

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	29
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.620", 15.75mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f3221pm020eg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Program Memory Address (Hex)	Function
0000-0001	Option Bits
0002-0003	Reset Vector
0004-0005	WDT Interrupt Vector
0006-0007	Illegal Instruction Trap
0008-0037	Interrupt Vectors*
0038-BFFF	Program Memory
Z8F642x Products	
0000-0001	Option Bits
0002-0003	Reset Vector
0004-0005	WDT Interrupt Vector
0006-0007	Illegal Instruction Trap
0008-0037	Interrupt Vectors*
0038-FFFF	Program Memory
*See Table 23 on page 68 for a list of th	ne interrupt vectors.

Table 5. Z8 Encore! XP 64K Series Flash Microcontrollers Program Memory Maps (Continued)

Data Memory

The Z8 Encore! XP 64K Series Flash Microcontrollers does not use the eZ8 CPU's 64 KB Data Memory address space.

Information Area

Table 6 on page 22 describes the Z8 Encore! XP 64K Series Flash Microcontrollers Information Area. This 512 byte Information Area is accessed by setting bit 7 of the Page Select Register to 1. When access is enabled, the Information Area is mapped into the Program Memory and overlays the 512 bytes at addresses FE00H to FFFFH. When the Information Area access is enabled, execution of LDC and LDCI instruction from these Program Memory addresses return the Information Area data rather than the Program Memory data. Reads of these addresses through the On-Chip Debugger also returns the Information Area data. Execution of code from these addresses continues to correctly use the Program Memory. Access to the Information Area is read-only.

zilog

I2C Signal Filter Enable 0 = Digital filtering disabled

1 = Clears I2C Data register

0 = Do not send NAK 1 = Send NAK after next byte

from slave

Enable TDRE Interrupts

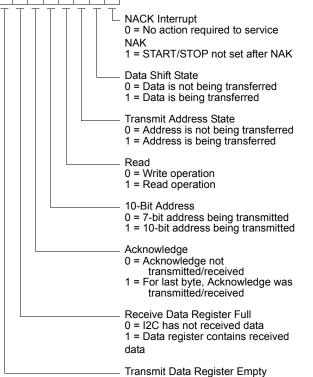
0 = Do not generate an interrupt

the I2C Data register is empty

Flush Data

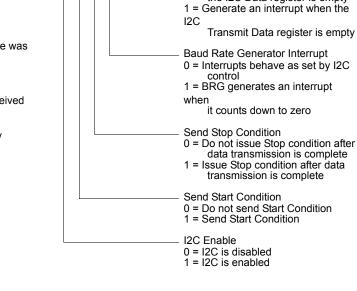
Send NAK

received


when

0 = No effect

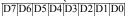
1 = Low-pass digital filters enabled on SDA and SCL input signals



I²C Status I2CSTAT (F51H - Read Only) D7 D6 D5 D4 D3 D2 D1 D0

0 = Data register is full

1 = Data register is empty


I²C Control

I2CCTL (F52H - Read/Write)

D7 D6 D5 D4 D3 D2 D1 D0

I2C Baud Rate Generator High Byte

I2CBRH (F53H - Read/Write)

I2C Baud Rate divisor [15:8]

I2C Baud Rate Generator Low Byte I2CBRL (F54H - Read/Write) D7 D6 D5 D4 D3 D2 D1 D0

I2C Baud Rate divisor [7:0]

zilog

On-Chip Debugger Initiated Reset

A Power-On Reset can be initiated using the On-Chip Debugger by setting the RST bit in the OCD Control register. The On-Chip Debugger block is not reset but the rest of the chip goes through a normal system reset. The RST bit automatically clears during the system reset. Following the system reset the POR bit in the WDT Control register is set.

Stop Mode Recovery

STOP mode is entered by the eZ8 executing a STOP instruction. For detailed STOP mode information, see Low-Power Modes on page 47. During Stop Mode Recovery, the devices are held in reset for 66 cycles of the Watchdog Timer oscillator followed by 16 cycles of the system clock. Stop Mode Recovery only affects the contents of the Watchdog Timer Control register. Stop Mode Recovery does not affect any other values in the Register File, including the Stack Pointer, Register Pointer, Flags, peripheral control registers, and general-purpose RAM.

