

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	31
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f4821vn020ec00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

V

Use of All Uppercase Letters

The use of all uppercase letters designates the names of states, modes, and commands.

- Example 1: The bus is considered BUSY after the Start condition.
- Example 2: A START command triggers the processing of the initialization sequence.
- Example 3: STOP mode.

Bit Numbering

Bits are numbered from 0 to n-1 where n indicates the total number of bits. For example, the 8 bits of a register are numbered from 0 to 7.

Safeguards

It is important that you understand the following safety terms, which are defined here.

Indicates a procedure or file may become corrupted if you do not follow directions.

Figure 4. Z8 Encore! XP 64K Series Flash Microcontrollers in 44-Pin Low-Profile Quad Flat Package (LQFP)

Zilog 24

Timer 3 (unavailable in the 44-pin packages) F18 Timer 3 High Byte T3H 00 90 F19 Timer 3 Low Byte T3L 01 90 F1A Timer 3 Reload High Byte T3RL FF 91 F1B Timer 3 Reload Low Byte T3RL FF 91 F1C Timer 3 Reload Low Byte T3PWMH 00 92 F1D Timer 3 Reload Low Byte T3PWMH 00 92 F1E Timer 3 Control 0 T3CTL0 00 93 F1F Timer 3 Control 1 T3CTL1 00 94 20-3F Reserved - XX VART0 VART 0 Transmit Data U0TXD XX 114 UART 0 Receive Data U0RXD XX 115 F41 UART0 Control 0 U0STAT0 0000011Xb 115 F42 UART0 Control 1 U0CTL0 00 117 F43 UART0 Address Compare Register U0ADDR 00 120	Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
F18 Timer 3 High Byte T3H 00 90 F19 Timer 3 Low Byte T3L 01 90 F1A Timer 3 Reload High Byte T3RL FF 91 F1B Timer 3 Reload Low Byte T3RL FF 91 F1C Timer 3 PWM High Byte T3PWML 00 92 F1D Timer 3 Control 0 T3CTL0 00 93 F1F Timer 3 Control 1 T3CTL1 00 94 20-3F Reserved XX UART 0 F40 UART0 Transmit Data U0TXD XX 114 UART0 Status 0 U0STAT0 0000011Xb 115 F42 UART0 Control 0 U0CTL0 00 117 F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate Low Byte U0BRH FF 120 F47 UART1 Transmit Data	Timer 3 (unava	ilable in the 44-pin packages)			
F19 Timer 3 Low Byte T3L 01 90 F1A Timer 3 Reload High Byte T3RH FF 91 F1B Timer 3 Reload Low Byte T3RL FF 91 F1C Timer 3 PWM High Byte T3PWMH 00 92 F1D Timer 3 PWM Low Byte T3PWML 00 92 F1E Timer 3 Control 0 T3CTL0 00 93 F1F Timer 3 Control 1 T3CTL1 00 94 20-3F Reserved - XX VART0 VMART 0 F40 UART0 Transmit Data U0TXD XX 114 UART0 Receive Data U0RXD XX 115 F41 UART0 Control 0 U0CTL0 00 117 F42 UART0 Control 1 U0CTL1 00 115 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate Low Byte U0BRL FF 120 F47 UA	F18	Timer 3 High Byte	ТЗН	00	90
F1A Timer 3 Reload High Byte T3RH FF 91 F1B Timer 3 Reload Low Byte T3RL FF 91 F1C Timer 3 PWM High Byte T3PWMH 00 92 F1D Timer 3 PWM Low Byte T3PWML 00 92 F1E Timer 3 Control 0 T3CTL0 00 93 F1F Timer 3 Control 1 T3CTL1 00 94 20-3F Reserved XX VART0 VART 0 F40 UART0 Transmit Data U0TXD XX 114 UART0 Receive Data U0RXD XX 115 F41 UART0 Control 0 U0CTL0 00 117 F42 UART0 Control 1 U0CTL1 00 117 F43 UART0 Status 1 U0STAT1 00 115 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 <t< td=""><td>F19</td><td>Timer 3 Low Byte</td><td>T3L</td><td>01</td><td>90</td></t<>	F19	Timer 3 Low Byte	T3L	01	90
F1B Timer 3 Reload Low Byte T3RL FF 91 F1C Timer 3 PWM High Byte T3PWMH 00 92 F1D Timer 3 PWM Low Byte T3PWML 00 92 F1E Timer 3 Control 0 T3CTL0 00 93 F1F Timer 3 Control 1 T3CTL1 00 94 20-3F Reserved - XX VARTO UART 0 F40 UART0 Transmit Data U0TXD XX 114 UART0 Receive Data U0RXD XX 115 F41 UART0 Status 0 U0STATO 0000011Xb 115 F42 UART0 Control 1 U0CTL0 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 UART 1 Paceive Data U1TXD XX 114 UART1 Receive Data U1TXD XX 114 UART1 Receive Data U	F1A	Timer 3 Reload High Byte	T3RH	FF	91
F1C Timer 3 PWM High Byte T3PWMH 00 92 F1D Timer 3 PWM Low Byte T3PWML 00 92 F1E Timer 3 Control 0 T3CTL0 00 93 F1F Timer 3 Control 1 T3CTL1 00 94 20-3F Reserved - XX UART 0 F40 UART0 Transmit Data U0TXD XX 114 UART 0 Receive Data UORXD XX 115 F41 UART0 Status 0 U0STAT0 0000011Xb 115 F42 UART0 Control 0 UOCTL0 00 117 F43 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 UART1 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 VART1 Receive Data U1TXD XX 114 UART1 Receive Data U1TXD XX 114 115 F48	F1B	Timer 3 Reload Low Byte	T3RL	FF	91
F1D Timer 3 PWM Low Byte T3PWML 00 92 F1E Timer 3 Control 0 T3CTL0 00 93 F1F Timer 3 Control 1 T3CTL0 00 94 20-3F Reserved - XX UART 0 - XX UART 0 UART0 Transmit Data U0TXD XX 114 UART0 Receive Data U0RXD XX 115 F41 UART0 Status 0 U0STAT0 0000011Xb 115 F42 UART0 Control 0 U0CTL0 00 117 F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Baud Rate High Byte U0BRH FF 120 F46 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 114 UART1 Receive Data U1RXD XX 114 UART1 Receive Data U1RXD XX<	F1C	Timer 3 PWM High Byte	T3PWMH	00	92
