registers	120
Infrared Encoder/Decoder	125
Overview	125
Architecture	125
Operation	126
Transmitting IrDA Data	
Receiving IrDA Data	
Infrared Encoder/Decoder Control Register Definitions	128
Serial Peripheral Interface	129
Overview	129
Architecture	129
Operation	
SPI Signals	
SPI Clock Phase and Polarity Control	
Multi-Master Operation	
Slave Operation	134

Block Diagram

Figure 1 displays the block diagram of the architecture of the Z8 Encore! XP 64K Series Flash Microcontrollers.

CPU and Peripheral Overview

eZ8[™] CPU Features

The latest 8-bit eZ8 CPU meets the continuing demand for faster and more code-efficient microcontrollers. The eZ8 CPU executes a superset of the original $Z8^{\mathbb{R}}$ instruction set.

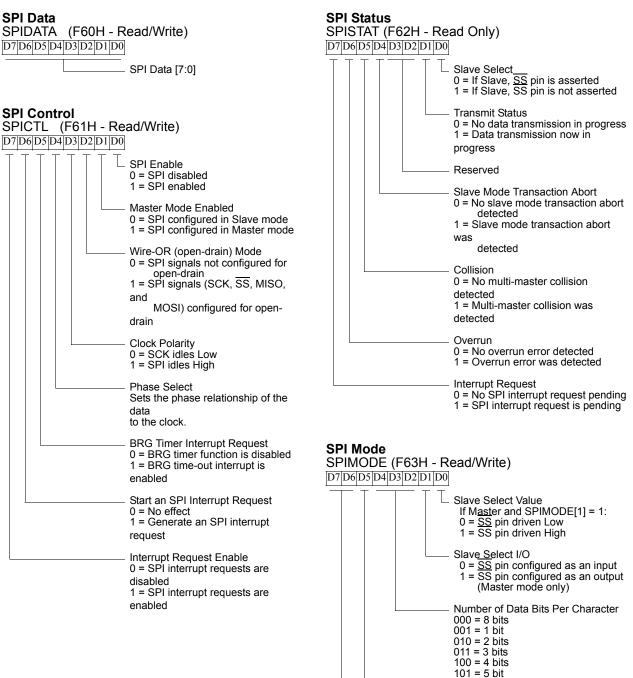
Pin Configurations

Figure 2 through Figure 7 on page 13 display the pin configurations for all of the packages available in the Z8 Encore! XP 64K Series Flash Microcontrollers. For description of the signals, see Table 3 on page 14. Timer 3 is not available in the 40-pin and 44-pin packages.

Г		
PD4/RXD1 —	1 40	— PD5 / TXD1
PD3 / DE1 —		— PC4 / MOSI
PC5 / MISO —		— PA4 / RXD0
PA3 / CTS0 —		— PA5 / TXD0
PA2/DE0	5	— PA6 / SCL
PA1 /T0OUT -	35	— PA7 / SDA
PA0 / T0IN —		— PD6 / CTS1
PC2 / SS		— PC3 / SCK
RESET -		— VSS
VDD —	10	— VDD
VSS —	30	— PC6 / T2IN *
PD1 —		— DBG
PD0 —		— PC1 / T1OUT
XOUT —		— PC0 / T1IN
XIN —	15	— AVSS
AVDD —	25	— VREF
PB0 / ANA0 —		— PB2 / ANA2
PB1 / ANA1 —		— PB3 / ANA3
PB4 / ANA4 —		— PB7 / ANA7
PB5 / ANA5 — 2	20 21	— PB6 / ANA6
L		

Note: Timer 3 is not supported.

* T2OUT is not supported.


