

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

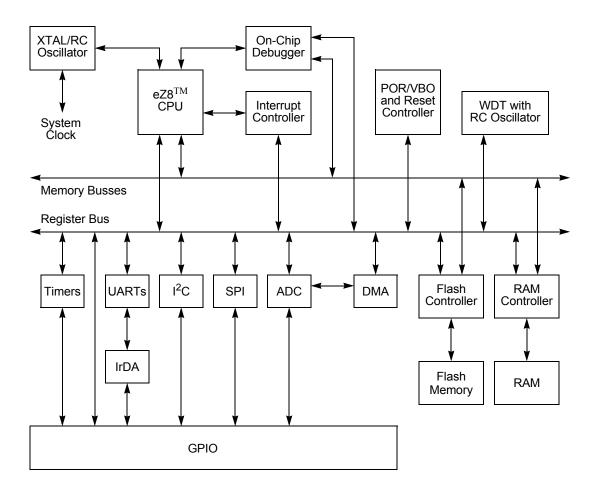
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	31
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f4821vn020ec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Table of Contents

Manual Objectives xi	ii
About This Manualxi	
Manual Conventionsxi	
Introduction	1
Features 2 Part Selection Guide 2 Block Diagram 3 CPU and Peripheral Overview 3	2 3
eZ8 [™] CPU Features	
General-Purpose Input/Output	
Flash Controller 4 10-Bit Analog-to-Digital Converter 4	
UARTs	
I ² C Serial Peripheral Interface	
Timers	5
Reset Controller 8 On-Chip Debugger 8 DMA Controller 8	5 5
Signal and Pin Descriptions	
Overview 7 Available Packages 7 Pin Configurations 8	7 7
Pin Configurations 14 Signal Descriptions 14 Pin Characteristics 16	4
Address Space	9
Overview 19 Register File 19 Program Memory 20 Data Memory 21	9 0
Data Memory 2'	1

Block Diagram

Figure 1 displays the block diagram of the architecture of the Z8 Encore! XP 64K Series Flash Microcontrollers.

CPU and Peripheral Overview

eZ8[™] CPU Features

The latest 8-bit eZ8 CPU meets the continuing demand for faster and more code-efficient microcontrollers. The eZ8 CPU executes a superset of the original $Z8^{\mathbb{R}}$ instruction set.

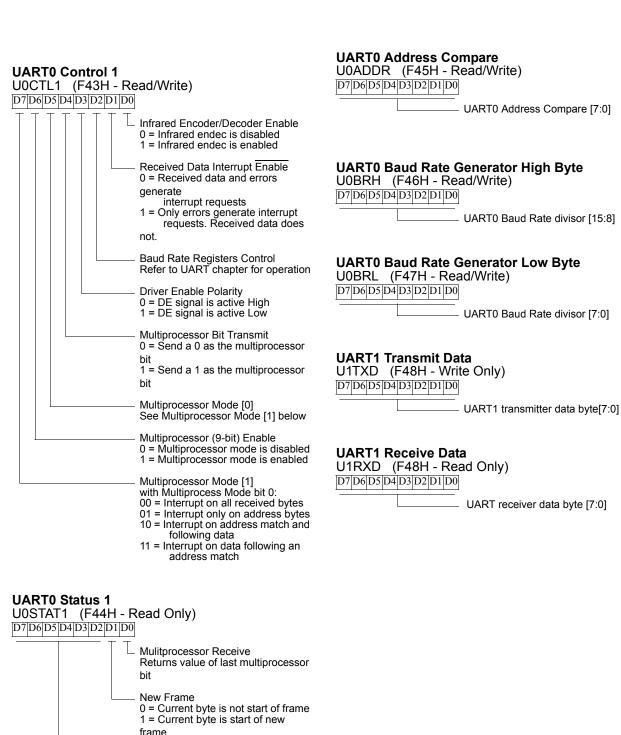
Program Memory Address (Hex)	Function
0000-0001	Option Bits
0002-0003	Reset Vector
0004-0005	WDT Interrupt Vector
0006-0007	Illegal Instruction Trap
0008-0037	Interrupt Vectors*
0038-BFFF	Program Memory
Z8F642x Products	
0000-0001	Option Bits
0002-0003	Reset Vector
0004-0005	WDT Interrupt Vector
0006-0007	Illegal Instruction Trap
0008-0037	Interrupt Vectors*
0038-FFFF	Program Memory
*See Table 23 on page 68 for a list of th	ne interrupt vectors.

