

- - -

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	46
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f4822vs020sc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Information Area	21
Register File Address Map 2	23
Control Register Summary 2	28
Reset and Stop Mode Recovery 4	47
Overview	
Reset Types 4 Reset Sources 4	
Power-On Reset	
Voltage Brownout Reset 5	
Watchdog Timer Reset 5	
External Pin Reset	
On-Chip Debugger Initiated Reset	
Stop Mode Recovery	
Stop Mode Recovery Using a GPIO Port Pin Transition HALT	
Low-Power Modes	
Overview 5 STOP Mode 5	
HALT Mode	
General-Purpose I/O	
Overview	
GPIO Port Availability By Device	
Architecture	
GPIO Alternate Functions	59
GPIO Interrupts	
GPIO Control Register Definitions	
Port A–H Address Registers 6 Port A–H Control Registers 6	
Port A–H Input Data Registers	
Port A–H Output Data Register	
Interrupt Controller	67
Overview	67
	67
Architecture	69
Operation	69

zilog

Introduction

Zilog's Z8 Encore! XP MCU family of products are a line of Zilog[®] microcontroller products based upon the 8-bit eZ8 CPU. The Z8 Encore! XP[®] 64K Series Flash Microcontrollers, hereafter referred to collectively as the Z8 Encore! XP or the 64K Series adds Flash memory to Zilog's extensive line of 8-bit microcontrollers. The Flash in-circuit programming capability allows for faster development time and program changes in the field. The new eZ8TM CPU is upward compatible with existing Z8[®] instructions. The rich-peripheral set of the Z8 Encore! XP makes it suitable for a variety of applications including motor control, security systems, home appliances, personal electronic devices, and sensors.

Features

The features of Z8 Encore! XP 64K Series Flash Microcontrollers include:

- 20 MHz eZ8 CPU
- Up to 64 KB Flash with in-circuit programming capability
- Up to 4 KB register RAM
- 12-channel, 10-bit Analog-to-Digital Converter (ADC)
- Two full-duplex 9-bit UARTs with bus transceiver Driver Enable control
- Inter-integrated circuit (I²C)
- Serial Peripheral Interface (SPI)
- Two Infrared Data Association (IrDA)-compliant infrared encoder/decoders
- Up to four 16-bit timers with capture, compare, and PWM capability
- Watchdog Timer (WDT) with internal RC oscillator
- Three-channel DMA
- Up to 60 input/output (I/O) pins
- 24 interrupts with configurable priority
- On-Chip Debugger
- Voltage Brownout (VBO) Protection
- Power-On Reset (POR)
- Operating voltage of 3.0 V to 3.6 V with 5 V-tolerant inputs
- 0 °C to +70 °C, -40 °C to +105 °C, and -40 °C to +125 °C operating temperature ranges

Part Selection Guide

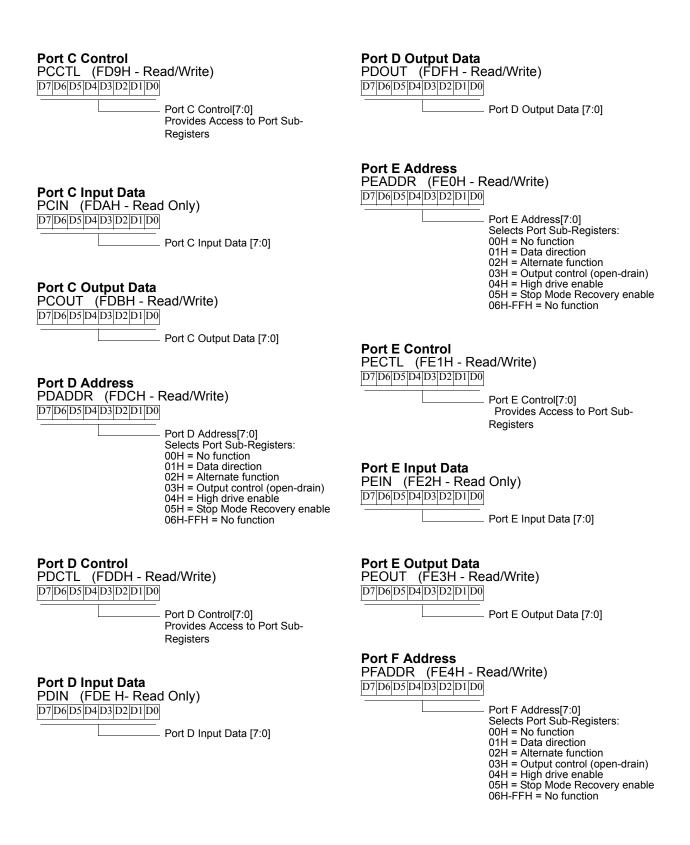
Table 1 identifies the basic features and package styles available for each device within the Z8 Encore! XP product line.

