

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	29
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.620", 15.75mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f4821pm020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

xiii

Braces

The curly braces, { }, indicate a single register or bus created by concatenating some combination of smaller registers, buses, or individual bits.

• Example: The 12-bit register address {0H, RP[7:4], R1[3:0]} is composed of a 4-bit hexadecimal value (0H) and two 4-bit register values taken from the Register Pointer (RP) and Working Register R1. 0H is the most-significant nibble (4-bit value) of the 12-bit register, and R1[3:0] is the least significant nibble of the 12-bit register.

Parentheses

The parentheses, (), indicate an indirect register address lookup.

• Example: (R1) is the memory location referenced by the address contained in the Working Register R1.

Parentheses/Bracket Combinations

The parentheses, (), indicate an indirect register address lookup and the square brackets, [], indicate a register or bus.

• Example: Assume PC[15:0] contains the value 1234h. (PC[15:0]) then refers to the contents of the memory location at address 1234h.

Use of the Words Set, Reset and Clear

The word *set* implies that a register bit or a condition contains a logical 1. The words reset or *clear* imply that a register bit or a condition contains a logical 0. When either of these terms is followed by a number, the word *logical* may not be included; however, it is implied.

Notation for Bits and Similar Registers

A field of bits within a register is designated as: Register[*n*:*n*].

• Example: ADDR[15:0] refers to bits 15 through bit 0 of the Address.

Use of the Terms LSB, MSB, Isb, and msb

In this document, the terms *LSB* and *MSB*, when appearing in upper case, mean *least* significant byte and most significant byte, respectively. The lowercase forms, *lsb* and *msb*, mean *least* significant bit and most significant bit, respectively.

Use of Initial Uppercase Letters

Initial uppercase letters designate settings and conditions in general text.

- Example 1: The receiver forces the SCL line to Low.
- Example 2: The Master can generate a Stop condition to abort the transfer.

Figure 3. Z8 Encore! XP 64K Series Flash Microcontrollers in 44-Pin Plastic Leaded Chip Carrier (PLCC)