F1E Timer 3 Control 0 T3CTL0 00 93 F1F Timer 3 Control 1 T3CTL1 00 94 20-3F Reserved — XX UART 0 F40 UART0 Transmit Data U0TXD XX 114 UART 0 XX 114 115 F41 UART0 Receive Data U0RXD XX 115 F42 UART0 Control 0 U0CTL0 00 117 F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 Receive Data U1TXD XX 114 UART1 Receive Data U1TXD XX 114 UART1 Receive Data U1TXD XX 114 F49 UART1 Status 0 U1STAT0 00000011Xb 1	F1D	Timer 3 PWM Low Byte	T3PWML	00	92
F1F Timer 3 Control 1 T3CTL1 00 94 20-3F Reserved — XX UART 0 F40 UART0 Transmit Data U0TXD XX 114 UART0 Receive Data U0RXD XX 115 F41 UART0 Status 0 U0STAT0 0000011Xb 115 F42 UART0 Control 0 U0CTL0 00 117 F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 F48 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 115 F49 UART1 Status 0 U1STAT0 0000011Xb 115 F44 UART1 Control 0 U1CTL0 00 117 F48 <	F1E	Timer 3 Control 0	T3CTL0	00	93
20-3F Reserved — XX UART 0 F40 UART0 Transmit Data U0TXD XX 114 UART0 Receive Data U0RXD XX 115 F41 UART0 Status 0 U0STAT0 0000011Xb 115 F42 UART0 Control 0 U0CTL0 00 117 F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 UART 1 UART0 Baud Rate Low Byte U0BRL FF 120 UART 1 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 115 F48 UART1 Status 0 U1STAT0 00000111Xb 115 F49 UART1 Status 1 U1CTL0 00 117 F48 UART1 Control 0 U1CTL0	F1F	Timer 3 Control 1	T3CTL1	00	94
UART 0 F40 UART0 Transmit Data U0TXD XX 114 UART0 Receive Data U0RXD XX 115 F41 UART0 Status 0 U0STAT0 0000011Xb 115 F42 UART0 Control 0 U0CTL0 00 117 F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 UART1 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 Transmit Data U1TXD XX 114 UART1 Transmit Data U1TXD XX 115 F48 UART1 S	20-3F	Reserved	—	XX	
F40UART0 Transmit DataU0TXDXX114UART0 Receive DataU0RXDXX115F41UART0 Status 0U0STAT00000011Xb115F42UART0 Control 0U0CTL000117F43UART0 Control 1U0CTL100117F44UART0 Status 1U0STAT100115F45UART0 Address Compare RegisterU0ADDR00120F46UART0 Baud Rate High ByteU0BRHFF120F47UART0 Baud Rate Low ByteU0BRLFF120UART1F48UART1 Transmit DataU1TXDXX114UART1 Receive DataU1RXDXX115F49UART1 Status 0U1STAT00000011Xb115F4AUART1 Control 0U1CTL000117F4BUART1 Control 1U1CTL100117F4CUART1 Status 1U1STAT100115F4DUART1 Address Compare RegisterU1ADDR00120F4EUART1 Baud Rate High ByteU1BRHFF120F4FUART1 Baud Rate Low ByteU1BRHFF120F4CUART1 Baud Rate Low ByteU1BRLFF120	UART 0				
UART0 Receive Data U0RXD XX 115 F41 UART0 Status 0 U0STAT0 0000011Xb 115 F42 UART0 Control 0 U0CTL0 00 117 F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0CTL1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 115 F48 UART1 Status 0 U1STAT0 0000011Xb 115 F49 UART1 Control 0 U1CTL0 00 117 F48 UART1 Control 1 U1CTL0 00 117 F44 UART1 Control 1 U1CTL0 00 117 F44 UART1 Status 1 U1STAT1 00	F40	UART0 Transmit Data	U0TXD	XX	114
F41 UART0 Status 0 U0STAT0 0000011Xb 115 F42 UART0 Control 0 U0CTL0 00 117 F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 F48 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 115 F48 UART1 Status 0 U1STAT0 0000011Xb 115 F44 UART1 Control 0 U1STAT0 0000011Xb 115 F44 UART1 Control 1 U1CTL0 00 117 F48 UART1 Control 1 U1CTL1 00 117 F44 UART1 Control 1 U1CTL1 00 117 F45 UART1 Address Compare Register U1ADDR 00 120 F45		UART0 Receive Data	U0RXD	XX	115
F42 UART0 Control 0 U0CTL0 00 117 F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 115 F48 UART1 Status 0 U1STAT0 00000011Xb 115 F44 UART1 Control 0 U1CTL0 00 117 F48 UART1 Control 1 U1CTL1 00 117 F48 UART1 Control 1 U1CTL1 00 117 F44 UART1 Status 1 U1STAT1 00 117 F44 UART1 Status 1 U1CTL1 00 117 F45 UART1 Address Compare Register U1ADDR 00 120 F44	F41	UART0 Status 0	U0STAT0	0000011Xb	115
F43 UART0 Control 1 U0CTL1 00 117 F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 UART1 Transmit Data U1TXD XX 114 UART1 Transmit Data U1TXD XX 114 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1TXD XX 115 F49 UART1 Status 0 U1STAT0 0000011Xb 115 F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Control 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 117 F4E UART1 Status 1 U1CTL0 00 117 F4E UART1 Address Compare Register U1ADDR 00 120 F4E <td>F42</td> <td>UART0 Control 0</td> <td>U0CTL0</td> <td>00</td> <td>117</td>	F42	UART0 Control 0	U0CTL0	00	117
F44 UART0 Status 1 U0STAT1 00 115 F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 Transmit Data U1TXD XX 114 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 115 F49 UART1 Status 0 U1STAT0 0000011Xb 115 F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Status 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Status 1 U1STAT1 00 115 F4D UART1 Address Compare Register U1ADDR 00 120 F4E UART1 Baud Rate High Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120	F43	UART0 Control 1	U0CTL1	00	117