The eZ8[™] CPU fetches the Reset vector at Program Memory addresses 0002H and 0003H and loads that value into the Program Counter. Program execution begins at the Reset vector address. Following Stop Mode Recovery, the STOP bit in the Watchdog Timer Control Register is set to 1. Table 10 lists the Stop Mode Recovery sources and resulting actions.

Operating Mode	Stop Mode Recovery Source	Action
STOP mode	Watchdog Timer time-out when configured for Reset	Stop Mode Recovery
	Watchdog Timer time-out when configured for interrupt	Stop Mode Recovery followed by interrupt (if interrupts are enabled)
	Data transition on any GPIO Port pin enabled as a Stop Mode Recovery source	Stop Mode Recovery

Stop Mode Recovery Using Watchdog Timer Time-Out

If the Watchdog Timer times out during STOP mode, the device undergoes a Stop Mode Recovery sequence. In the Watchdog Timer Control register, the WDT and STOP bits are set to 1. If the Watchdog Timer is configured to generate an interrupt upon time-out and the 64K Series devices are configured to respond to interrupts, the eZ8 CPU services the Watchdog Timer interrupt request following the normal Stop Mode Recovery sequence.

AF[7:0]—Port Alternate Function enabled

- 0 = The port pin is in NORMAL mode and the DDx bit in the Port A–H Data Direction sub-register determines the direction of the pin.
- 1 = The alternate function is selected. Port pin operation is controlled by the alternate function.

Port A–H Output Control Sub-Registers

The Port A–H Output Control sub-register (Table 18) is accessed through the Port A–H Control register by writing 03H to the Port A–H Address register. Setting the bits in the Port A–H Output Control sub-registers to 1 configures the specified port pins for open-drain operation. These sub-registers affect the pins directly and, as a result, alternate functions are also affected.

Table 18. Port A-H Output Control Sub-Registers

BITS	7	6	5	4	3	2	1	0		
FIELD	POC7	POC6	POC5	POC4	POC3	POC2	POC1	POC0		
RESET	0									
R/W		R/W								
ADDR	lf 03F	l in Port A–ł	H Address R	egister, acce	essible throu	igh Port A–⊦	I Control Re	gister		

POC[7:0]—Port Output Control

These bits function independently of the alternate function bit and disables the drains if set to 1.

0 = The drains are enabled for any output mode.

1 = The drain of the associated pin is disabled (open-drain mode).

Port A-H High Drive Enable Sub-Registers

The Port A–H High Drive Enable sub-register (Table 19) is accessed through the Port A–H Control register by writing 04H to the Port A–H Address register. Setting the bits in the Port A–H High Drive Enable sub-registers to 1 configures the specified port pins for high current output drive operation. The Port A–H High Drive Enable sub-register affects the pins directly and, as a result, alternate functions are also affected.

One-Shot time-out, first set the TPOL bit in the Timer Control 1 Register to the start value before beginning ONE-SHOT mode. Then, after starting the timer, set TPOL to the opposite bit value.

Follow the steps below for configuring a timer for ONE-SHOT mode and initiating the count:

- 1. Write to the Timer Control 1 register to:
 - Disable the timer
 - Configure the timer for ONE-SHOT mode
 - Set the prescale value
 - If using the Timer Output alternate function, set the initial output level (High or Low)
- 2. Write to the Timer High and Low Byte registers to set the starting count value
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value
- 4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers
- 5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function
- 6. Write to the Timer Control 1 register to enable the timer and initiate counting

In ONE-SHOT mode, the system clock always provides the timer input. The timer period is given by the following equation:

ONE-SHOT Mode Time-Out Period (s) = $\frac{(\text{Reload Value} - \text{Start Value}) \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$

CONTINUOUS Mode

In CONTINUOUS mode, the timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) upon timer Reload.