Zilog 24

Timer 3 (unavailable in the 44-pin packages) F18 Timer 3 High Byte T3H 00 90 F19 Timer 3 Low Byte T3L 01 90 F1A Timer 3 Reload High Byte T3RL FF 91 F1B Timer 3 Reload Low Byte T3RL FF 91 F1C Timer 3 Reload Low Byte T3PWMH 00 92 F1D Timer 3 Reload Low Byte T3PWMH 00 92 F1E Timer 3 Control 0 T3CTL0 00 93 F1F Timer 3 Control 1 T3CTL1 00 94 20-3F Reserved - XX VART0 VART 0 Transmit Data U0TXD XX 114 UART 0 Receive Data U0RXD XX 115 F41 UART0 Control 0 U0STAT0 0000011Xb 115 F42 UART0 Control 1 U0CTL0 00 117 F43 UART0 Address Compare Register U0ADDR 00 120	Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
F18 Timer 3 High Byte T3H 00 90 F19 Timer 3 Low Byte T3L 01 90 F1A Timer 3 Reload High Byte T3RL FF 91 F1B Timer 3 Reload Low Byte T3RL FF 91 F1C Timer 3 PWM High Byte T3PWML 00 92 F1D Timer 3 Control 0 T3CTL0 00 93 F1F Timer 3 Control 1 T3CTL1 00 94 20-3F Reserved XX UART 0 F40 UART0 Transmit Data U0TXD XX 114 UART0 Status 0 U0STAT0 0000011Xb 115 F42 UART0 Control 0 U0CTL0 00 117 F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate Low Byte U0BRH FF 120 F47 UART1 Tr	Timer 3 (unava	ilable in the 44-pin packages)			
F19 Timer 3 Low Byte T3L 01 90 F1A Timer 3 Reload High Byte T3RH FF 91 F1B Timer 3 Reload Low Byte T3RL FF 91 F1C Timer 3 PWM High Byte T3PWMH 00 92 F1D Timer 3 PWM Low Byte T3PWML 00 92 F1E Timer 3 Control 0 T3CTL0 00 93 F1F Timer 3 Control 1 T3CTL1 00 94 20-3F Reserved - XX VART0 VMART 0 F40 UART0 Transmit Data U0TXD XX 114 UART0 Receive Data U0RXD XX 115 F41 UART0 Control 0 U0CTL0 00 117 F42 UART0 Control 1 U0CTL1 00 115 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate Low Byte U0BRL FF 120 F47 UA	F18	Timer 3 High Byte	ТЗН	00	90
F1A Timer 3 Reload High Byte T3RH FF 91 F1B Timer 3 Reload Low Byte T3RL FF 91 F1C Timer 3 PWM High Byte T3PWMH 00 92 F1D Timer 3 PWM Low Byte T3PWML 00 92 F1E Timer 3 Control 0 T3CTL0 00 93 F1F Timer 3 Control 1 T3CTL1 00 94 20-3F Reserved XX VART0 VART 0 F40 UART0 Transmit Data U0TXD XX 114 UART0 Receive Data U0RXD XX 115 F41 UART0 Control 0 U0CTL0 00 117 F42 UART0 Control 1 U0CTL1 00 117 F43 UART0 Status 1 U0STAT1 00 115 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 <t< td=""><td>F19</td><td>Timer 3 Low Byte</td><td>T3L</td><td>01</td><td>90</td></t<>	F19	Timer 3 Low Byte	T3L	01	90
F1B Timer 3 Reload Low Byte T3RL FF 91 F1C Timer 3 PWM High Byte T3PWMH 00 92 F1D Timer 3 PWM Low Byte T3PWML 00 92 F1E Timer 3 Control 0 T3CTL0 00 93 F1F Timer 3 Control 1 T3CTL1 00 94 20-3F Reserved - XX VARTO UART 0 F40 UART0 Transmit Data U0TXD XX 114 UART0 Receive Data U0RXD XX 115 F41 UART0 Status 0 U0STATO 0000011Xb 115 F42 UART0 Control 1 U0CTL0 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 UART 1 Paceive Data U1TXD XX 114 UART1 Receive Data U1TXD XX 114 UART1 Receive Data U	F1A	Timer 3 Reload High Byte	T3RH	FF	91
F1C Timer 3 PWM High Byte T3PWMH 00 92 F1D Timer 3 PWM Low Byte T3PWML 00 92 F1E Timer 3 Control 0 T3CTL0 00 93 F1F Timer 3 Control 1 T3CTL1 00 94 20-3F Reserved - XX UART 0 F40 UART0 Transmit Data U0TXD XX 114 UART 0 Receive Data UORXD XX 115 F41 UART0 Status 0 U0STAT0 0000011Xb 115 F42 UART0 Control 0 UOCTL0 00 117 F43 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 UART1 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 VART1 Receive Data U1TXD XX 114 UART1 Receive Data U1RXD XX 114 115 F48	F1B	Timer 3 Reload Low Byte	T3RL	FF	91
F1D Timer 3 PWM Low Byte T3PWML 00 92 F1E Timer 3 Control 0 T3CTL0 00 93 F1F Timer 3 Control 1 T3CTL0 00 94 20-3F Reserved - XX UART 0 - XX UART 0 UART0 Transmit Data U0TXD XX 114 UART0 Receive Data U0RXD XX 115 F41 UART0 Status 0 U0STAT0 0000011Xb 115 F42 UART0 Control 0 U0CTL0 00 117 F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Baud Rate High Byte U0BRH FF 120 F46 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 114 UART1 Receive Data U1RXD XX 114 UART1 Receive Data U1RXD XX<	F1C	Timer 3 PWM High Byte	T3PWMH	00	92
F1E Timer 3 Control 0 T3CTL0 00 93 F1F Timer 3 Control 1 T3CTL1 00 94 20-3F Reserved — XX UART 0 F40 UART0 Transmit Data U0TXD XX 114 UART 0 XX 114 115 F41 UART0 Receive Data U0RXD XX 115 F42 UART0 Control 0 U0CTL0 00 117 F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 Receive Data U1TXD XX 114 UART1 Receive Data U1TXD XX 114 UART1 Receive Data U1TXD XX 114 F49 UART1 Status 0 U1STAT0 00000011Xb 1	F1D	Timer 3 PWM Low Byte	T3PWML	00	92
F1F Timer 3 Control 1 T3CTL1 00 94 20-3F Reserved — XX UART 0 F40 UART0 Transmit Data U0TXD XX 114 UART0 Receive Data U0RXD XX 115 F41 UART0 Status 0 U0STAT0 0000011Xb 115 F42 UART0 Control 0 U0CTL0 00 117 F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 F48 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 115 F49 UART1 Status 0 U1STAT0 0000011Xb 115 F44 UART1 Control 0 U1CTL0 00 117 F48 <	F1E	Timer 3 Control 0	T3CTL0	00	93
20-3F Reserved — XX UART 0 F40 UART0 Transmit Data U0TXD XX 114 UART0 Receive Data U0RXD XX 115 F41 UART0 Status 0 U0STAT0 0000011Xb 115 F42 UART0 Control 0 U0CTL0 00 117 F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 UART 1 UART0 Baud Rate Low Byte U0BRL FF 120 UART 1 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 115 F48 UART1 Status 0 U1STAT0 00000111Xb 115 F49 UART1 Status 1 U1CTL0 00 117 F48 UART1 Control 0 U1CTL0	F1F	Timer 3 Control 1	T3CTL1	00	94
UART 0 F40 UART0 Transmit Data U0TXD XX 114 UART0 Receive Data U0RXD XX 115 F41 UART0 Status 0 U0STAT0 0000011Xb 115 F42 UART0 Control 0 U0CTL0 00 117 F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 UART1 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 Transmit Data U1TXD XX 114 UART1 Transmit Data U1TXD XX 114 UART1 Itaus 0 U1TXD XX 114 UART1 Transmit Data U1TXD XX 114 F48 UART1 Transmit Data U1TXD XX 115 F44 UART1 Con	20-3F	Reserved	—	XX	
F40UART0 Transmit DataU0TXDXX114UART0 Receive DataU0RXDXX115F41UART0 Status 0U0STAT00000011Xb115F42UART0 Control 0U0CTL000117F43UART0 Control 1U0CTL100117F44UART0 Status 1U0STAT100115F45UART0 Address Compare RegisterU0ADDR00120F46UART0 Baud Rate High ByteU0BRHFF120F47UART0 Baud Rate Low ByteU0BRLFF120UART1F48UART1 Transmit DataU1TXDXX114UART1 Receive DataU1RXDXX115F49UART1 Status 0U1STAT00000011Xb115F4AUART1 Control 0U1CTL000117F4BUART1 Control 1U1CTL100117F4CUART1 Status 1U1STAT100115F4DUART1 Address Compare RegisterU1ADDR00120F4EUART1 Baud Rate High ByteU1BRHFF120F4FUART1 Baud Rate Low ByteU1BRHFF120F4CUART1 Baud Rate Low ByteU1BRLFF120	UART 0				
UART0 Receive Data U0RXD XX 115 F41 UART0 Status 0 U0STAT0 0000011Xb 115 F42 UART0 Control 0 U0CTL0 00 117 F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0CTL1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 115 F48 UART1 Status 0 U1STAT0 0000011Xb 115 F49 UART1 Control 0 U1CTL0 00 117 F48 UART1 Control 1 U1CTL0 00 117 F44 UART1 Control 1 U1CTL0 00 117 F44 UART1 Status 1 U1STAT1 00	F40	UART0 Transmit Data	U0TXD	XX	114