F45 UART0 Address Compare Register U0ADDR 00 120 F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART0 Baud Rate Low Byte U0BRL FF 120 UART0 Baud Rate Low Byte U0BRL FF 120 UART1 Transmit Data U1TXD XX 114 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 115 F49 UART1 Status 0 U1STAT0 0000011Xb 115 F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Control 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Address Compare Register U1ADDR 00 120 F4E UART1 Baud Rate High Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120 F4C UART1 Baud Rate Low Byte <td>F44</td> <td>UART0 Status 1</td> <td>U0STAT1</td> <td>00</td> <td>115</td>	F44	UART0 Status 1	U0STAT1	00	115
F46 UART0 Baud Rate High Byte U0BRH FF 120 F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART 1 F48 UART1 Transmit Data U1TXD XX 114 UART 1 WART1 Receive Data U1RXD XX 114 UART1 Receive Data U1RXD XX 115 F49 UART1 Status 0 U1STAT0 0000011Xb 115 F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Control 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Baud Rate High Byte U1ADDR 00 120 F4E UART1 Baud Rate High Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120 F4C UART1 Baud Rate Low Byte U1BRL FF 120	F45	UART0 Address Compare Register	U0ADDR	00	120
F47 UART0 Baud Rate Low Byte U0BRL FF 120 UART 1 F48 UART1 Transmit Data U1TXD XX 114 VART1 Receive Data U1RXD XX 115 F49 UART1 Status 0 U1STAT0 0000011Xb 115 F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Control 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Status 1 U1STAT1 00 115 F4D UART1 Baud Rate High Byte U1ADDR 00 120 F4E UART1 Baud Rate Low Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120	F46	UART0 Baud Rate High Byte	U0BRH	FF	120
UART 1 F48 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 115 F49 UART1 Status 0 U1STAT0 0000011Xb 115 F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Control 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Address Compare Register U1ADDR 00 120 F4E UART1 Baud Rate High Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120	F47	UART0 Baud Rate Low Byte	U0BRL	FF	120
F48 UART1 Transmit Data U1TXD XX 114 UART1 Receive Data U1RXD XX 115 F49 UART1 Status 0 U1STAT0 0000011Xb 115 F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Control 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Address Compare Register U1ADDR 00 120 F4E UART1 Baud Rate High Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120	UART 1				
UART1 Receive Data U1RXD XX 115 F49 UART1 Status 0 U1STAT0 0000011Xb 115 F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Control 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Address Compare Register U1ADDR 00 120 F4E UART1 Baud Rate High Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120	F48	UART1 Transmit Data	U1TXD	XX	114
F49 UART1 Status 0 U1STAT0 0000011Xb 115 F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Control 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Address Compare Register U1ADDR 00 120 F4E UART1 Baud Rate High Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120		UART1 Receive Data	U1RXD	XX	115
F4A UART1 Control 0 U1CTL0 00 117 F4B UART1 Control 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Address Compare Register U1ADDR 00 120 F4E UART1 Baud Rate High Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120 I ² C I I I I I	F49	UART1 Status 0	U1STAT0	0000011Xb	115
F4B UART1 Control 1 U1CTL1 00 117 F4C UART1 Status 1 U1STAT1 00 115 F4D UART1 Address Compare Register U1ADDR 00 120 F4E UART1 Baud Rate High Byte U1BRH FF 120 F4F UART1 Baud Rate Low Byte U1BRL FF 120 I ² C I I I I I	F4A	UART1 Control 0	U1CTL0	00	117
F4CUART1 Status 1U1STAT100115F4DUART1 Address Compare RegisterU1ADDR00120F4EUART1 Baud Rate High ByteU1BRHFF120F4FUART1 Baud Rate Low ByteU1BRLFF120I ² CI	F4B	UART1 Control 1	U1CTL1	00	117
F4DUART1 Address Compare RegisterU1ADDR00120F4EUART1 Baud Rate High ByteU1BRHFF120F4FUART1 Baud Rate Low ByteU1BRLFF120I ² C	F4C	UART1 Status 1	U1STAT1	00	115
F4EUART1 Baud Rate High ByteU1BRHFF120F4FUART1 Baud Rate Low ByteU1BRLFF120I ² C	F4D	UART1 Address Compare Register	U1ADDR	00	120
F4FUART1 Baud Rate Low ByteU1BRLFF120I ² C	F4E	UART1 Baud Rate High Byte	U1BRH	FF	120
I ² C	F4F	UART1 Baud Rate Low Byte	U1BRL	FF	120
	I ² C				
F50 I ² C Data I2CDATA 00 156	F50	I ² C Data	I2CDATA	00	156
F51 I ² C Status I2CSTAT 80 157	F51	I ² C Status	I2CSTAT	80	157
F52 I ² C Control I2CCTL 00 158	F52	I ² C Control	I2CCTL	00	158
F53 I ² C Baud Rate High Byte I2CBRH FF 160	F53	I ² C Baud Rate High Byte	I2CBRH	FF	160
F54 I ² C Baud Rate Low Byte I2CBRL FF 160	F54	I ² C Baud Rate Low Byte	I2CBRL	FF	160
F55 I ² C Diagnostic State I2CDST C0 161	F55	I ² C Diagnostic State	I2CDST	C0	161
F56I ² C Diagnostic ControlI2CDIAG00163	F56	I ² C Diagnostic Control	I2CDIAG	00	163
F57-F5F Reserved — XX	F57-F5F	Reserved	—	XX	
Serial Peripheral Interface (SPI)	Serial Peripher	al Interface (SPI)			
F60SPI DataSPIDATAXX137	F60	SPI Data	SPIDATA	XX	137