Table 5. Z8 Encore! XP 64K Series Flash Microcontrollers Program Memory Maps (Continued)

Data Memory

The Z8 Encore! XP 64K Series Flash Microcontrollers does not use the eZ8 CPU's 64 KB Data Memory address space.

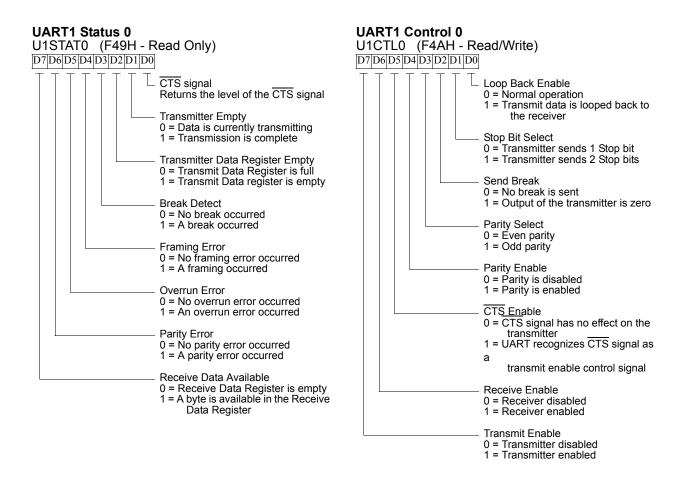
Information Area


Table 6 on page 22 describes the Z8 Encore! XP 64K Series Flash Microcontrollers Information Area. This 512 byte Information Area is accessed by setting bit 7 of the Page Select Register to 1. When access is enabled, the Information Area is mapped into the Program Memory and overlays the 512 bytes at addresses FE00H to FFFFH. When the Information Area access is enabled, execution of LDC and LDCI instruction from these Program Memory addresses return the Information Area data rather than the Program Memory data. Reads of these addresses through the On-Chip Debugger also returns the Information Area data. Execution of code from these addresses continues to correctly use the Program Memory. Access to the Information Area is read-only.

zilog

Address (Hex)	· · ·	Mnemonic	Reset (Hex)	Page No
-61	SPI Control	SPICTL	00	137
F62	SPI Status	SPISTAT	01	139
F63	SPI Mode	SPIMODE	00	140
F64	SPI Diagnostic State	SPIDST	00	141
F65	Reserved	_	XX	
F66	SPI Baud Rate High Byte	SPIBRH	FF	142
F67	SPI Baud Rate Low Byte	SPIBRL	FF	142
F68-F6F	Reserved	_	XX	
Analog-to-Digit	tal Converter			
F70	ADC Control	ADCCTL	20	179
F71	Reserved	_	XX	
F72	ADC Data High Byte	ADCD_H	XX	180
F73	ADC Data Low Bits	ADCD_L	XX	180
F74-FAF	Reserved	_	XX	
DMA 0				
FB0	DMA0 Control	DMA0CTL	00	167
FB1	DMA0 I/O Address	DMA0IO	XX	169
FB2	DMA0 End/Start Address High Nibble	DMA0H	XX	169
FB3	DMA0 Start Address Low Byte	DMA0START	XX	170
FB4	DMA0 End Address Low Byte	DMA0END	XX	170
DMA 1				
FB8	DMA1 Control	DMA1CTL	00	167
FB9	DMA1 I/O Address	DMA1IO	XX	169
FBA	DMA1 End/Start Address High Nibble	DMA1H	XX	169
FBB	DMA1 Start Address Low Byte	DMA1START	XX	170
FBC	DMA1 End Address Low Byte	DMA1END	XX	170
DMA ADC				
FBD	DMA ADC Address	DMAA_ADDR	XX	171
FBE	DMA ADC Control	DMAACTL	00	172
FBF	DMA ADC Status	DMAASTAT	00	173
Interrupt Contr		_		-
FC0	Interrupt Request 0	IRQ0	00	71
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	74
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	74
FC3	Interrupt Request 1	IRQ1	00	72
FC4	IRQ1 Enable High Bit	IRQ1ENH	00	75
FC5	IRQ1 Enable Low Bit	IRQ1ENL	00	75
FC6	Interrupt Request 2	IRQ2	00	73
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	76
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	76
FC9-FCC	Reserved		XX	

Table 7. Z8 Encore! XP 64K Series Flash Microcontrollers Register File Address Map (Continued)



Reserved

zilog

T1I—Timer 1 Interrupt Request

0 = No interrupt request is pending for Timer 1.