F41 UART0 Status 0 U0STAT0 0000011Xb 115 F42 UART0 Control 0 U0CTL0 00 117 F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 F48 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 115 F48 UART1 Status 0 U1STAT0 0000011Xb 115 F44 UART1 Control 0 U1STAT0 0000011Xb 115 F44 UART1 Control 1 U1CTL0 00 117 F48 UART1 Control 1 U1CTL1 00 117 F44 UART1 Control 1 U1CTL1 00 117 F45 UART1 Address Compare Register U1ADDR 00 120 F45		UART0 Receive Data	U0RXD	XX	115
F42 UART0 Control 0 U0CTL0 00 117 F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 115 F48 UART1 Status 0 U1STAT0 00000011Xb 115 F44 UART1 Control 0 U1CTL0 00 117 F48 UART1 Control 1 U1CTL1 00 117 F48 UART1 Control 1 U1CTL1 00 117 F44 UART1 Status 1 U1STAT1 00 117 F44 UART1 Status 1 U1CTL1 00 117 F45 UART1 Address Compare Register U1ADDR 00 120 F44	F41	UART0 Status 0	U0STAT0	0000011Xb	115
F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 UART1 Transmit Data U1TXD XX 114 UART1 Transmit Data U1TXD XX 114 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1TXD XX 115 F49 UART1 Status 0 U1STAT0 0000011Xb 115 F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Status 1 U1STAT1 00 117 F4C UART1 Status 1 U1CTL0 00 117 F4E UART1 Address Compare Register U1ADDR 00 120 F4E UART1 Baud Rate High Byte U1BRH FF 120 <t< td=""><td>F42</td><td>UART0 Control 0</td><td>U0CTL0</td><td>00</td><td>117</td></t<>	F42	UART0 Control 0	U0CTL0	00	117
F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 Transmit Data U1TXD XX 114 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 115 F49 UART1 Status 0 U1STAT0 0000011Xb 115 F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Status 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Status 1 U1STAT1 00 115 F4D UART1 Address Compare Register U1ADDR 00 120 F4E UART1 Baud Rate High Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120	F43	UART0 Control 1	U0CTL1	00	117
F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART0 Baud Rate Low Byte U0BRL FF 120 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 Transmit Data U1TXD XX 114 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 115 F49 UART1 Status 0 U1STAT0 0000011Xb 115 F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Control 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Address Compare Register U1ADDR 00 120 F4E UART1 Baud Rate High Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120 F4C UART1 Baud Rate Low Byte <td>F44</td> <td>UART0 Status 1</td> <td>U0STAT1</td> <td>00</td> <td>115</td>	F44	UART0 Status 1	U0STAT1	00	115
F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART 1 F48 UART1 Transmit Data U1TXD XX 114 UART 1 WART1 Receive Data U1RXD XX 114 UART1 Receive Data U1RXD XX 115 F49 UART1 Status 0 U1STAT0 0000011Xb 115 F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Control 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Baud Rate High Byte U1ADDR 00 120 F4E UART1 Baud Rate High Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120 F4C UART1 Baud Rate Low Byte U1BRL FF 120	F45	UART0 Address Compare Register	U0ADDR	00	120
F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART 1 F48 UART1 Transmit Data U1TXD XX 114 VART1 Receive Data U1RXD XX 115 F49 UART1 Status 0 U1STAT0 0000011Xb 115 F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Control 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Status 1 U1STAT1 00 115 F4D UART1 Baud Rate High Byte U1ADDR 00 120 F4E UART1 Baud Rate Low Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120	F46	UART0 Baud Rate High Byte	U0BRH	FF	120
UART 1 F48 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 115 F49 UART1 Status 0 U1STAT0 0000011Xb 115 F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Control 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Address Compare Register U1ADDR 00 120 F4E UART1 Baud Rate High Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120	F47	UART0 Baud Rate Low Byte	U0BRL	FF	120
F48 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 115 F49 UART1 Status 0 U1STAT0 0000011Xb 115 F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Control 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Address Compare Register U1ADDR 00 120 F4E UART1 Baud Rate High Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120	UART 1				
UART1 Receive Data U1RXD XX 115 F49 UART1 Status 0 U1STAT0 0000011Xb 115 F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Control 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Address Compare Register U1ADDR 00 120 F4E UART1 Baud Rate High Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120	F48	UART1 Transmit Data	U1TXD	XX	114
F49 UART1 Status 0 U1STAT0 0000011Xb 115 F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Control 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Address Compare Register U1ADDR 00 120 F4E UART1 Baud Rate High Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120		UART1 Receive Data	U1RXD	XX	115
F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Control 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Address Compare Register U1ADDR 00 120 F4E UART1 Baud Rate High Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120 I ² C I I I I I	F49	UART1 Status 0	U1STAT0	0000011Xb	115
F4B UART1 Control 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Address Compare Register U1ADDR 00 120 F4E UART1 Baud Rate High Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120 I ² C I I I I I	F4A	UART1 Control 0	U1CTL0	00	117
F4CUART1 Status 1U1STAT100115F4DUART1 Address Compare RegisterU1ADDR00120F4EUART1 Baud Rate High ByteU1BRHFF120F4FUART1 Baud Rate Low ByteU1BRLFF120I ² CI	F4B	UART1 Control 1	U1CTL1	00	117
F4DUART1 Address Compare RegisterU1ADDR00120F4EUART1 Baud Rate High ByteU1BRHFF120F4FUART1 Baud Rate Low ByteU1BRLFF120I ² C	F4C	UART1 Status 1	U1STAT1	00	115
F4EUART1 Baud Rate High ByteU1BRHFF120F4FUART1 Baud Rate Low ByteU1BRLFF120I ² C	F4D	UART1 Address Compare Register	U1ADDR	00	120
F4FUART1 Baud Rate Low ByteU1BRLFF120I ² C	F4E	UART1 Baud Rate High Byte	U1BRH	FF	120
I ² C	F4F	UART1 Baud Rate Low Byte	U1BRL	FF	120
	I ² C				
F50 I ² C Data I2CDATA 00 156	F50	I ² C Data	I2CDATA	00	156
F51 I ² C Status I2CSTAT 80 157	F51	I ² C Status	I2CSTAT	80	157
F52 I ² C Control I2CCTL 00 158	F52	I ² C Control	I2CCTL	00	158
F53 I ² C Baud Rate High Byte I2CBRH FF 160	F53	I ² C Baud Rate High Byte	I2CBRH	FF	160
F54 I ² C Baud Rate Low Byte I2CBRL FF 160	F54	I ² C Baud Rate Low Byte	I2CBRL	FF	160
F55 I ² C Diagnostic State I2CDST C0 161	F55	I ² C Diagnostic State	I2CDST	C0	161
F56I ² C Diagnostic ControlI2CDIAG00163	F56	I ² C Diagnostic Control	I2CDIAG	00	163
F57-F5F Reserved — XX	F57-F5F	Reserved	—	XX	
Serial Peripheral Interface (SPI)	Serial Peripher	al Interface (SPI)			
F60SPI DataSPIDATAXX137	F60	SPI Data	SPIDATA	XX	137