Table 7. Z8 Encore! XP 64K Series Flash Microcontrollers Register File Address Map (Continued)

Reset and Stop Mode Recovery

Overview

The Reset Controller within the Z8 Encore! XP 64K Series Flash Microcontrollers controls Reset and Stop Mode Recovery operation. In typical operation, the following events cause a Reset to occur:

- Power-On Reset
- Voltage Brownout
- Watchdog Timer time-out (when configured via the WDT_RES Option Bit to initiate a Reset)
- External **RESET** pin assertion
- On-Chip Debugger initiated Reset (OCDCTL[0] set to 1)

When the 64K Series devices are in STOP mode, a Stop Mode Recovery is initiated by either of the following:

- Watchdog Timer time-out
- GPIO Port input pin transition on an enabled Stop Mode Recovery source
- DBG pin driven Low

Reset Types

The 64K Series provides two different types of reset operation (system reset and Stop Mode Recovery). The type of Reset is a function of both the current operating mode of the 64K Series devices and the source of the Reset. Table 8 lists the types of Reset and their operating characteristics.

GPIO Control Register Definitions

Four registers for each Port provide access to GPIO control, input data, and output data. Table 13 lists these Port registers. Use the Port A–H Address and Control registers together to provide access to sub-registers for Port configuration and control.

Port Register Mnemonic	Port Register Name
PxADDR	Port A–H Address Register (Selects sub-registers)
PxCTL	Port A–H Control Register (Provides access to sub-registers)
PxIN	Port A-H Input Data Register
PxOUT	Port A–H Output Data Register
Port Sub-Register Mnemonic	Port Register Name
PxDD	Data Direction
PxAF	Alternate Function
PxOC	Output Control (Open-Drain)
PxDD	High Drive Enable
PxSMRE	Stop Mode Recovery Source Enable

Table 13. GPIO Port Registers and Sub-Registers

Port A–H Address Registers

The Port A–H Address registers select the GPIO Port functionality accessible through the Port A–H Control registers. The Port A–H Address and Control registers combine to provide access to all GPIO Port control (Table 14).