Figure 2. Z8 Encore! XP 64K Series Flash Microcontrollers in 40-Pin Dual Inline Package (PDIP)

Address (Hex)	· · ·	Mnemonic	Reset (Hex)	Page No
-61	SPI Control	SPICTL	00	137
F62	SPI Status	SPISTAT	01	139
F63	SPI Mode	SPIMODE	00	140
F64	SPI Diagnostic State	SPIDST	00	141
F65	Reserved	_	XX	
F66	SPI Baud Rate High Byte	SPIBRH	FF	142
F67	SPI Baud Rate Low Byte	SPIBRL	FF	142
F68-F6F	Reserved	_	XX	
Analog-to-Digit	tal Converter			
F70	ADC Control	ADCCTL	20	179
F71	Reserved	_	XX	
F72	ADC Data High Byte	ADCD_H	XX	180
F73	ADC Data Low Bits	ADCD_L	XX	180
F74-FAF	Reserved	_	XX	
DMA 0				
FB0	DMA0 Control	DMA0CTL	00	167
FB1	DMA0 I/O Address	DMA0IO	XX	169
FB2	DMA0 End/Start Address High Nibble	DMA0H	XX	169
FB3	DMA0 Start Address Low Byte	DMA0START	XX	170
FB4	DMA0 End Address Low Byte	DMA0END	XX	170
DMA 1				
FB8	DMA1 Control	DMA1CTL	00	167
FB9	DMA1 I/O Address	DMA1IO	XX	169
FBA	DMA1 End/Start Address High Nibble	DMA1H	XX	169
FBB	DMA1 Start Address Low Byte	DMA1START	XX	170
FBC	DMA1 End Address Low Byte	DMA1END	XX	170
DMA ADC				
FBD	DMA ADC Address	DMAA_ADDR	XX	171
FBE	DMA ADC Control	DMAACTL	00	172
FBF	DMA ADC Status	DMAASTAT	00	173
Interrupt Contr		_		-
FC0	Interrupt Request 0	IRQ0	00	71
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	74
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	74
FC3	Interrupt Request 1	IRQ1	00	72
FC4	IRQ1 Enable High Bit	IRQ1ENH	00	75
FC5	IRQ1 Enable Low Bit	IRQ1ENL	00	75
FC6	Interrupt Request 2	IRQ2	00	73
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	76
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	76
FC9-FCC	Reserved		XX	

Table 7. Z8 Encore! XP 64K Series Flash Microcontrollers Register File Address Map (Continued)

AF[7:0]—Port Alternate Function enabled

- 0 = The port pin is in NORMAL mode and the DDx bit in the Port A–H Data Direction sub-register determines the direction of the pin.
- 1 = The alternate function is selected. Port pin operation is controlled by the alternate function.

Port A–H Output Control Sub-Registers

The Port A–H Output Control sub-register (Table 18) is accessed through the Port A–H Control register by writing 03H to the Port A–H Address register. Setting the bits in the Port A–H Output Control sub-registers to 1 configures the specified port pins for open-drain operation. These sub-registers affect the pins directly and, as a result, alternate functions are also affected.

Table 18. Port A-H Output Control Sub-Registers

BITS	7	6	5	4	3	2	1	0		
FIELD	POC7	POC6	POC5	POC5 POC4 POC3 POC2		POC2	POC1	POC0		
RESET	0									
R/W	R/W									
ADDR	If 03H in Port A–H Address Register, accessible through Port A–H Control Register									

POC[7:0]—Port Output Control

These bits function independently of the alternate function bit and disables the drains if set to 1.

0 = The drains are enabled for any output mode.

1 = The drain of the associated pin is disabled (open-drain mode).

Port A-H High Drive Enable Sub-Registers

The Port A–H High Drive Enable sub-register (Table 19) is accessed through the Port A–H Control register by writing 04H to the Port A–H Address register. Setting the bits in the Port A–H High Drive Enable sub-registers to 1 configures the specified port pins for high current output drive operation. The Port A–H High Drive Enable sub-register affects the pins directly and, as a result, alternate functions are also affected.

Watchdog Timer

Overview

The Watchdog Timer (WDT) helps protect against corrupt or unreliable software, power faults, and other system-level problems which may place the Z8 Encore! XP into unsuitable operating states. The features of Watchdog Timer include:

- On-chip RC oscillator.
- A selectable time-out response.
- WDT Time-out response: Reset or interrupt.
- 24-bit programmable time-out value.