Table 7. Z8 Encore! XP 64K Series Flash Microcontrollers Register File Address Map (Continued)

DMA0 Control DMA0CTL (FB0H - Read/Write) **DMA0 Address High Nibble** DMA0H (FB2H - Read/Write) D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Request Trigger Source Select 000 = Timer 0 001 = Timer 1 DMA0 Start Address [11:8] 010 = Timer 2 DMA0 End Address [11:8] 011 = Timer 3 100 = UART0 Received Data register contains valid data 101 = UART1 Received Data DMA0 Start/Current Address Low Byte DMA0START (FB3H - Read/Write) register D7 D6 D5 D4 D3 D2 D1 D0 contains valid data 110 = I2C receiver contains valid DMA0 Start Address [7:0] data 111 = Reserved Word Select DMA0 End Address Low Byte 0 = DMA transfers 1 byte per DMA0END (FB4H - Read/Write) request 1 = DMA transfers 2 bytes per D7 D6 D5 D4 D3 D2 D1 D0 request DMA0 End Address [7:0] **DMA0** Interrupt Enable 0 = DMA0 does not generate interrupts 1 = DMA0 generates an interrupt when End Address data is transferred DMA0 Data Transfer Direction 0 = Register File to peripheral registers 1 = Peripheral registers to Register File DMA0 Loop Enable 0 = DMA disables after End Address 1 = DMA reloads Start Address after End Address and continues to run DMA0 Enable 0 = DMA0 is disabled 1 = DMA0 is enabled **DMA0 I/O Address** DMA0IO (FB1H - Read/Write)