Table 14	. Port A-H	GPIO	Address	Registers	(PxADDR)
----------	------------	------	---------	-----------	----------

BITS	7	6	5	4	3	2	1	0	
FIELD	PADDR[7:0]								
RESET	00H								
R/W	R/W								
ADDR		FD0	H, FD4H, F	D8H, FDCH	, FE0H, FE4	H, FE8H, FI	ECH		

PADDR[7:0]—Port Address

The Port Address selects one of the sub-registers accessible through the Port Control register.

PADDR[7:0]	Port Control sub-register accessible using the Port A–H Control Registers
00H	No function. Provides some protection against accidental Port reconfiguration
01H	Data Direction
02H	Alternate Function
03H	Output Control (Open-Drain)
04H	High Drive Enable
05H	Stop Mode Recovery Source Enable
06H-FFH	No function

Port A–H Control Registers

The Port A–H Control registers set the GPIO port operation. The value in the corresponding Port A–H Address register determines the control sub-registers accessible using the Port A–H Control register (Table 15).

Table 15. Port A–H Control Registers (PxCTL)

BITS	7	6	5	4	3	2	1	0	
FIELD	PCTL								
RESET	00H								
R/W	R/W								
ADDR	FD1H, FD5H, FD9H, FDDH, FE1H, FE5H, FE9H, FEDH								

PCTL[7:0]—Port Control

The Port Control register provides access to all sub-registers that configure the GPIO Port operation.

Figure 12. Timer Block Diagram

Operation

The timers are 16-bit up-counters. Minimum time-out delay is set by loading the value 0001H into the Timer Reload High and Low Byte registers and setting the prescale value to 1. Maximum time-out delay is set by loading the value 0000H into the Timer Reload High and Low Byte registers and setting the prescale value to 128. If the Timer reaches FFFFH, the timer rolls over to 0000H and continues counting.

Timer Operating Modes

The timers can be configured to operate in the following modes:

ONE-SHOT Mode

In ONE-SHOT mode, the timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the Reload value, the timer generates an interrupt and the count value in the Timer High and Low Byte registers is reset to 0001H. Then, the timer is automatically disabled and stops counting.

Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state for one system clock cycle (from Low to High or from High to Low) upon timer Reload. If it is desired to have the Timer Output make a permanent state change upon

Caution: The 24-bit WDT Reload Value must not be set to a value less than 000004H.

Table 49. Watchdog Timer Reload Upper Byte Register (WDTU)

BITS	7 6 5 4 3 2 1								
FIELD	WDTU								
RESET	1								
R/W	R/W*								
ADDR		FF1H							
Note: R/M	Nete: R/M/* Read returns the surrent W/RT sound value, W/rite sets the desired Relead Value								

Note: R/W* - Read returns the current WDT count value. Write sets the desired Reload Value.

WDTU—WDT Reload Upper Byte

Most significant byte, Bits[23:16], of the 24-bit WDT reload value.

Table 50. Watchdog Timer Reload High Byte Register (WDTH)

BITS	7	6	5	4	3	2	1	0
FIELD	WDTH							
RESET	1							
R/W	R/W*							
ADDR	FF2H							
Note: R/W	* - Read retu	rns the curre	nt WDT count	t value. Write	sets the desi	red Reload V	'alue.	

WDTH—WDT Reload High Byte

Middle byte, Bits[15:8], of the 24-bit WDT reload value.

Table 51. Watchdog Timer Reload Low Byte Register (WDTL)

BITS	7 6 5 4 3 2 1 0								
FIELD	WDTL								
RESET	1								
R/W	R/W*								
ADDR	FF3H								
Note: R/W	Note: R/W* - Read returns the current WDT count value. Write sets the desired Reload Value.								

WDTL—WDT Reload Low

Least significant byte, Bits[7:0], of the 24-bit WDT reload value.

Table 70. I²C Data Register (I2CDATA)

BITS	7	6	5	4	3	2	1	0	
FIELD	DATA								
RESET	0								
R/W	R/W								
ADDR	F50H								

I²C Status Register

The Read-only I²C Status register (Table 71) indicates the status of the I²C Controller.

Table 71	. I ² C	Status	Register	(I2CSTAT))
----------	--------------------	--------	----------	-----------	---

BITS	7	6	5	4	3	2	1	0
FIELD	TDRE	RDRF	ACK	10B	RD	TAS	DSS	NCKI
RESET	1	0						
R/W	R							
ADDR	F51H							

TDRE—Transmit Data Register Empty

When the I²C Controller is enabled, this bit is 1 when the I²C Data register is empty. When this bit is set, an interrupt is generated if the TXI bit is set, except when the I²C Controller is shifting in data during the reception of a byte or when shifting an address and the RD bit is set. This bit is cleared by writing to the I2CDATA register.

RDRF—Receive Data Register Full

This bit is set = 1 when the I²C Controller is enabled and the I²C Controller has received a byte of data. When asserted, this bit causes the I²C Controller to generate an interrupt. This bit is cleared by reading the I²C Data register (unless the read is performed using execution of the On-Chip Debugger's Read Register command).