Operation

The Watchdog Timer (WDT) is a retriggerable one-shot timer that resets or interrupts the 64K Series devices when the WDT reaches its terminal count. The Watchdog Timer uses its own dedicated on-chip RC oscillator as its clock source. The Watchdog Timer has only two modes of operation—ON and OFF. Once enabled, it always counts and must be refreshed to prevent a time-out. An enable can be performed by executing the WDT instruction or by setting the WDT_AO Option Bit. The WDT_AO bit enables the Watchdog Timer to operate all the time, even if a WDT instruction has not been executed.

The Watchdog Timer is a 24-bit reloadable downcounter that uses three 8-bit registers in the $eZ8^{TM}$ CPU register space to set the reload value. The nominal WDT time-out period is given by the following equation:

WDT Time-out Period (ms) = $\frac{\text{WDT Reload Value}}{10}$

where the WDT reload value is the decimal value of the 24-bit value given by {WDTU[7:0], WDTH[7:0], WDTL[7:0]} and the typical Watchdog Timer RC oscillator frequency is 10 kHz. The Watchdog Timer cannot be refreshed once it reaches 000002H. The WDT Reload Value must not be set to values below 000004H. Table 47 provides information on approximate time-out delays for the minimum and maximum WDT reload values.

- 120
- 1 = Infrared Encoder/Decoder is enabled. The UART transmits and receives data through the Infrared Encoder/Decoder.

UART Address Compare Register

The UART Address Compare register (Table 58) stores the multi-node network address of the UART. When the MPMD[1] bit of UART Control Register 0 is set, all incoming address bytes are compared to the value stored in the Address Compare register. Receive interrupts and RDA assertions only occur in the event of a match.

Table 58. UART Address Compare Register (UxADDR)

BITS	7	6	5	4	3	2	1	0	
FIELD				COMP	_ADDR				
RESET		0							
R/W		R/W							
ADDR				F45H ar	nd F4DH				

COMP_ADDR—Compare Address

This 8-bit value is compared to the incoming address bytes.

UART Baud Rate High and Low Byte Registers

The UART Baud Rate High and Low Byte registers (see Table 59 and Table 60 on page 121) combine to create a 16-bit baud rate divisor value (BRG[15:0]) that sets the data transmission rate (baud rate) of the UART. To configure the Baud Rate Generator as a timer with interrupt on time-out, complete the following procedure:

- 1. Disable the UART by clearing the REN and TEN bits in the UART Control 0 register to 0.
- 2. Load the desired 16-bit count value into the UART Baud Rate High and Low Byte registers.
- 3. Enable the Baud Rate Generator timer function and associated interrupt by setting the BRGCTL bit in the UART Control 1 register to 1.

When configured as a general purpose timer, the UART BRG interrupt interval is calculated using the following equation:

UART BRG Interrupt Interval(s) = System Clock Period (s) × BRG[15:0]

Infrared Encoder/Decoder

Overview

The 64K Series products contain two fully-functional, high-performance UART to Infrared Encoder/Decoders (Endecs). Each Infrared Endec is integrated with an on-chip UART to allow easy communication between the 64K Series and IrDA Physical Layer Specification, Version 1.3-compliant infrared transceivers. Infrared communication provides secure, reliable, low-cost, point-to-point communication between PCs, PDAs, cell phones, printers, and other infrared enabled devices.

Architecture

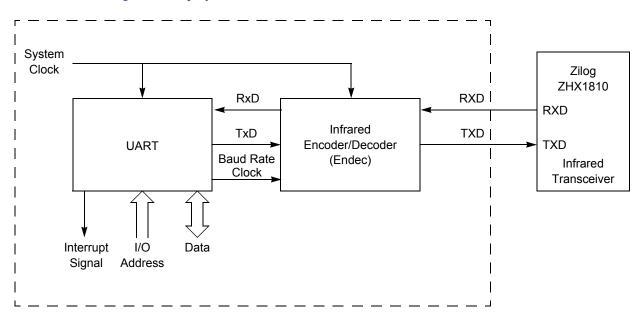
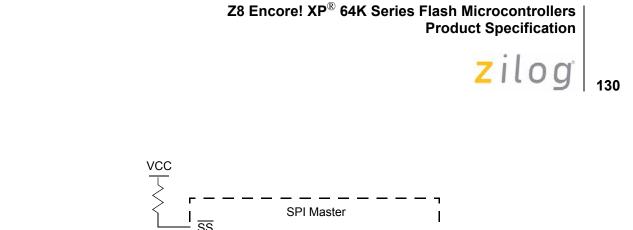


Figure 19 displays the architecture of the Infrared Endec.