D7 D6 D5 D4 D3 D2 D1 D0

 DMA0 Peripheral Register Address Low byte of on-chip peripheral control registers on Register File page FH

PS019919-1207

Port	Pin	Mnemonic	Alternate Function Description
Port C	PC0	T1IN	Timer 1 Input
	PC1	T10UT	Timer 1 Output
	PC2	SS	SPI Slave Select
	PC3	SCK	SPI Serial Clock
	PC4	MOSI	SPI Master Out/Slave In
	PC5	MISO	SPI Master In/Slave Out
	PC6	T2IN	Timer 2 In
	PC7	T2OUT	Timer 2 Out
Port D	PD0	T3IN	Timer 3 In (unavailable in 44-pin packages)
	PD1	T3OUT	Timer 3 Out (unavailable in 44-pin packages)
	PD2	N/A	No alternate function
	PD3	DE1	UART 1 Driver Enable
	PD4	RXD1/IRRX1	UART 1/IrDA 1 Receive Data
	PD5	TXD1/IRTX1	UART 1/IrDA 1 Transmit Data
	PD6	CTS1	UART 1 Clear to Send
	PD7	RCOUT	Watchdog Timer RC Oscillator Output
Port E	PE[7:0]	N/A	No alternate functions
Port F	PF[7:0]	N/A	No alternate functions
Port G	PG[7:0]	N/A	No alternate functions
Port H	PH0	ANA8	ADC Analog Input 8
	PH1	ANA9	ADC Analog Input 9
	PH2	ANA10	ADC Analog Input 10
	PH3	ANA11	ADC Analog Input 11

Table 12. Port Alternate Function Mapping (Continued)

GPIO Interrupts

Many of the GPIO port pins can be used as interrupt sources. Some port pins may be configured to generate an interrupt request on either the rising edge or falling edge of the pin input signal. Other port pin interrupts generate an interrupt when any edge occurs (both rising and falling). For more information on interrupts using the GPIO pins, see Interrupt Controller on page 67.

C1ENL—Port C1 Interrupt Request Enable Low Bit C0ENL—Port C0 Interrupt Request Enable Low Bit

Interrupt Edge Select Register

The Interrupt Edge Select (IRQES) register (Table 36) determines whether an interrupt is generated for the rising edge or falling edge on the selected GPIO Port input pin. The Interrupt Port Select register selects between Port A and Port D for the individual interrupts.

Table 36. Interrupt Edge Select Register (IRQES)

BITS	7	6	5	4	3	2	1	0	
FIELD	IES7 IES6 IES5 IES4 IES3 IES2 IES1 IES0								
RESET		0							
R/W		R/W							
ADDR		FCDH							

IES*x*—Interrupt Edge Select *x*

The minimum pulse width should be greater than 1 system clock to guarantee capture of the edge triggered interrupt. Shorter pulses may be captured but not guaranteed. 0 = An interrupt request is generated on the falling edge of the PAx/PDx input.

1 = An interrupt request is generated on the rising edge of the PAx/PDx input.

where *x* indicates the specific GPIO Port pin number (0 through 7).

Interrupt Port Select Register

The Port Select (IRQPS) register (Table 37) determines the port pin that generates the PAx/PDx interrupts. This register allows either Port A or Port D pins to be used as interrupts. The Interrupt Edge Select register controls the active interrupt edge.

			_				
BITS	7	6	5	4	3	2	1
FIELD	PAD7S	PAD6S	PAD5S	PAD4S	PAD3S	PAD2S	PAD1S
RESET				()		

Table 37. Interrupt Port Select Register (IRQPS)

0

PAD0S

108

Receiving Data using the Interrupt-Driven Method

The UART Receiver interrupt indicates the availability of new data (as well as error conditions). Follow the steps below to configure the UART receiver for interrupt-driven operation:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the desired baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO Port pins for alternate function operation.
- 3. Execute a DI instruction to disable interrupts.
- 4. Write to the Interrupt control registers to enable the UART Receiver interrupt and set the desired priority.
- 5. Clear the UART Receiver interrupt in the applicable Interrupt Request register.
- 6. Write to the UART Control 1 Register to enable MULTIPROCESSOR (9-bit) mode functions, if desired.
 - Set the MULTIPROCESSOR Mode Select (MPEN) to Enable MULTIPROCESSOR mode.
 - Set the MULTIPROCESSOR Mode Bits, MPMD[1:0], to select the desired address matching scheme.
 - Configure the UART to interrupt on received data and errors or errors only (interrupt on errors only is unlikely to be useful for Z8 Encore! devices without a DMA block).
- 7. Write the device address to the Address Compare Register (automatic multiprocessor modes only).
- 8. Write to the UART Control 0 register to:
 - Set the receive enable bit (REN) to enable the UART for data reception.
 - Enable parity, if desired and if MULTIPROCESSOR mode is not enabled, and select either even or odd parity.
- 9. Execute an EI instruction to enable interrupts.