ACK—Acknowledge

This bit indicates the status of the Acknowledge for the last byte transmitted or received. When set, this bit indicates that an Acknowledge occurred for the last byte transmitted or received. This bit is cleared when IEN = 0 or when a Not Acknowledge occurred for the last byte transmitted or received. It is not reset at the beginning of each transaction and is not reset when this register is read.

Caution: Software must be cautious in making decisions based on this bit within a transaction because software cannot tell when the bit is updated by hardware. In the case of write transactions, the I^2C pauses at the beginning of the Acknowledge cycle if the next transmit data or address byte has not been written (TDRE = 1) and STOP and START = 0. In this case the ACK bit is not updated until the transmit interrupt is serviced and the Acknowledge cycle for the previous byte completes. For examples of how the ACK bit can be used, see Address Only Transaction with a 7-bit Address on page 148 and Address Only Transaction with a 10-bit Address on page 150.

10B-10-Bit Address

This bit indicates whether a 10- or 7-bit address is being transmitted. After the START bit is set, if the five most-significant bits of the address are 11110B, this bit is set. When set, it is reset once the first byte of the address has been sent.

RD—Read

This bit indicates the direction of transfer of the data. It is active high during a read. The status of this bit is determined by the least-significant bit of the I^2C Shift register after the START bit is set.

TAS—Transmit Address State

This bit is active high while the address is being shifted out of the I²C Shift register.

DSS—Data Shift State

This bit is active high while data is being shifted to or from the I²C Shift register.

NCKI—NACK Interrupt

This bit is set high when a Not Acknowledge condition is received or sent and neither the START nor the STOP bit is active. When set, this bit generates an interrupt that can only be cleared by setting the START or STOP bit, allowing you to specify whether to perform a STOP or a repeated START.

I²C Control Register

The I²C Control register (Table 72) enables the I²C operation.

BITS	7	6	5	4	3	2	1	0	
FIELD	IEN	START	STOP	BIRQ	ТХІ	NAK	FLUSH	FILTEN	
RESET	0								
R/W	R/W R/W1 R/W1 R/W R/W1 W1 R/W								
ADDR	F52H								

Table 72. I²C Control Register (I2CCTL)

Analog-to-Digital Converter

Overview

The Analog-to-Digital Converter (ADC) converts an analog input signal to a 10-bit binary number. The features of the sigma-delta ADC include:

- 12 analog input sources are multiplexed with general-purpose I/O ports
- Interrupt upon conversion complete
- Internal voltage reference generator
- Direct Memory Access (DMA) controller can automatically initiate data conversion and transfer of the data from 1 to 12 of the analog inputs

Architecture

Figure 34 displays the three major functional blocks (converter, analog multiplexer, and voltage reference generator) of the ADC. The ADC converts an analog input signal to its digital representation. The 12-input analog multiplexer selects one of the 12 analog input sources. The ADC requires an input reference voltage for the conversion. The voltage reference for the conversion may be input through the external VREF pin or generated internally by the voltage reference generator.

Figure 38. Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface (2)

DEBUG Mode

The operating characteristics of the 64K Series devices in DEBUG mode are:

- The eZ8 CPU fetch unit stops, idling the eZ8 CPU, unless directed by the OCD to execute specific instructions.
- The system clock operates unless in STOP mode.
- All enabled on-chip peripherals operate unless in STOP mode.
- Automatically exits HALT mode.
- Constantly refreshes the Watchdog Timer, if enabled.

Entering DEBUG Mode

The device enters DEBUG mode following any of the following operations:

- Writing the DBGMODE bit in the OCD Control Register to 1 using the OCD interface.
- eZ8 CPU execution of a BRK (Breakpoint) instruction (when enabled).
- If the DBG pin is Low when the device exits Reset, the On-Chip Debugger automatically puts the device into DEBUG mode.

Exiting DEBUG Mode

The device exits DEBUG mode following any of the following operations:

- Clearing the DBGMODE bit in the OCD Control Register to 0.
- Power-On Reset
- Voltage Brownout reset

204

finish the interrupt service routine it may be in and return the BRK instruction. When the CPU returns to the BRK instruction it was previously looping on, it automatically sets the DBGMODE bit and enter DEBUG mode.

Software detects that the majority of the OCD commands are still disabled when the eZ8TM CPU is looping on a BRK instruction. The eZ8 CPU must be stopped and the part must be in DEBUG mode before these commands can be issued.

Breakpoints in Flash Memory

The BRK instruction is opcode 00H, which corresponds to the fully programmed state of a byte in Flash memory. To implement a Breakpoint, write 00H to the desired address, overwriting the current instruction. To remove a Breakpoint, the corresponding page of Flash memory must be erased and reprogrammed with the original data.