Figure 19. Infrared Data Communication System Block Diagram


repeated. If the incoming data is a logical 1 (no pulse), the Endec returns to the initial state and waits for the next falling edge. As each falling edge is detected, the Endec clock counter is reset, resynchronizing the Endec to the incoming signal. This action allows the Endec to tolerate jitter and baud rate errors in the incoming data stream. Resynchronizing the Endec does not alter the operation of the UART, which ultimately receives the data. The UART is only synchronized to the incoming data stream when a Start bit is received.

Infrared Encoder/Decoder Control Register Definitions

All Infrared Endec configuration and status information is set by the UART control registers as defined in UART Control Register Definitions on page 114.

Caution: To prevent spurious signals during IrDA data transmission, set the IREN bit in the UARTx Control 1 register to 1 to enable the Infrared Encoder/Decoder before enabling the GPIO Port alternate function for the corresponding pin.

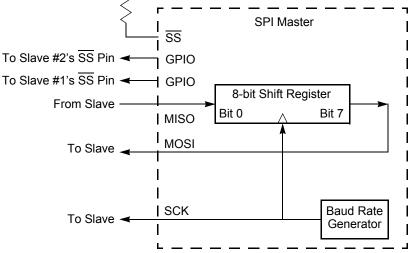


Figure 23. SPI Configured as a Master in a Single Master, Multiple Slave System

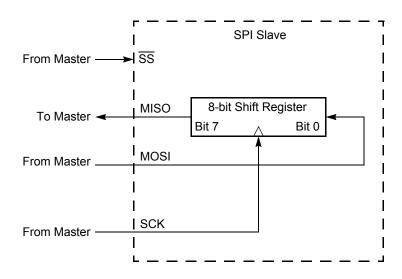


Figure 24. SPI Configured as a Slave

Operation

The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire interface (serial clock, transmit, receive and Slave select). The SPI block consists of a transmit/receive shift register, a Baud Rate (clock) Generator and a control unit.

145

- Master receives from a 7-bit slave
- Master receives from a 10-bit slave

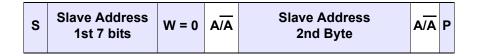
SDA and SCL Signals

 I^2C sends all addresses, data and acknowledge signals over the SDA line, most-significant bit first. SCL is the common clock for the I^2C Controller. When the SDA and SCL pin alternate functions are selected for their respective GPIO ports, the pins are automatically configured for open-drain operation.

The master (I^2C) is responsible for driving the SCL clock signal, although the clock signal can become skewed by a slow slave device. During the low period of the clock, the slave pulls the SCL signal Low to suspend the transaction. The master releases the clock at the end of the low period and notices that the clock remains low instead of returning to a high level. When the slave releases the clock, the I²C Controller continues the transaction. All data is transferred in bytes and there is no limit to the amount of data transferred in one operation. When transmitting data or acknowledging read data from the slave, the SDA signal changes in the middle of the low period of SCL and is sampled in the middle of the high period of SCL.

I²C Interrupts

The I²C Controller contains four sources of interrupts—Transmit, Receive, Not Acknowledge and baud rate generator. These four interrupt sources are combined into a single interrupt request signal to the Interrupt Controller. The Transmit interrupt is enabled by the IEN and TXI bits of the Control register. The Receive and Not Acknowledge interrupts are enabled by the IEN bit of the Control register. The baud rate generator interrupt is enabled by the BIRQ and IEN bits of the Control register.


Not Acknowledge interrupts occur when a Not Acknowledge condition is received from the slave or sent by the I²C Controller and neither the START or STOP bit is set. The Not Acknowledge event sets the NCKI bit of the I²C Status register and can only be cleared by setting the START or STOP bit in the I²C Control register. When this interrupt occurs, the I²C Controller waits until either the STOP or START bit is set before performing any action. In an interrupt service routine, the NCKI bit should always be checked prior to servicing transmit or receive interrupt conditions because it indicates the transaction is being terminated.