The UART is now configured for interrupt-driven data reception. When the UART Receiver interrupt is detected, the associated interrupt service routine performs the following:

- 1. Check the UART Status 0 register to determine the source of the interrupt error, break, or received data.
- 2. If the interrupt was caused by data available, read the data from the UART Receive Data register. If operating in MULTIPROCESSOR (9-bit) mode, further actions may be required depending on the MULTIPROCESSOR Mode bits MPMD[1:0].

TXD—Transmit Data UART transmitter data byte to be shifted out through the TXDx pin.

UART Receive Data Register

Data bytes received through the RXDx pin are stored in the UART Receive Data register (Table 53). The Read-only UART Receive Data register shares a Register File address with the Write-only UART Transmit Data register.

Table 53. UART Receive Data Register (UxR)
--

BITS	7	6	5	4	3	2	1	0		
FIELD	RXD									
RESET	X									
R/W	R									
ADDR		F40H and F48H								

RXD—Receive Data

UART receiver data byte from the RXD*x* pin

UART Status 0 Register

The UART Status 0 and Status 1 registers (Table 54 and Table 55 on page 117) identify the current UART operating configuration and status.

Table 54. UART Status 0 Register (UxSTAT0)

BITS	7	6	5	4	3	2	1	0
FIELD	RDA	PE OE FE BRKD				TDRE	TXE	CTS
RESET			0			1	Х	
R/W	R							
ADDR		F41H and F49H						

RDA—Receive Data Available

This bit indicates that the UART Receive Data register has received data. Reading the UART Receive Data register clears this bit.

0 = The UART Receive Data register is empty.

1 = There is a byte in the UART Receive Data register.

zilog "

- 7. The I²C Controller loads the I²C Shift register with the contents of the I²C Data register.
- 8. After one bit of address is shifted out by the SDA signal, the Transmit interrupt is asserted.
- 9. Software responds by writing the second byte of address into the contents of the I²C Data register.
- 10. The I²C Controller shifts the rest of the first byte of address and write bit out the SDA signal.
- If the I²C slave sends an acknowledge by pulling the SDA signal low during the next high period of SCL the I²C Controller sets the ACK bit in the I²C Status register. Continue with step 12.

If the slave does not acknowledge the first address byte, the I²C Controller sets the NCKI bit and clears the ACK bit in the I²C Status register. Software responds to the Not Acknowledge interrupt by setting the STOP and FLUSH bits and clearing the TXI bit. The I²C Controller sends the STOP condition on the bus and clears the STOP and NCKI bits. The transaction is complete (ignore following steps).

- 12. The I²C Controller loads the I²C Shift register with the contents of the I²C Data register (2nd byte of address).
- 13. The I²C Controller shifts the second address byte out the SDA signal. After the first bit has been sent, the Transmit interrupt is asserted.
- 14. Software responds by setting the STOP bit in the I²C Control register. The TXI bit can be cleared at the same time.
- 15. Software polls the STOP bit of the I²C Control register. Hardware deasserts the STOP bit when the transaction is completed (STOP condition has been sent).
- 16. Software checks the ACK bit of the I²C Status register. If the slave acknowledged, the ACK bit is = 1. If the slave does not acknowledge, the ACK bit is = 0. The NCKI interrupt do not occur because the STOP bit was set.

Write Transaction with a 10-Bit Address

Figure 31 displays the data transfer format for a 10-bit addressed slave. Shaded regions indicate data transferred from the I^2C Controller to slaves and unshaded regions indicate data transferred from the slaves to the I^2C Controller.

Figure 31. 10-Bit Addressed Slave Data Transfer Format

- 4. The I^2C Controller sends the START condition.
- 5. The I^2C Controller shifts the address and read bit out the SDA signal.
- 6. If the I²C slave acknowledges the address by pulling the SDA signal Low during the next high period of SCL, the I²C Controller sets the ACK bit in the I²C Status register. Continue with step 7.

If the slave does not acknowledge, the Not Acknowledge interrupt occurs (NCKI bit is set in the Status register, ACK bit is cleared). Software responds to the Not Acknowledge interrupt by setting the STOP bit and clearing the TXI bit. The I^2C Controller sends the STOP condition on the bus and clears the STOP and NCKI bits. The transaction is complete (ignore the following steps).