On-Chip Debugger Commands

The host communicates to the On-Chip Debugger by sending OCD commands using the DBG interface. During normal operation, only a subset of the OCD commands are available. In DEBUG mode, all OCD commands become available unless the user code and control registers are protected by programming the Read Protect Option Bit (RP). The Read Protect Option Bit prevents the code in memory from being read out of the 64K Series products. When this option is enabled, several of the OCD commands are disabled. Table 101 contains a summary of the On-Chip Debugger commands. Each OCD command is described in detail in the bulleted list following Table 101. Table 101 indicates those commands that operate when the device is not in DEBUG mode (normal operation) and those commands that are disabled by programming the Read Protect Option Bit.

Debug Command	Command Byte	Enabled when NOT in DEBUG mode?	Disabled by Read Protect Option Bit
Read OCD Revision	00H	Yes	-
Read OCD Status Register	02H	Yes	-
Read Runtime Counter	03H	-	-
Write OCD Control Register	04H	Yes	Cannot clear DBGMODE bit
Read OCD Control Register	05H	Yes	-

Table 101. On-Chip Debugger Commands

On-Chip Oscillator

Overview

The products in the 64K Series feature an on-chip oscillator for use with external crystals with frequencies from 32 kHz to 20 MHz. In addition, the oscillator can support external RC networks with oscillation frequencies up to 4 MHz or ceramic resonators with oscillation frequencies up to 20 MHz. This oscillator generates the primary system clock for the internal eZ8TM CPU and the majority of the on-chip peripherals. Alternatively, the X_{IN} input pin can also accept a CMOS-level clock input signal (32 kHz–20 MHz). If an external clock generator is used, the X_{OUT} pin must be left unconnected.

When configured for use with crystal oscillators or external clock drivers, the frequency of the signal on the X_{IN} input pin determines the frequency of the system clock (that is, no internal clock divider). In RC operation, the system clock is driven by a clock divider (divide by 2) to ensure 50% duty cycle.

Operating Modes

The 64K Series products support four different oscillator modes:

- On-chip oscillator configured for use with external RC networks (<4 MHz).
- Minimum power for use with very low frequency crystals (32 kHz to 1.0 MHz).
- Medium power for use with medium frequency crystals or ceramic resonators (0.5 MHz to 10.0 MHz).
- Maximum power for use with high frequency crystals or ceramic resonators (8.0 MHz to 20.0 MHz).

The oscillator mode is selected through user-programmable Option Bits. For more information, see Option Bits on page 195.

Crystal Oscillator Operation

Figure 40 on page 212 displays a recommended configuration for connection with an external fundamental-mode, parallel-resonant crystal operating at 20 MHz. Recommended 20 MHz crystal specifications are provided in Table 104 on page 212. Resistor R1 is optional and limits total power dissipation by the crystal. The printed circuit board layout

zilog 212

must add no more than 4 pF of stray capacitance to either the $X_{\rm IN}$ or $X_{\rm OUT}$ pins. If oscillation does not occur, reduce the values of capacitors C1 and C2 to decrease loading.

Figure 40. Recommended 20 MHz Crystal Oscillator Configuration

Parameter	Value	Units	Comments
Frequency	20	MHz	
Resonance	Parallel		
Mode	Fundamental		
Series Resistance (R _S)	25	Ω	Maximum
Load Capacitance (CL)	20	pF	Maximum
Shunt Capacitance (C ₀)	7	pF	Maximum
Drive Level	1	mW	Maximum

Table 104. Recommended Crystal Oscillator Specifications (20 MHz Operation)

Table 105. Absolute Maximum Ratings (Continued)

Parameter	Minimum	Maximum	Units	Notes
Maximum current into V _{DD} or out of V _{SS}		140	mA	
64-Pin LQFP Maximum Ratings at –40 °C to 70 °C				
Total power dissipation		1000	mW	
Maximum current into V_{DD} or out of V_{SS}		275	mA	
64-Pin LQFP Maximum Ratings at 70 °C to 125 °C				
Total power dissipation		540	mW	
Maximum current into V_{DD} or out of V_{SS}		150	mA	
44-Pin PLCC Maximum Ratings at –40 °C to 70 °C				
Total power dissipation		750	mW	
Maximum current into V_{DD} or out of V_{SS}		200	mA	
44-Pin PLCC Maximum Ratings at 70 °C to 125 °C				
Total power dissipation		295	mW	
Maximum current into V_{DD} or out of V_{SS}		83	mA	
44-Pin LQFP Maximum Ratings at –40 °C to 70 °C				
Total power dissipation		750	mW	
Maximum current into V_{DD} or out of V_{SS}		200	mA	
44-Pin LQFP Maximum Ratings at 70 °C to 125 °C				
Total power dissipation		360	mW	
Maximum current into V_{DD} or out of V_{SS}		100	mA	
40-Pin PDIP Maximum Ratings at –40 °C to 70 °C				
Total power dissipation		1000	mW	
Maximum current into V_{DD} or out of V_{SS}		275	mA	
40-Pin PDIP Maximum Ratings at 70 °C to 125 °C				
Total power dissipation		540	mW	
Maximum current into V_{DD} or out of V_{SS}		150	mA	
Note: This voltage applies to all pins except the following: VDD, AV RESET, and where noted otherwise.	DD, pins sup	porting analog	g input (Por	ts B and H),

216

7

DC Characteristics

Table 106 lists the DC characteristics of the 64K Series products. All voltages are referenced to V_{SS} , the primary system ground.