Receive interrupts occur when a byte of data has been received by the I²C Controller (master reading data from slave). This procedure sets the RDRF bit of the I²C Status register. The RDRF bit is cleared by reading the I²C Data register. The RDRF bit is set during the acknowledge phase. The I²C Controller pauses after the acknowledge phase until the receive interrupt is cleared before performing any other action.

- 13. The I²C Controller shifts the data out of using the SDA signal. After the first bit is sent, the Transmit interrupt is asserted.
- 14. If more bytes remain to be sent, return to step 9.
- 15. Software responds by setting the STOP bit of the I²C Control register (or START bit to initiate a new transaction). In the STOP case, software clears the TXI bit of the I²C Control register at the same time.
- 16. The I²C Controller completes transmission of the data on the SDA signal.
- 17. The slave may either Acknowledge or Not Acknowledge the last byte. Because either the STOP or START bit is already set, the NCKI interrupt does not occur.
- The I²C Controller sends the STOP (or RESTART) condition to the I²C bus. The STOP or START bit is cleared.

Address Only Transaction with a 10-bit Address

In the situation where software wants to determine if a slave with a 10-bit address is responding without sending or receiving data, a transaction can be done which only consists of an address phase. Figure 30 displays this 'address only' transaction to determine if a slave with 10-bit address will acknowledge. As an example, this transaction can be used after a 'write' has been done to a EEPROM to determine when the EEPROM completes its internal write operation and is once again responding to I²C transactions. If the slave does not Acknowledge the transaction can be repeated until the slave is able to Acknowledge.

Figure 30. 10-Bit Address Only Transaction Format

Follow the steps below for an address only transaction to a 10-bit addressed slave:

- 1. Software asserts the IEN bit in the I^2C Control register.
- 2. Software asserts the TXI bit of the I^2C Control register to enable Transmit interrupts.
- 3. The I²C interrupt asserts, because the I²C Data register is empty (TDRE = 1)
- 4. Software responds to the TDRE interrupt by writing the first slave address byte. The least-significant bit must be 0 for the write operation.
- 5. Software asserts the START bit of the I^2C Control register.
- 6. The I^2C Controller sends the START condition to the I^2C slave.

Information Area

Table 91 describes the 64K Series Information Area. This 512-byte Information Area is accessed by setting bit 7 of the Page Select Register to 1. When access is enabled, the Information Area is mapped into Flash Memory and overlays the 512 bytes at addresses FE00H to FFFFH. When the Information Area access is enabled, LDC instructions return data from the Information Area. CPU instruction fetches always comes from Flash Memory regardless of the Information Area access bit. Access to the Information Area is read-only.

Flash Memory Address (Hex)	Function
FE00H-FE3FH	Reserved
FE40H-FE53H	Part Number 20-character ASCII alphanumeric code Left justified and filled with zeros
FE54H-FFFFH	Reserved

Table 91. Z8 Encore! XP 64K Series Flash Microcontrollers Information Area Map

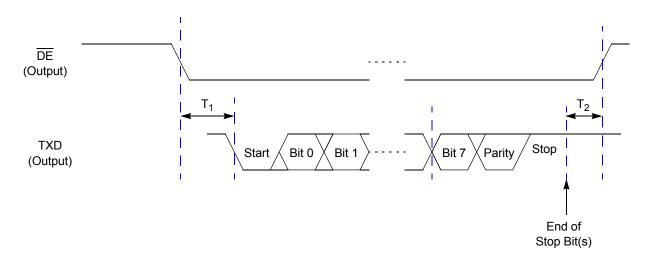
Operation

The Flash Controller provides the proper signals and timing for Byte Programming, Page Erase, and Mass Erase of the Flash memory. The Flash Controller contains a protection mechanism, via the Flash Control register (FCTL), to prevent accidental programming or erasure. The following subsections provide details on the various operations (Lock, Unlock, Sector Protect, Byte Programming, Page Erase, and Mass Erase).