- The I²C Controller shifts in the byte of data from the I²C slave on the SDA signal. The I²C Controller sends a Not Acknowledge to the I²C slave if the NAK bit is set (last byte), else it sends an Acknowledge.
- 8. The I^2C Controller asserts the Receive interrupt (RDRF bit set in the Status register).
- 9. Software responds by reading the I²C Data register which clears the RDRF bit. If there is only one more byte to receive, set the NAK bit of the I²C Control register.
- 10. If there are more bytes to transfer, return to step 7.
- 11. After the last byte is shifted in, a Not Acknowledge interrupt is generated by the I²C Controller.
- 12. Software responds by setting the STOP bit of the I^2C Control register.
- 13. A STOP condition is sent to the I^2C slave, the STOP and NCKI bits are cleared.

Read Transaction with a 10-Bit Address

Figure 33 displays the read transaction format for a 10-bit addressed slave. The shaded regions indicate data transferred from the I²C Controller to slaves and unshaded regions indicate data transferred from the slaves to the I²C Controller.

S	Slave Address 1st 7 bits	W=0	A	Slave Address 2nd Byte	Α	S	Slave Address 1st 7 bits	R=1	A	Data	A	Data	Ā	Ρ	
---	-----------------------------	-----	---	---------------------------	---	---	-----------------------------	-----	---	------	---	------	---	---	--

Figure 33. Receive Data Format for a 10-Bit Addressed Slave

The first seven bits transmitted in the first byte are 11110xx. The two bits xx are the two most-significant bits of the 10-bit address. The lowest bit of the first byte transferred is the write control bit.

166

Configuring DMA0 and DMA1 for Data Transfer

Follow the steps below to configure and enable DMA0 or DMA1:

- 1. Write to the DMAx I/O Address register to set the Register File address identifying the on-chip peripheral control register. The upper nibble of the 12-bit address for on-chip peripheral control registers is always FH. The full address is {FH, DMAx_IO[7:0]}.
- 2. Determine the 12-bit Start and End Register File addresses. The 12-bit Start Address is given by {DMAx_H[3:0], DMA_START[7:0]}. The 12-bit End Address is given by {DMAx_H[7:4], DMA_END[7:0]}.
- 3. Write the Start and End Register File address high nibbles to the DMAx End/Start Address High Nibble register.
- 4. Write the lower byte of the Start Address to the DMAx Start/Current Address register.
- 5. Write the lower byte of the End Address to the DMAx End Address register.
- 6. Write to the DMAx Control register to complete the following:
 - Select loop or single-pass mode operation
 - Select the data transfer direction (either from the Register File RAM to the onchip peripheral control register; or from the on-chip peripheral control register to the Register File RAM)
 - Enable the DMA*x* interrupt request, if desired
 - Select Word or Byte mode
 - Select the DMAx request trigger
 - Enable the DMA*x* channel

DMA_ADC Operation

DMA_ADC transfers data from the ADC to the Register File. The sequence of operations in a DMA_ADC data transfer is:

- 1. ADC completes conversion on the current ADC input channel and signals the DMA controller that two-bytes of ADC data are ready for transfer.
- 2. DMA_ADC requests control of the system bus (address and data) from the eZ8 CPU.
- 3. After the eZ8 CPU acknowledges the bus request, DMA_ADC transfers the two-byte ADC output value to the Register File and then returns system bus control back to the eZ8 CPU.
- 4. If the current ADC Analog Input is the highest numbered input to be converted:
 - DMA_ADC resets the ADC Analog Input number to 0 and initiates data conversion on ADC Analog Input 0.
 - If configured to generate an interrupt, DMA_ADC sends an interrupt request to the Interrupt Controller

On-Chip Oscillator

Overview

The products in the 64K Series feature an on-chip oscillator for use with external crystals with frequencies from 32 kHz to 20 MHz. In addition, the oscillator can support external RC networks with oscillation frequencies up to 4 MHz or ceramic resonators with oscillation frequencies up to 20 MHz. This oscillator generates the primary system clock for the internal eZ8TM CPU and the majority of the on-chip peripherals. Alternatively, the X_{IN} input pin can also accept a CMOS-level clock input signal (32 kHz–20 MHz). If an external clock generator is used, the X_{OUT} pin must be left unconnected.

When configured for use with crystal oscillators or external clock drivers, the frequency of the signal on the X_{IN} input pin determines the frequency of the system clock (that is, no internal clock divider). In RC operation, the system clock is driven by a clock divider (divide by 2) to ensure 50% duty cycle.

Operating Modes

The 64K Series products support four different oscillator modes:

- On-chip oscillator configured for use with external RC networks (<4 MHz).
- Minimum power for use with very low frequency crystals (32 kHz to 1.0 MHz).
- Medium power for use with medium frequency crystals or ceramic resonators (0.5 MHz to 10.0 MHz).
- Maximum power for use with high frequency crystals or ceramic resonators (8.0 MHz to 20.0 MHz).