Follow the steps below for configuring a timer for CONTINUOUS mode and initiating the count:

- 1. Write to the Timer Control 1 register to:
 - Disable the timer
 - Configure the timer for CONTINUOUS mode
 - Set the prescale value
 - If using the Timer Output alternate function, set the initial output level (High or Low)

The timer continues counting up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. Upon reaching the Reload value, the timer generates an interrupt and continues counting.

Follow the steps below for configuring a timer for CAPTURE mode and initiating the count:

- 1. Write to the Timer Control 1 register to:
 - Disable the timer
 - Configure the timer for CAPTURE mode.
 - Set the prescale value.
 - Set the Capture edge (rising or falling) for the Timer Input.
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. Clear the Timer PWM High and Low Byte registers to 0000H. This allows the software to determine if interrupts were generated by either a capture event or a reload. If the PWM High and Low Byte registers still contain 0000H after the interrupt, then the interrupt was generated by a Reload.
- 5. If desired, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 6. Configure the associated GPIO port pin for the Timer Input alternate function.
- 7. Write to the Timer Control 1 register to enable the timer and initiate counting.

In CAPTURE mode, the elapsed time from timer start to Capture event can be calculated using the following equation:

Capture Elapsed Time (s) = $\frac{(Capture Value - Start Value) \times Prescale}{System Clock Frequency (Hz)}$

COMPARE Mode

In COMPARE mode, the timer counts up to the 16-bit maximum Compare value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the Compare value, the timer generates an interrupt and counting continues (the timer value is not reset to 0001H). Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) upon Compare.

If the Timer reaches FFFFH, the timer rolls over to 0000H and continue counting.

Table 42. Timer 0-3 Reload Low Byte Register (TxRL)

BITS	7	6	5	4	3	2	1	0		
FIELD		TRL								
RESET		1								
R/W		R/W								
ADDR			F	03H, F0BH,	F13H, F1BI	Н				

TRH and TRL-Timer Reload Register High and Low

These two bytes form the 16-bit Reload value, {TRH[7:0], TRL[7:0]}. This value sets the maximum count value which initiates a timer reload to 0001H. In COMPARE mode, these two byte form the 16-bit Compare value.

Timer 0-3 PWM High and Low Byte Registers

The Timer 0-3 PWM High and Low Byte (TxPWMH and TxPWML) registers (see Table 43 and Table 44 on page 92) are used for Pulse-Width Modulator (PWM) operations. These registers also store the Capture values for the Capture and Capture/COM-PARE modes.

Table 43. Timer 0-3 PWM High Byte Register (TxPWMH)

BITS	7	6	5	4	3	2	1	0	
FIELD	PWMH								
RESET	0								
R/W		R/W							
ADDR			F	04H, F0CH,	F14H, F1C	Н			

Table 44. Timer 0-3 PWM Low Byte Register (TxPWML)

BITS	7	6	5	4	3	2	1	0		
FIELD	PWML									
RESET		0								
R/W		R/W								
ADDR			F	05H, F0DH,	F15H, F1D	Н				

92

zilog

5. Write the Watchdog Timer Reload Low Byte register (WDTL).

All steps of the Watchdog Timer Reload Unlock sequence must be written in the order just listed. There must be no other register writes between each of these operations. If a register write occurs, the lock state machine resets and no further writes can occur, unless the sequence is restarted. The value in the Watchdog Timer Reload registers is loaded into the counter when the Watchdog Timer is first enabled and every time a WDT instruction is executed.

Watchdog Timer Control Register Definitions

Watchdog Timer Control Register

The Watchdog Timer Control (WDTCTL) register (Table 48) is a Read-Only register that indicates the source of the most recent Reset event, indicates a Stop Mode Recovery event, and indicates a Watchdog Timer time-out. Reading this register resets the upper four bits to 0.

Writing the 55H, AAH unlock sequence to the Watchdog Timer Control (WDTCTL) register address unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL register address produce no effect on the bits in the WDTCTL register. The locking mechanism prevents spurious writes to the Reload registers.