226

On-Chip Peripheral AC and DC Electrical Characteristics

$T_A = -40 \ ^{\circ}C \ to \ 125 \ ^{\circ}C$ Minimum Typical¹ Symbol Parameter Maximum Units Conditions V_{POR} Power-On Reset 2.40 2.70 2.90 V $V_{DD} = V_{POR}$ Voltage Threshold Voltage Brownout Reset $V_{DD} = V_{VBO}$ V_{VBO} 2.30 2.60 2.85 V Voltage Threshold V_{POR} to V_{VBO} 50 100 mV hysteresis Starting V_{DD} voltage to ensure valid Power-On V_{SS} V _ Reset. T_{ANA} Power-On Reset Analog 50 V_{DD} > V_{POR}; T_{POR} Digital μS _ Reset delay follows TANA Delay Power-On Reset Digital 66 WDT Oscillator cycles T_{POR} 6.6 ms _ _ (10 kHz) + 16 System Clock Delay cycles (20 MHz) Voltage Brownout Pulse $V_{DD} < V_{VBO}$ to generate a 10 T_{VBO} _ μS _ **Rejection Period** Reset. Time for VDD to T_{RAMP} 0.10 100 ms _ transition from V_{SS} to V_{POR} to ensure valid Reset


Table 107. Power-On Reset and Voltage Brownout Electrical Characteristics and Timing

¹Data in the typical column is from characterization at 3.3 V and 0 °C. These values are provided for design guidance only and are not tested in production.

zilog

239

Figure 57 and Table 121 provide timing information for UART pins for the case where the Clear To Send input signal ($\overline{\text{CTS}}$) is not used for flow control. In this example, it is assumed that the Driver Enable polarity has been configured to be Active Low and is represented here by $\overline{\text{DE}}$. $\overline{\text{DE}}$ asserts after the UART Transmit Data Register has been written. $\overline{\text{DE}}$ remains asserted for multiple characters as long as the Transmit Data register is written with the next character before the current character has completed.

Table 121	. UART	Timing	without	CTS
-----------	--------	--------	---------	-----

		Delay (ns					
Parameter	Abbreviation	Minimum	Maximum				
T ₁	DE Assertion to TXD Falling Edge (Start) Delay	1 Bit period	1 Bit period + 1 * XIN period				
T ₂	End of Stop Bit(s) to $\overline{\text{DE}}$ Deassertion Delay	1 * XIN period	2 * XIN period				

Table 123. Additional Symbols

Symbol	Definition
dst	Destination Operand
src	Source Operand
@	Indirect Address Prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flags Register
RP	Register Pointer
#	Immediate Operand Prefix
В	Binary Number Suffix
%	Hexadecimal Number Prefix
Н	Hexadecimal Number Suffix

Assignment of a value is indicated by an arrow. For example,

 $dst \leftarrow dst + src$

indicates the source data is added to the destination data and the result is stored in the destination location.

Condition Codes

The C, Z, S and V Flags control the operation of the conditional jump (JP cc and JR cc) instructions. Sixteen frequently useful functions of the Flag settings are encoded in a 4-bit field called the condition code (cc), which forms Bits 7:4 of the conditional jump instructions. The condition codes are summarized in Table 124. Some binary condition codes can be created using more than one assembly code mnemonic. The result of the Flag test operation decides if the conditional jump is executed.

Binary	Hex	Assembly Mnemonic	Definition	Flag Test Operation
0000	0	F	Always False	-
0001	1	LT	Less Than	(S XOR V) = 1
0010	2	LE	Less Than or Equal	(Z OR (S XOR V)) = 1