The oscillator mode is selected through user-programmable Option Bits. For more information, see Option Bits on page 195.

Crystal Oscillator Operation

Figure 40 on page 212 displays a recommended configuration for connection with an external fundamental-mode, parallel-resonant crystal operating at 20 MHz. Recommended 20 MHz crystal specifications are provided in Table 104 on page 212. Resistor R1 is optional and limits total power dissipation by the crystal. The printed circuit board layout

Figure 45 displays the typical current consumption in HALT mode while operating at 25 °C versus the system clock frequency. All GPIO pins are configured as outputs and driven High.

Figure 45. Typical HALT Mode Idd Versus System Clock Frequency

Table 122. Notational Shorthand

Notation	Description	Operand	Range
b	Bit	b	b represents a value from 0 to 7 (000B to 111B).
сс	Condition Code	—	Refer to Condition Codes overview in the eZ8 CPU User Manual.
DA	Direct Address	Addrs	Addrs. represents a number in the range of 0000H to FFFFH
ER	Extended Addressing Register	Reg	Reg. represents a number in the range of 000H to FFFH
IM	Immediate Data	#Data	Data is a number between 00H to FFH
lr	Indirect Working Register	@Rn	n = 0 –15
IR	Indirect Register	@Reg	Reg. represents a number in the range of 00H to FFH
Irr	Indirect Working Register Pair	@RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14
IRR	Indirect Register Pair	@Reg	Reg. represents an even number in the range 00H to FEH
р	Polarity	р	Polarity is a single bit binary value of either 0B or 1B.
r	Working Register	Rn	n = 0 – 15
R	Register	Reg	Reg. represents a number in the range of 00H to FFH
RA	Relative Address	Х	X represents an index in the range of +127 to -128 which is an offset relative to the address of the next instruction
rr	Working Register Pair	RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14
RR	Register Pair	Reg	Reg. represents an even number in the range of 00H to FEH
Vector	Vector Address	Vector	Vector represents a number in the range of 00H to FFH
X	Indexed	#Index	The register or register pair to be indexed is offset by the signed Index value (#Index) in a +127 to -128 range.

Table 123 contains additional symbols that are used throughout the Instruction Summary and Instruction Set Description sections.

Table 123. Additional Symbols

Symbol	Definition
dst	Destination Operand
src	Source Operand
@	Indirect Address Prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flags Register
RP	Register Pointer
#	Immediate Operand Prefix
В	Binary Number Suffix
%	Hexadecimal Number Prefix
Н	Hexadecimal Number Suffix

Assignment of a value is indicated by an arrow. For example,

 $dst \leftarrow dst + src$

indicates the source data is added to the destination data and the result is stored in the destination location.

Condition Codes

The C, Z, S and V Flags control the operation of the conditional jump (JP cc and JR cc) instructions. Sixteen frequently useful functions of the Flag settings are encoded in a 4-bit field called the condition code (cc), which forms Bits 7:4 of the conditional jump instructions. The condition codes are summarized in Table 124. Some binary condition codes can be created using more than one assembly code mnemonic. The result of the Flag test operation decides if the conditional jump is executed.

Binary	Hex	Assembly Mnemonic	Definition	Flag Test Operation
0000	0	F	Always False	-
0001	1	LT	Less Than	(S XOR V) = 1
0010	2	LE	Less Than or Equal	(Z OR (S XOR V)) = 1

Table 124. Condition Codes

Table 125 through Table 132 contain the instructions belonging to each group and the number of operands required for each instruction. Some instructions appear in more than one table as these instruction can be considered as a subset of more than one category. Within these tables, the source operand is identified as 'src', the destination operand is 'dst' and a condition code is 'cc'.

Mnemonic	Operands	Instruction
ADC	dst, src	Add with Carry
ADCX	dst, src	Add with Carry using Extended Addressing
ADD	dst, src	Add
ADDX	dst, src	Add using Extended Addressing
СР	dst, src	Compare
CPC	dst, src	Compare with Carry
CPCX	dst, src	Compare with Carry using Extended Addressing
CPX	dst, src	Compare using Extended Addressing
DA	dst	Decimal Adjust
DEC	dst	Decrement
DECW	dst	Decrement Word
INC	dst	Increment
INCW	dst	Increment Word
MULT	dst	Multiply
SBC	dst, src	Subtract with Carry
SBCX	dst, src	Subtract with Carry using Extended Addressing
SUB	dst, src	Subtract
SUBX	dst, src	Subtract using Extended Addressing

Table 125. Arithmetic Instructions

Table 126. Bit Manipulation Instructions

Mnemonic	Operands	Instruction
BCLR	bit, dst	Bit Clear
BIT	p, bit, dst	Bit Set or Clear
BSET	bit, dst	Bit Set

246

For technical and customer support, hardware and software development tools, refer to the $Zilog^{\mathbb{R}}$ website at <u>www.zilog.com</u>. The latest released version of ZDS can be downloaded from this website.

Part Number Suffix Designations