BITS	7	6	5	4	3 2 1			0	
FIELD	POR	STOP	WDT	EXT	Reserved			SM	
RESET	See d	See descriptions below				0			
R/W		R							
ADDR				FF	0H				

Table 48. V	Natchdog '	Timer Control	Register	(WDTCTL)
-------------	------------	---------------	----------	----------

Reset or Stop Mode Recovery Event	POR	STOP	WDT	EXT
Power-On Reset	1	0	0	0
Reset using RESET pin assertion	0	0	0	1
Reset using Watchdog Timer time-out	0	0	1	0
Reset using the On-Chip Debugger (OCDCTL[1] set to 1)	1	0	0	0
Reset from STOP Mode using DBG Pin driven Low	1	0	0	0
Stop Mode Recovery using GPIO pin transition	0	1	0	0
Stop Mode Recovery using Watchdog Timer time-out	0	1	1	0

100

Table 55. UART Status 1 Register (UxSTAT1)

BITS	7	6	5	4	3	2	1	0	
FIELD	Reserved NEWFRM MPRX								
RESET	0								
R/W	R R/W R						2		
ADDR				F44H ar	nd F4CH				

Reserved—Must be 0.

NEWFRM—Status bit denoting the start of a new frame. Reading the UART Receive Data register resets this bit to 0.

0 = The current byte is not the first data byte of a new frame.

1 = The current byte is the first data byte of a new frame.

MPRX—Multiprocessor Receive

Returns the value of the last multiprocessor bit received. Reading from the UART Receive Data register resets this bit to 0.

UART Control 0 and Control 1 Registers

The UART Control 0 and Control 1 registers (see Table 56 and Table 57 on page 118) configure the properties of the UART's transmit and receive operations. The UART Control registers must not been written while the UART is enabled.

BITS	7	6	5	4	3	2	1	0				
FIELD	TEN	REN	CTSE	PEN	PSEL	SBRK	STOP	LBEN				
RESET		0										
R/W		R/W										
ADDR		F42H and F4AH										

Table 56. UART Control 0 Register (UxCTL0)

TEN—Transmit Enable

This bit enables or disables the transmitter. The enable is also controlled by the $\overline{\text{CTS}}$ signal and the CTSE bit. If the $\overline{\text{CTS}}$ signal is low and the CTSE bit is 1, the transmitter is enabled.

0 = Transmitter disabled.

1 = Transmitter enabled.

Table 64. SPI Control Register (SPICTL)

BITS	7	6	5	4	3	2	1	0									
FIELD	IRQE	STR	BIRQ	PHASE	CLKPOL	WOR	MMEN	SPIEN									
RESET		0															
R/W		R/W															
ADDR				F6	1H			F61H									

IRQE—Interrupt Request Enable

0 = SPI interrupts are disabled. No interrupt requests are sent to the Interrupt Controller.

1 = SPI interrupts are enabled. Interrupt requests are sent to the Interrupt Controller.

STR—Start an SPI Interrupt Request

0 = No effect.

1 = Setting this bit to 1 also sets the IRQ bit in the SPI Status register to 1. Setting this bit forces the SPI to send an interrupt request to the Interrupt Control. This bit can be used by software for a function similar to transmit buffer empty in a UART. Writing a 1 to the IRQ bit in the SPI Status register clears this bit to 0.

BIRQ-BRG Timer Interrupt Request

If the SPI is enabled, this bit has no effect. If the SPI is disabled:

0 = The Baud Rate Generator timer function is disabled.

1 = The Baud Rate Generator timer function and time-out interrupt are enabled.

PHASE—Phase Select

Sets the phase relationship of the data to the clock. For more information on operation of the PHASE bit, see SPI Clock Phase and Polarity Control on page 132.

CLKPOL—Clock Polarity

0 = SCK idles Low (0).

1 = SCK idle High (1).

WOR-Wire-OR (OPEN-DRAIN) Mode Enabled

0 = SPI signal pins not configured for open-drain.

 $1 = \text{All four SPI signal pins (SCK, \overline{SS}, MISO, MOSI)}$ configured for open-drain function. This setting is typically used for multi-master and/or multi-slave configurations.