Table 106. DC Characteristics

		T _A = –40 °C to 125 °C					
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions	
V _{DD}	Supply Voltage	3.0	-	3.6	V		
V _{IL1}	Low Level Input Voltage	-0.3	-	0.3*V _{DD}	V	For all input pins except RESET, DBG, XIN	
V _{IL2}	Low Level Input Voltage	-0.3	-	0.2*V _{DD}	V	For RESET, DBG, and XIN.	
V _{IH1}	High Level Input Voltage	0.7*V _{DD}	-	5.5	V	Port A, C, D, E, F, and G pins.	
V _{IH2}	High Level Input Voltage	0.7*V _{DD}	-	V _{DD} +0.3	V	Port B and H pins.	
V _{IH3}	High Level Input Voltage	0.8*V _{DD}	-	V _{DD} +0.3	V	RESET, DBG, and XIN pins	
V _{OL1}	Low Level Output Voltage Standard Drive	-	_	0.4	V	I _{OL} = 2 mA; VDD = 3.0 V High Output Drive disabled.	
V _{OH1}	High Level Output Voltage Standard Drive	2.4	_	-	V	I _{OH} = -2 mA; VDD = 3.0 V High Output Drive disabled.	
V _{OL2}	Low Level Output Voltage High Drive	_	_	0.6	V	I_{OL} = 20 mA; VDD = 3.3 V High Output Drive enabled T_A = -40 °C to +70 °C	
V _{OH2}	High Level Output Voltage High Drive	2.4	_	_	V	I_{OH} = -20 mA; VDD = 3.3 V High Output Drive enabled; T_A = -40 °C to +70 °C	
V _{OL3}	Low Level Output Voltage High Drive	_	_	0.6	V	I_{OL} = 15 mA; VDD = 3.3 V High Output Drive enabled; T_A = +70 °C to +105 °C	
V _{OH3}	High Level Output Voltage High Drive	2.4	_	_	V	I_{OH} = 15 mA; VDD = 3.3 V High Output Drive enabled; T_A = +70 °C to +105 °C	
V _{RAM}	RAM Data Retention	0.7	-	-	V		
IIL	Input Leakage Current	-5	_	+5	μA	V _{DD} = 3.6 V; V _{IN} = VDD or VSS ¹	
I _{TL}	Tri-State Leakage Current	-5	-	+5	μA	V _{DD} = 3.6 V	

zilog

Figure 66. 68-Lead Plastic Lead Chip Carrier Package (PLCC)

Figure 66 displays the 68-pin Plastic Lead Chip Carrier (PLCC) package available for the Z8X1622, Z8X2422, Z8X3222, Z8X4822, and Z8X6422 devices.

268

For technical and customer support, hardware and software development tools, refer to the $Zilog^{\mathbb{R}}$ website at <u>www.zilog.com</u>. The latest released version of ZDS can be downloaded from this website.

Part Number Suffix Designations

zilog

279

eZ8 CPU instruction classes 245 eZ8 CPU instruction notation 242 eZ8 CPU instruction set 241 eZ8 CPU instruction summary 250

F

FCTL register 190 features, Z8 Encore! 1 first opcode map 263 FLAGS 244 flags register 244 flash controller 4 option bit address space 195 option bit configuration - reset 195 program memory address 0001H 197 flash memory arrangement 184 byte programming 187 code protection 186 configurations 183 control register definitions 190 controller bypass 189 electrical characteristics and timing 228 flash control register 190 flash status register 190 frequency high and low byte registers 192 mass erase 189 operation 185 operation timing 186 page erase 188 page select register 191 FPS register 191 FSTAT register 190

G

gated mode 95 general-purpose I/O 57 GPIO 4, 57 alternate functions 59 architecture 58 control register definitions 61 input data sample timing 232 interrupts 60 port A-H address registers 61 port A-H alternate function sub-registers 63 port A-H control registers 62 port A-H data direction sub-registers 63 port A-H high drive enable sub-registers 64 port A-H input data registers 66 port A-H output control sub-registers 64 port A-H output data registers 66 port A-H output data registers 66 port A-H Stop Mode Recovery sub-registers 65 port availability by device 57 port input timing 232 port output timing 233

Η

H 244 HALT 247 halt mode 56, 247 hexadecimal number prefix/suffix 244

I2C 4 10-bit address read transaction 154 10-bit address transaction 151 10-bit addressed slave data transfer format 151 10-bit receive data format 154 7-bit address transaction 149 7-bit address, reading a transaction 153 7-bit addressed slave data transfer format 148, 149, 150 7-bit receive data transfer format 153 baud high and low byte registers 160, 161, 163 C status register 157 control register definitions 156 controller 143 controller signals 14 interrupts 145 operation 144 SDA and SCL signals 145 stop and start conditions 147 I2CBRH register 160, 161, 163