1 = An interrupt request from Timer 1 is awaiting service.

T0I—Timer 0 Interrupt Request

0 = No interrupt request is pending for Timer 0.

1 = An interrupt request from Timer 0 is awaiting service.

U0RXI—UART 0 Receiver Interrupt Request

0 = No interrupt request is pending for the UART 0 receiver.

1 = An interrupt request from the UART 0 receiver is awaiting service.

U0TXI-UART 0 Transmitter Interrupt Request

0 = No interrupt request is pending for the UART 0 transmitter.

1 = An interrupt request from the UART 0 transmitter is awaiting service.

I²CI— I²C Interrupt Request

0 = No interrupt request is pending for the I²C.

1 = An interrupt request from the I²C is awaiting service.

SPII—SPI Interrupt Request

0 = No interrupt request is pending for the SPI.

1 = An interrupt request from the SPI is awaiting service.

ADCI—ADC Interrupt Request

0 = No interrupt request is pending for the Analog-to-Digital Converter.

1 = An interrupt request from the Analog-to-Digital Converter is awaiting service.

Interrupt Request 1 Register

The Interrupt Request 1 (IRQ1) register (Table 25) stores interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ1 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 1 register to determine if any interrupt requests are pending.

BITS	7	6	5	4	3	2	1	0			
FIELD	PAD7I	PAD6I	PAD5I	PAD4I	PAD3I	PAD2I	PAD1I	PAD0I			
RESET				()						
R/W		R/W									
ADDR				FC	3H						

Table 25.	Interrupt	Request 1	Register	(IRQ1)
-----------	-----------	------------------	----------	--------

- 2. Write to the Timer High and Low Byte registers to set the starting count value (usually 0001H), affecting only the first pass in CONTINUOUS mode. After the first timer Reload in CONTINUOUS mode, counting always begins at the reset value of 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 6. Write to the Timer Control 1 register to enable the timer and initiate counting.

In CONTINUOUS mode, the system clock always provides the timer input. The timer period is given by the following equation:

CONTINUOUS Mode Time-Out Period (s) = $\frac{\text{Reload Value} \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte registers, the ONE-SHOT mode equation must be used to determine the first time-out period.

COUNTER Mode

In COUNTER mode, the timer counts input transitions from a GPIO port pin. The timer input is taken from the GPIO Port pin Timer Input alternate function. The TPOL bit in the Timer Control 1 Register selects whether the count occurs on the rising edge or the falling edge of the Timer Input signal. In COUNTER mode, the prescaler is disabled.

Caution: *The input frequency of the Timer Input signal must not exceed one-fourth the system clock frequency.*

Upon reaching the Reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

Follow the steps below for configuring a timer for COUNTER mode and initiating the count:

- 1. Write to the Timer Control 1 register to:
 - Disable the timer
 - Configure the timer for COUNTER mode

Table 59. UART Baud Rate High Byte Register (UxBRH)

BITS	7	6	5	4	3	2	1	0				
FIELD	BRH											
RESET		1										
R/W		R/W										
ADDR				F46H ar	nd F4EH							

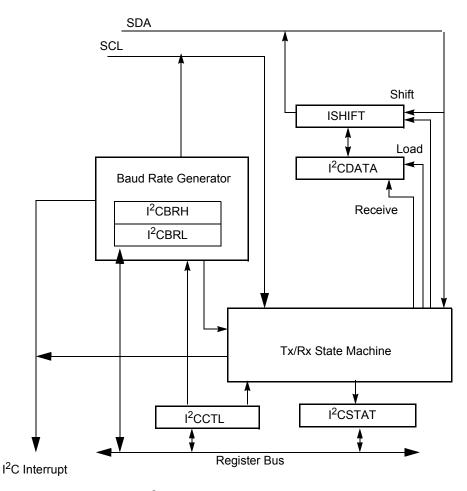
Table 60. UART Baud Rate Low Byte Register (UxBRL)