MMEN-SPI Master Mode Enable

0 = SPI configured in Slave mode.

1 = SPI configured in Master mode.

SPIEN—SPI Enable

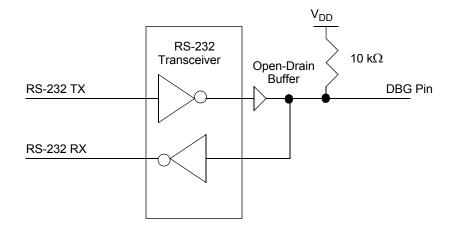
0 = SPI disabled.

1 = SPI enabled.

zilog

- 15. The I^2C Controller sends the repeated START condition.
- 16. The I²C Controller loads the I²C Shift register with the contents of the I²C Data register (third address transfer).
- 17. The I²C Controller sends 11110B followed by the two most significant bits of the slave read address and a 1 (read).
- 18. The I²C slave sends an acknowledge by pulling the SDA signal Low during the next high period of SCL

If the slave were to Not Acknowledge at this point (this should not happen because the slave did acknowledge the first two address bytes), software would respond by setting the STOP and FLUSH bits and clearing the TXI bit. The I²C Controller sends the STOP condition on the bus and clears the STOP and NCKI bits. The transaction is complete (ignore the following steps).


- 19. The I²C Controller shifts in a byte of data from the I²C slave on the SDA signal. The I²C Controller sends a Not Acknowledge to the I²C slave if the NAK bit is set (last byte), else it sends an Acknowledge.
- 20. The I²C Controller asserts the Receive interrupt (RDRF bit set in the Status register).
- 21. Software responds by reading the I²C Data register which clears the RDRF bit. If there is only one more byte to receive, set the NAK bit of the I²C Control register.
- 22. If there are one or more bytes to transfer, return to step 19.
- 23. After the last byte is shifted in, a Not Acknowledge interrupt is generated by the I²C Controller.
- 24. Software responds by setting the STOP bit of the I^2C Control register.
- 25. A STOP condition is sent to the I^2C slave and the STOP and NCKI bits are cleared.

I²C Control Register Definitions

I²C Data Register

The I²C Data register (see Table 70 on page 157) holds the data that is to be loaded into the I²C Shift register during a write to a slave. This register also holds data that is loaded from the I²C Shift register during a read from a slave. The I²C Shift Register is not accessible in the Register File address space, but is used only to buffer incoming and outgoing data.

Figure 38. Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface (2)

DEBUG Mode

The operating characteristics of the 64K Series devices in DEBUG mode are:

- The eZ8 CPU fetch unit stops, idling the eZ8 CPU, unless directed by the OCD to execute specific instructions.
- The system clock operates unless in STOP mode.
- All enabled on-chip peripherals operate unless in STOP mode.
- Automatically exits HALT mode.
- Constantly refreshes the Watchdog Timer, if enabled.

Entering DEBUG Mode

The device enters DEBUG mode following any of the following operations:

- Writing the DBGMODE bit in the OCD Control Register to 1 using the OCD interface.
- eZ8 CPU execution of a BRK (Breakpoint) instruction (when enabled).
- If the DBG pin is Low when the device exits Reset, the On-Chip Debugger automatically puts the device into DEBUG mode.

Exiting DEBUG Mode

The device exits DEBUG mode following any of the following operations:

- Clearing the DBGMODE bit in the OCD Control Register to 0.
- Power-On Reset
- Voltage Brownout reset

Table 110 list the Flash Memory electrical characteristics and timing.