Table 124. Condition Codes

Assembly			ress ode	_ Opcode(s)	Flags						- Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	V	D	Н	Cycles	
RRC dst		R		C0	*	*	*	*	-	-	2	2
	► <u>D7 D6 D5 D4 D3 D2 D1 D0</u> ► <u>C</u> dst	IR		C1	•						2	3
SBC dst, src	$dst \gets dst - src - C$	r	r	32	*	*	*	*	1	*	2	3
	-	r	lr	33	•						2	4
	-	R	R	34	•						3	3
	-	R	IR	35	•						3	4
	-	R	IM	36	•						3	3
	-	IR	IM	37	•						3	4
SBCX dst, src	$dst \leftarrow dst - src - C$	ER	ER	38	*	*	*	*	1	*	4	3
	-	ER	IM	39	•						4	3
SCF	C ← 1			DF	1	-	-	-	-	-	1	2
SRA dst	- v v	R		D0	*	*	*	0	-	-	2	2
	— D7D6D5D4D3D2D1D0 → C dst	IR		D1							2	3
SRL dst) -> D7D6D5D4D3D2D1D0 <mark>-></mark> C	R		1F C0	*	*	0	*	-	-	3	2
	dst	IR		1F C1	•						3	3
SRP src	$RP \leftarrow src$		IM	01	-	-	-	-	-	-	2	2
STOP	STOP Mode			6F	-	-	-	-	-	-	1	2
SUB dst, src	$dst \gets dst - src$	r	r	22	*	*	*	*	1	*	2	3
	-	r	lr	23	•						2	4
	-	R	R	24	•						3	3
	-	R	IR	25	•						3	4
	-	R	IM	26							3	3
	-	IR	IM	27							3	4
SUBX dst, src	dst ← dst – src	ER	ER	28	*	*	*	*	1	*	4	3
	-	ER	IM	29	•						4	3

Table 133. eZ8 CPU Instruction Summary (Continued)