BITS	7	6	5	4	3	2	1	0		
FIELD	BRL									
RESET					1					
R/W		R/W								
ADDR				F47H ar	nd F4FH					

For a given UART data rate, the integer baud rate divisor value is calculated using the following equation:

UART Baud Rate Divisor Value (BRG) = $Round\left(\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Data Rate (bits/s)}}\right)$

The baud rate error relative to the desired baud rate is calculated using the following equation:


UART Baud Rate Error (%) = $100 \times \left(\frac{\text{Actual Data Rate} - \text{Desired Data Rate}}{\text{Desired Data Rate}}\right)$

For reliable communication, the UART baud rate error must never exceed 5 percent. Table 61 provides information on data rate errors for popular baud rates and commonly used crystal oscillator frequencies.

Architecture

Figure 27 displays the architecture of the I²C Controller.

Operation

The I²C Controller operates in MASTER mode to transmit and receive data. Only a single master is supported. Arbitration between two masters must be accomplished in software. I²C supports the following operations:

- Master transmits to a 7-bit slave •
- Master transmits to a 10-bit slave •

Table 70. I²C Data Register (I2CDATA)

BITS	7	6	5	4	3	2	1	0				
FIELD	DATA											
RESET		0										
R/W		R/W										
ADDR				F5	0H							

I²C Status Register

The Read-only I²C Status register (Table 71) indicates the status of the I²C Controller.

Table 71. I ² C Statu	s Register (I2CSTAT)
----------------------------------	----------------------

BITS	7	6	5	4	3	2	1	0			
FIELD	TDRE	RDRF	ACK	10B	RD	TAS	DSS	NCKI			
RESET	1				0						
R/W		R									
ADDR				F5	1H						

TDRE—Transmit Data Register Empty

When the I²C Controller is enabled, this bit is 1 when the I²C Data register is empty. When this bit is set, an interrupt is generated if the TXI bit is set, except when the I²C Controller is shifting in data during the reception of a byte or when shifting an address and the RD bit is set. This bit is cleared by writing to the I2CDATA register.

RDRF—Receive Data Register Full

This bit is set = 1 when the I²C Controller is enabled and the I²C Controller has received a byte of data. When asserted, this bit causes the I²C Controller to generate an interrupt. This bit is cleared by reading the I²C Data register (unless the read is performed using execution of the On-Chip Debugger's Read Register command).

ACK—Acknowledge

This bit indicates the status of the Acknowledge for the last byte transmitted or received. When set, this bit indicates that an Acknowledge occurred for the last byte transmitted or received. This bit is cleared when IEN = 0 or when a Not Acknowledge occurred for the last byte transmitted or received. It is not reset at the beginning of each transaction and is not reset when this register is read.

zilog

160

I²C Baud Rate High and Low Byte Registers

The I²C Baud Rate High and Low Byte registers (Tables 73 and 73) combine to form a 16-bit reload value, BRG[15:0], for the I²C Baud Rate Generator.

When the I^2C is disabled, the Baud Rate Generator can function as a basic 16-bit timer with interrupt on time-out. To configure the Baud Rate Generator as a timer with interrupt on time-out, complete the following procedure:

- 1. Disable the I^2C by clearing the IEN bit in the I^2C Control register to 0.
- 2. Load the desired 16-bit count value into the I²C Baud Rate High and Low Byte registers.
- 3. Enable the Baud Rate Generator timer function and associated interrupt by setting the BIRQ bit in the I²C Control register to 1.

When configured as a general purpose timer, the interrupt interval is calculated using the following equation:

Interrupt Interval (s) = System Clock Period (s) \times BRG[15:0]

Table 73. I²C Baud Rate High Byte Register (I2CBRH)

BITS	7	6	5	4	3	2	1	0			
FIELD	BRH										
RESET				FF	۶H						
R/W		R/W									
ADDR				F5	3H						

 $BRH = I^2C$ Baud Rate High Byte

Most significant byte, BRG[15:8], of the I²C Baud Rate Generator's reload value.