Table 110. Flash Memor	y Electrical Characteristics and	I Timing
------------------------	----------------------------------	----------

	V _{DD} = 3.0- T _A = -40 °		с					
Parameter	Minimum Typical		Maximum	Units	Notes			
Flash Byte Read Time	50	-	-	ns				
Flash Byte Program Time	20	-	40	μs				
Flash Page Erase Time	10	_	-	ms				
Flash Mass Erase Time	200	-	_	ms				
Writes to Single Address Before Next Erase	_	_	2					
Flash Row Program Time	_	_	8	ms	Cumulative program time for single row cannot exceed limit before next erase. This parameter is only an issue when bypassing the Flash Controller.			
Data Retention	100	-	-	years	25 °C			
Endurance, -40 °C to 105 °C	10,000	-	-	cycles	Program/erase cycles			
Endurance, 106 °C to 125 °C	1,000	-	-	cycles	Program/erase cycles			

Table 111 lists the Watchdog Timer electrical characteristics and timing.

Table 111. Watchdog	Timer Electrica	I Characteristics a	nd Timing
---------------------	------------------------	---------------------	-----------

		V _{DD} = 3.0- T _A = -40 °	-3.6 V C to 125 °	С			
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions	
F _{WDT}	WDT Oscillator Frequency	5	10	20	kHz		
I _{WDT}	WDT Oscillator Current including internal RC oscillator	-	< 1	5	μΑ		

Table 112 provides electrical characteristics and timing information for the Analog-to-Digital Converter. Figure 49 displays the input frequency response of the ADC.

AC Characteristics

The section provides information on the AC characteristics and timing. All AC timing information assumes a standard load of 50 pF on all outputs. Table 113 lists the 64K Series AC characteristics and timing.

Table 113. AC Characteristics

			3.0–3.6V C to 125 °C				
Symbol	Parameter	Minimum	Maximum	Units	Conditions		
F _{sysclk}	System Clock Frequency	_	20.0	MHz	Read-only from Flash memory.		
		0.032768	20.0	MHz	Program or erasure of the Flash memory.		
F _{XTAL}	Crystal Oscillator Frequency	0.032768	20.0	MHz	System clock frequencies below the crystal oscillator minimum require an external clock driver.		
T _{XIN}	Crystal Oscillator Clock Period	50	-	ns	T _{CLK} = 1/F _{sysclk}		
T _{XINH}	System Clock High Time	20		ns			
T _{XINL}	System Clock Low Time	20		ns			
T _{XINR}	System Clock Rise Time	-	3	ns	T _{CLK} = 50 ns. Slower rise times can be tolerated with longer clock periods.		
T _{XINF}	System Clock Fall Time	-	3	ns	T _{CLK} = 50 ns. Slower fall times can be tolerated with longer clock periods.		

zilog

259

Flags Register

The Flags Register contains the status information regarding the most recent arithmetic, logical, bit manipulation or rotate and shift operation. The Flags Register contains six bits of status information that are set or cleared by CPU operations. Four of the bits (C, V, Z and S) can be tested for use with conditional jump instructions. Two Flags (H and D) cannot be tested and are used for Binary-Coded Decimal (BCD) arithmetic.

The two remaining bits, User Flags (F1 and F2), are available as general-purpose status bits. User Flags are unaffected by arithmetic operations and must be set or cleared by instructions. The User Flags cannot be used with conditional Jumps. They are undefined at initial power-up and are unaffected by Reset. Figure 58 displays the Flags and their bit positions in the Flags Register.

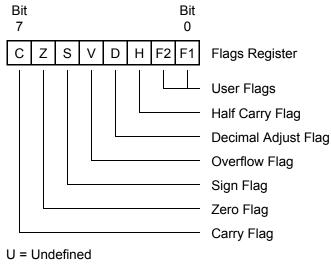


Figure 58. Flags Register

Interrupts, the Software Trap (TRAP) instruction, and Illegal Instruction Traps all write the value of the Flags Register to the stack. Executing an Interrupt Return (IRET) instruction restores the value saved on the stack into the Flags Register.