263

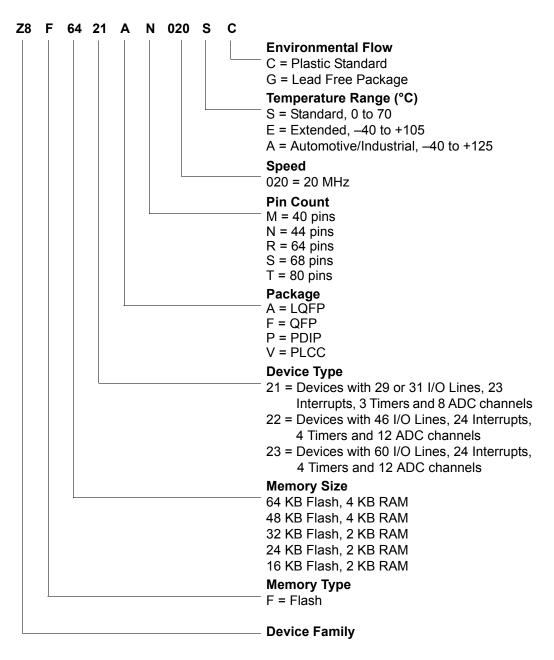

							Le	ower Nil	bble (He	x)						
	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	1.2 BRK	2.2 SRP IM	2.3 ADD r1,r2	2.4 ADD r1,lr2	3.3 ADD R2,R1	3.4 ADD IR2,R1	3.3 ADD R1,IM	3.4 ADD IR1,IM	4.3 ADDX ER2,ER1	4.3 ADDX IM,ER1	2.3 DJNZ r1,X	2.2 JR cc,X	2.2 LD r1,IM	3.2 JP cc,DA	1.2 INC r1	1.2 NOP
1	2.2 RLC R1	2.3 RLC IR1	2.3 ADC r1,r2	2.4 ADC r1,lr2	3.3 ADC R2,R1	3.4 ADC IR2,R1	3.3 ADC R1,IM	3.4 ADC IR1,IM	4.3 ADCX ER2,ER1	4.3 ADCX IM,ER1						See 2nd Opcode Map
2	2.2 INC R1	2.3 INC IR1	2.3 SUB r1,r2	2.4 SUB r1,lr2	3.3 SUB R2,R1	3.4 SUB IR2,R1	3.3 SUB R1,IM	3.4 SUB IR1,IM	4.3 SUBX ER2,ER1	4.3 SUBX IM,ER1						1,2 ATM
3	2.2 DEC R1	2.3 DEC IR1	2.3 SBC r1,r2	2.4 SBC r1,lr2	3.3 SBC R2,R1	3.4 SBC IR2,R1	3.3 SBC R1,IM	3.4 SBC IR1,IM	4.3 SBCX ER2,ER1	4.3 SBCX IM,ER1						
4	2.2 DA R1	2.3 DA IR1	2.3 OR r1,r2	2.4 OR r1,lr2	3.3 OR R2,R1	3.4 OR IR2,R1	3.3 OR R1,IM	3.4 OR IR1,IM	4.3 ORX ER2,ER1	4.3 ORX IM,ER1						
5	2.2 POP R1	2.3 POP IR1	2.3 AND r1,r2	2.4 AND r1,lr2	3.3 AND R2,R1	3.4 AND IR2,R1	3.3 AND R1,IM	3.4 AND IR1,IM	4.3 ANDX ER2,ER1	4.3 ANDX IM,ER1						WDT
6	2.2 COM R1	2.3 COM IR1	2.3 TCM r1,r2	2.4 TCM r1,lr2	3.3 TCM R2,R1	3.4 TCM IR2,R1	3.3 TCM R1,IM	3.4 TCM IR1,IM	4.3 TCMX ER2,ER1	4.3 TCMX IM,ER1						STOP
7	2.2 PUSH R2	2.3 PUSH IR2	2.3 TM r1,r2	2.4 TM r1,lr2	3.3 TM R2,R1	3.4 TM IR2,R1	3.3 TM R1,IM	3.4 TM IR1,IM	4.3 TMX ER2,ER1	4.3 TMX IM,ER1						1.2 HALT
8	2.5 DECW RR1	2.6 DECW IRR1	2.5 LDE r1,Irr2	2.9 LDEI Ir1,Irr2	3.2 LDX r1,ER2	3.3 LDX Ir1,ER2	3.4 LDX IRR2,R1	3.5 LDX IRR2,IR1	3.4 LDX r1,rr2,X	3.4 LDX rr1,r2,X						1.2 DI
9	2.2	2.3 RL IR1	2.5 LDE r2,Irr1	2.9 LDEI Ir2,Irr1	3.2 LDX r2,ER1	3.3 LDX Ir2,ER1	3.4 LDX R2,IRR1	3.5 LDX IR2,IRR1	3.3 LEA r1,r2,X	3.5 LEA rr1,rr2,X						1.2 El
А	2.5	2.6 INCW	2.3 CP r1,r2	2.4 CP r1,lr2	3.3 CP R2,R1	3.4 CP IR2,R1	3.3 CP R1,IM	3.4 CP IR1,IM	4.3 CPX ER2,ER1	4.3 CPX IM,ER1						1.4 RET
В	2.2	2.3 CLR IR1	2.3 XOR r1,r2	2.4 XOR r1,lr2	3.3 XOR R2,R1	3.4 XOR IR2,R1	3.3 XOR R1,IM	3.4 XOR IR1,IM	4.3 XORX ER2,ER1	4.3 XORX IM,ER1						1.5 IRET
С	2.2	2.3 RRC IR1	2.5 LDC r1,lrr2	2.9 LDCI Ir1,Irr2	2.3 JP IRR1	2.9 LDC lr1,lrr2	,	3.4 LD r1,r2,X	3.2 PUSHX ER2	,						1.2 RCF
C	2.2	2.3 SRA IR1	2.5 LDC r2,Irr1	2.9 LDCI Ir2,Irr1	2.6 CALL IRR1	2.2 BSWAP R1	3.3 CALL DA	3.4 LD r2,r1,X	3.2 POPX ER1							1.2 SCF
E	2.2 RR R1	2.3 RR IR1	2.2 BIT p,b,r1	2.3 LD r1,lr2	3.2 LD R2,R1	3.3 LD IR2,R1	3.2 LD R1,IM	3.3 LD IR1,IM	4.2 LDX ER2,ER1	4.2 LDX IM,ER1						1.2 CCF
F	2.2 SWAP R1	2.3 SWAP IR1	2.6 TRAP Vector	2.3 LD lr1,r2	2.8 MULT RR1	3.3 LD R2,IR1	3.3 BTJ p,b,r1,X	3.4 BTJ p,b,lr1,X			V	V	V	V	V	

Figure 60. First Opcode Map

For technical and customer support, hardware and software development tools, refer to the $Zilog^{\mathbb{R}}$ website at <u>www.zilog.com</u>. The latest released version of ZDS can be downloaded from this website.

Part Number Suffix Designations