Note: If the DIAG bit in the I^2C Diagnostic Control Register is set to 1, a read of the I2CBRH register returns the current value of the I^2C Baud Rate Counter[15:8].

162

TXRXSTATE	State Description
0_000	Idle State
0_0001	START State
0_0010	Send/Receive data bit 7
0_0011	Send/Receive data bit 6
0_0100	Send/Receive data bit 5
0_0101	Send/Receive data bit 4
0_0110	Send/Receive data bit 3
0_0111	Send/Receive data bit 2
0_1000	Send/Receive data bit 1
0_1001	Send/Receive data bit 0
0_1010	Data Acknowledge State
0_1011	Second half of data Acknowledge State used only for not acknowledge
0_1100	First part of STOP state
0_1101	Second part of STOP state
0_1110	10-bit addressing: Acknowledge State for 2nd address byte 7-bit addressing: Address Acknowledge State
0_1111	10-bit address: Bit 0 (Least significant bit) of 2nd address byte 7-bit address: Bit 0 (Least significant bit) (R/W) of address byte
1_0000	10-bit addressing: Bit 7 (Most significant bit) of 1st address byte
1_0001	10-bit addressing: Bit 6 of 1st address byte
1_0010	10-bit addressing: Bit 5 of 1st address byte
1_0011	10-bit addressing: Bit 4 of 1st address byte
1_0100	10-bit addressing: Bit 3 of 1st address byte
1_0101	10-bit addressing: Bit 2 of 1st address byte
1_0110	10-bit addressing: Bit 1 of 1st address byte
1_0111	10-bit addressing: Bit 0 (R/W) of 1st address byte
1_1000	10-bit addressing: Acknowledge state for 1st address byte
1_1001	10-bit addressing: Bit 7 of 2nd address byte 7-bit addressing: Bit 7 of address byte
1_1010	10-bit addressing: Bit 6 of 2nd address byte 7-bit addressing: Bit 6 of address byte
1_1011	10-bit addressing: Bit 5 of 2nd address byte 7-bit addressing: Bit 5 of address byte
1_1100	10-bit addressing: Bit 4 of 2nd address byte 7-bit addressing: Bit 4 of address byte

ົ	n	E
2	υ	J

Debug Command	Command Byte	Enabled when NOT in DEBUG mode?	Disabled by Read Protect Option Bit				
Write Program Counter	06H	-	Disabled				
Read Program Counter	07H	-	Disabled				
Write Register	08H	-	Only writes of the Flash Memory Contr registers are allowed. Additionally, or the Mass Erase command is allowed be written to the Flash Control register				
Read Register	09H	-	Disabled				
Write Program Memory	0AH	-	Disabled				
Read Program Memory	0BH	-	Disabled				
Write Data Memory	0CH	-	Disabled				
Read Data Memory	0DH	-	Disabled				
Read Program Memory CRC	0EH	-	-				
Reserved	0FH	-	-				
Step Instruction	10H	-	Disabled				
Stuff Instruction	11H	-	Disabled				
Execute Instruction	12H	-	Disabled				
Reserved	13H - FFH	-	-				

Table 101. On-Chip Debugger Commands (Continued)

In the following list of OCD Commands, data and commands sent from the host to the On-Chip Debugger are identified by 'DBG \leftarrow Command/Data'. Data sent from the On-Chip Debugger back to the host is identified by 'DBG \rightarrow Data'

• **Read OCD Revision (00H)**—The Read OCD Revision command determines the version of the On-Chip Debugger. If OCD commands are added, removed, or changed, this revision number changes.

DBG \leftarrow 00H DBG \rightarrow OCDREV[15:8] (Major revision number) DBG \rightarrow OCDREV[7:0] (Minor revision number)

• **Read OCD Status Register (02H)**—The Read OCD Status Register command reads the OCDSTAT register.

```
DBG \leftarrow 02H
DBG \rightarrow OCDSTAT[7:0]
```


Electrical Characteristics

Absolute Maximum Ratings

Stresses greater than those listed in Table 105 may cause permanent damage to the device. These ratings are stress ratings only. Operation of the device at any condition outside those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For improved reliability, unused inputs must be tied to one of the supply voltages (V_{DD} or V_{SS}).