263

	Lower Nibble (Hex)															
	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	1.2 BRK	2.2 SRP IM	2.3 ADD r1,r2	2.4 ADD r1,lr2	3.3 ADD R2,R1	3.4 ADD IR2,R1	3.3 ADD R1,IM	3.4 ADD IR1,IM	4.3 ADDX ER2,ER1	4.3 ADDX IM,ER1	2.3 DJNZ r1,X	2.2 JR cc,X	2.2 LD r1,IM	3.2 JP cc,DA	1.2 INC r1	1.2 NOP
1	2.2 RLC R1	2.3 RLC IR1	2.3 ADC r1,r2	2.4 ADC r1,lr2	3.3 ADC R2,R1	3.4 ADC IR2,R1	3.3 ADC R1,IM	3.4 ADC IR1,IM	4.3 ADCX ER2,ER1	4.3 ADCX IM,ER1						See 2nd Opcode Map
2	2.2 INC R1	2.3 INC IR1	2.3 SUB r1,r2	2.4 SUB r1,lr2	3.3 SUB R2,R1	3.4 SUB IR2,R1	3.3 SUB R1,IM	3.4 SUB IR1,IM	4.3 SUBX ER2,ER1	4.3 SUBX IM,ER1						1,2 ATM
3	2.2 DEC R1	2.3 DEC IR1	2.3 SBC r1,r2	2.4 SBC r1,lr2	3.3 SBC R2,R1	3.4 SBC IR2,R1	3.3 SBC R1,IM	3.4 SBC IR1,IM	4.3 SBCX ER2,ER1	4.3 SBCX IM,ER1						
4	2.2 DA R1	2.3 DA IR1	2.3 OR r1,r2	2.4 OR r1,lr2	3.3 OR R2,R1	3.4 OR IR2,R1	3.3 OR R1,IM	3.4 OR IR1,IM	4.3 ORX ER2,ER1	4.3 ORX IM,ER1						
5	2.2 POP R1	2.3 POP IR1	2.3 AND r1,r2	2.4 AND r1,lr2	3.3 AND R2,R1	3.4 AND IR2,R1	3.3 AND R1,IM	3.4 AND IR1,IM	4.3 ANDX ER2,ER1	4.3 ANDX IM,ER1						WDT
6	2.2 COM R1	2.3 COM IR1	2.3 TCM r1,r2	2.4 TCM r1,lr2	3.3 TCM R2,R1	3.4 TCM IR2,R1	3.3 TCM R1,IM	3.4 TCM IR1,IM	4.3 TCMX ER2,ER1	4.3 TCMX IM,ER1						STOP
7	2.2 PUSH R2	2.3 PUSH IR2	2.3 TM r1,r2	2.4 TM r1,lr2	3.3 TM R2,R1	3.4 TM IR2,R1	3.3 TM R1,IM	3.4 TM IR1,IM	4.3 TMX ER2,ER1	4.3 TMX IM,ER1						1.2 HALT
8	2.5 DECW RR1	2.6 DECW IRR1	2.5 LDE r1,Irr2	2.9 LDEI Ir1,Irr2	3.2 LDX r1,ER2	3.3 LDX Ir1,ER2	3.4 LDX IRR2,R1	3.5 LDX IRR2,IR1	3.4 LDX r1,rr2,X	3.4 LDX rr1,r2,X						1.2 DI
9	2.2	2.3 RL IR1	2.5 LDE r2,Irr1	2.9 LDEI Ir2,Irr1	3.2 LDX r2,ER1	3.3 LDX Ir2,ER1	3.4 LDX R2,IRR1	3.5 LDX IR2,IRR1	3.3 LEA r1,r2,X	3.5 LEA rr1,rr2,X						1.2 El
А	2.5	2.6 INCW	2.3 CP r1,r2	2.4 CP r1,lr2	3.3 CP R2,R1	3.4 CP IR2,R1	3.3 CP R1,IM	3.4 CP IR1,IM	4.3 CPX ER2,ER1	4.3 CPX IM,ER1						1.4 RET
В	2.2	2.3 CLR IR1	2.3 XOR r1,r2	2.4 XOR r1,lr2	3.3 XOR R2,R1	3.4 XOR IR2,R1	3.3 XOR R1,IM	3.4 XOR IR1,IM	4.3 XORX ER2,ER1	4.3 XORX IM,ER1						1.5 IRET
С	2.2	2.3 RRC IR1	2.5 LDC r1,lrr2	2.9 LDCI Ir1,Irr2	2.3 JP IRR1	2.9 LDC lr1,lrr2	,	3.4 LD r1,r2,X	3.2 PUSHX ER2	,						1.2 RCF
C	2.2	2.3 SRA IR1	2.5 LDC r2,Irr1	2.9 LDCI Ir2,Irr1	2.6 CALL IRR1	2.2 BSWAP R1	3.3 CALL DA	3.4 LD r2,r1,X	3.2 POPX ER1							1.2 SCF
E	2.2 RR R1	2.3 RR IR1	2.2 BIT p,b,r1	2.3 LD r1,lr2	3.2 LD R2,R1	3.3 LD IR2,R1	3.2 LD R1,IM	3.3 LD IR1,IM	4.2 LDX ER2,ER1	4.2 LDX IM,ER1						1.2 CCF
F	2.2 SWAP R1	2.3 SWAP IR1	2.6 TRAP Vector	2.3 LD lr1,r2	2.8 MULT RR1	3.3 LD R2,IR1	3.3 BTJ p,b,r1,X	3.4 BTJ p,b,lr1,X			¥	¥	V	V	V	

Figure 60. First Opcode Map

Packaging

Figure 62 displays the 40-pin Plastic Dual-inline Package (PDIP) available for the Z8X1601, Z8X2401, Z8X3201, Z8X4801, and Z8X6401 devices.

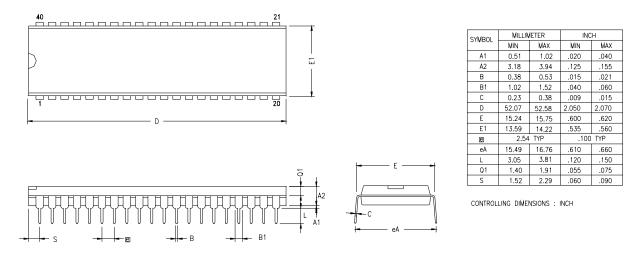


Figure 62. 40-Lead Plastic Dual-Inline Package (PDIP)

283

Operational Description 103 OR 248 ordering information 270 ORX 248 oscillator signals 15

Ρ

p 243 packaging LQFP 44 lead 266 64 lead 267 **PDIP 265** PLCC 44 lead 267 68 lead 268 **OFP 269** part number description 275 part selection guide 2 PC 244 **PDIP 265** peripheral AC and DC electrical characteristics 226 PHASE=0 timing (SPI) 133 PHASE=1 timing (SPI) 134 pin characteristics 16 PLCC 44 lead 267 68-lead 268 polarity 243 POP 248 pop using extended addressing 248 **POPX 248** port availability, device 57 port input timing (GPIO) 232 port output timing, GPIO 233 power supply signals 16 power-down, automatic (ADC) 176 power-on and voltage brown-out 226 power-on reset (POR) 49 program control instructions 249 program counter 244 program memory 20 **PUSH 248**

push using extended addressing 248 PUSHX 248 PWM mode 94 PxADDR register 61 PxCTL register 62

Q

QFP 269

R

R 243 r 243 RA register address 243 RCF 247 receive 10-bit data format (I2C) 154 7-bit data transfer format (I2C) 153 IrDA data 127 receive interrupt 145 receiving UART data-interrupt-driven method 108 receiving UART data-polled method 107 register 140, 169, 243 ADC control (ADCCTL) 179 ADC data high byte (ADCDH) 180 ADC data low bits (ADCDL) 180 baud low and high byte (I2C) 160, 161, 163 baud rate high and low byte (SPI) 142 control (SPI) 137 control, I2C 158 data, SPI 137 DMA status (DMAA STAT) 173 DMA ADC address 171 DMA ADC control DMAACTL) 172 DMAx address high nibble (DMAxH) 169 DMAx control (DMAxCTL) 167 DMAx end/address low byte (DMAxEND) 170 DMAx start/current address low byte register (DMAxSTART) 170 flash control (FCTL) 190 flash high and low byte (FFREQH and FRE-EQL) 192

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at <u>http://support.zilog.com</u>.