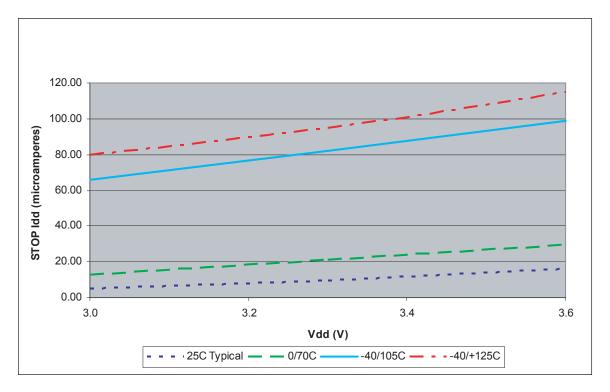

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	-40	+125	С	
Storage temperature	-65	+150	С	
Voltage on any pin with respect to V_{SS}	-0.3	+5.5	V	1
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
80-Pin QFP Maximum Ratings at –40 °C to 70 °C				
Total power dissipation		550	mW	
Maximum current into V_{DD} or out of V_{SS}		150	mA	
80-Pin QFP Maximum Ratings at 70 °C to 125 °C				
Total power dissipation		200	mW	
Maximum current into V_{DD} or out of V_{SS}		56	mA	
68-Pin PLCC Maximum Ratings at –40 °C to 70 °C				
Total power dissipation		1000	mW	
Maximum current into V_{DD} or out of V_{SS}		275	mA	
68-Pin PLCC Maximum Ratings at 70 °C to 125 °C				
Total power dissipation		500	mW	

Table 105. Absolute Maximum Ratings

zilog

225

Figure 48 displays the maximum current consumption in STOP mode with the VBO disabled and Watchdog Timer enabled versus the power supply voltage. All GPIO pins are configured as outputs and driven High. Disabling the Watchdog Timer and its internal RC oscillator in STOP mode will provide some additional reduction in STOP mode current consumption. This small current reduction would be indistinguishable on the scale of Figure 48.

Figure 48. Maximum STOP Mode Idd with VBO Disabled versus Power Supply Voltage

Table 123. Additional Symbols

Symbol	Definition
dst	Destination Operand
src	Source Operand
@	Indirect Address Prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flags Register
RP	Register Pointer
#	Immediate Operand Prefix
В	Binary Number Suffix
%	Hexadecimal Number Prefix
Н	Hexadecimal Number Suffix

Assignment of a value is indicated by an arrow. For example,

 $dst \leftarrow dst + src$

indicates the source data is added to the destination data and the result is stored in the destination location.

Condition Codes

The C, Z, S and V Flags control the operation of the conditional jump (JP cc and JR cc) instructions. Sixteen frequently useful functions of the Flag settings are encoded in a 4-bit field called the condition code (cc), which forms Bits 7:4 of the conditional jump instructions. The condition codes are summarized in Table 124. Some binary condition codes can be created using more than one assembly code mnemonic. The result of the Flag test operation decides if the conditional jump is executed.

Binary	Hex	Assembly Mnemonic	Definition	Flag Test Operation
0000	0	F	Always False	-
0001	1	LT	Less Than	(S XOR V) = 1
0010	2	LE	Less Than or Equal	(Z OR (S XOR V)) = 1

Table 124. Condition Codes

Assembly	Symbolic Operation	Address Mode		_ Opcode(s)	Flags						- Fetch	Instr.
Mnemonic		dst	src	(Hex)	С	Ζ	S	V	D	Н		Cycles
XOR dst, src	$dst \gets dst \: XOR \: src$	r	r	B2	-	*	*	0	-	-	2	3
	-	r	lr	B3							2	4
	-	R	R	B4							3	3
	-	R	IR	B5							3	4
	-	R	IM	B6							3	3
	-	IR	IM	B7							3	4
XORX dst, src dst \leftarrow dst XOR src		ER	ER	B8	-	*	*	0	-	-	4	3
	-	ER	IM	B9							4	3
Flags Notation: * = Value is a function of the result of the operation. - = Unaffected X = Undefined					-	Res Set	et to to 1	0				

Table 133. eZ8 CPU Instruction Summary (Continued)