Table 1. Z8 Encore! XP 64K Series Flash Microcontrollers Part Selection Guide

Part Number	Flash (KB)	RAM (KB)	I/O	16-bit Timers with PWM	ADC Inputs	UARTs with IrDA	l ² C	SPI		64/68-pin packages	80-pin package
Z8F1621	16	2	31	3	8	2	1	1	Х		
Z8F1622	16	2	46	4	12	2	1	1		Х	
Z8F2421	24	2	31	3	8	2	1	1	Х		
Z8F2422	24	2	46	4	12	2	1	1		Х	
Z8F3221	32	2	31	3	8	2	1	1	Х		
Z8F3222	32	2	46	4	12	2	1	1		Х	
Z8F4821	48	4	31	3	8	2	1	1	Х		
Z8F4822	48	4	46	4	12	2	1	1		Х	
Z8F4823	48	4	60	4	12	2	1	1			Х
Z8F6421	64	4	31	3	8	2	1	1	Х		
Z8F6422	64	4	46	4	12	2	1	1		Х	
Z8F6423	64	4	60	4	12	2	1	1			Х
Die Form Sales	Contact Zilog [®]										

zilog

Program Memory


The eZ8[™] CPU supports 64 KB of Program Memory address space. The Z8 Encore! XP 64K Series Flash Microcontrollers contains 16 KB to 64 KB of on-chip Flash in the Program Memory address space, depending upon the device. Reading from Program Memory addresses outside the available Flash memory addresses returns FFH. Writing to these unimplemented Program Memory addresses produces no effect. Table 5 describes the Program Memory maps for the 64K Series products.

Program Memory Address	(Hex) Function
Z8F162x Products	
0000-0001	Option Bits
0002-0003	Reset Vector
0004-0005	WDT Interrupt Vector
0006-0007	Illegal Instruction Trap
0008-0037	Interrupt Vectors*
0038-3FFF	Program Memory
Z8F242x Products	
0000-0001	Option Bits
0002-0003	Reset Vector
0004-0005	WDT Interrupt Vector
0006-0007	Illegal Instruction Trap
0008-0037	Interrupt Vectors*
0038-5FFF	Program Memory
Z8F322x Products	
0000-0001	Option Bits
0002-0003	Reset Vector
0004-0005	WDT Interrupt Vector
0006-0007	Illegal Instruction Trap
0008-0037	Interrupt Vectors*
0038-7FFF	Program Memory
Z8F482x Products	

Table 5. Z8 Encore! XP 64K Series Flash Microcontrollers Program Memory Maps

HALT Mode

Execution of the eZ8 CPU's HALT instruction places the device into HALT mode. In HALT mode, the operating characteristics are:

- Primary crystal oscillator is enabled and continues to operate.
- System clock is enabled and continues to operate.
- eZ8 CPU is stopped.
- Program Counter stops incrementing.
- Watchdog Timer's internal RC oscillator continues to operate.
- The Watchdog Timer continues to operate, if enabled.
- All other on-chip peripherals continue to operate.

The eZ8 CPU can be brought out of HALT mode by any of the following operations:

- Interrupt
- Watchdog Timer time-out (interrupt or reset)
- Power-On Reset
- Voltage Brownout Reset
- External **RESET** pin assertion

To minimize current in HALT mode, all GPIO pins which are configured as inputs must be driven to one of the supply rails (V_{CC} or GND).

GPIO Control Register Definitions

Four registers for each Port provide access to GPIO control, input data, and output data. Table 13 lists these Port registers. Use the Port A–H Address and Control registers together to provide access to sub-registers for Port configuration and control.

Port Register Mnemonic	Port Register Name
PxADDR	Port A–H Address Register (Selects sub-registers)
PxCTL	Port A–H Control Register (Provides access to sub-registers)
PxIN	Port A–H Input Data Register
PxOUT	Port A–H Output Data Register
Port Sub-Register Mnemonic	Port Register Name
PxDD	Data Direction
PxDD PxAF	Data Direction Alternate Function
- <u></u>	
PxAF	Alternate Function

Table 13. GPIO Port Registers and Sub-Registers

Port A–H Address Registers

The Port A–H Address registers select the GPIO Port functionality accessible through the Port A–H Control registers. The Port A–H Address and Control registers combine to provide access to all GPIO Port control (Table 14).

BITS	7	6	5	4	3	2	1	0	
FIELD	PADDR[7:0]								
RESET	00H								
R/W	R/W								
ADDR		FD0	H, FD4H, F	D8H, FDCH	, FE0H, FE4	H, FE8H, FI	ECH		

zilog

5. Write the Watchdog Timer Reload Low Byte register (WDTL).

All steps of the Watchdog Timer Reload Unlock sequence must be written in the order just listed. There must be no other register writes between each of these operations. If a register write occurs, the lock state machine resets and no further writes can occur, unless the sequence is restarted. The value in the Watchdog Timer Reload registers is loaded into the counter when the Watchdog Timer is first enabled and every time a WDT instruction is executed.

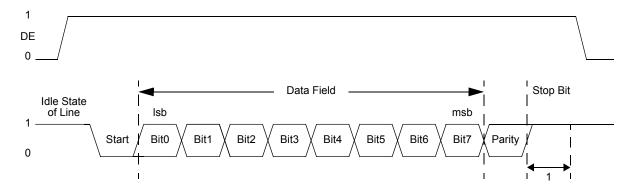
Watchdog Timer Control Register Definitions

Watchdog Timer Control Register

The Watchdog Timer Control (WDTCTL) register (Table 48) is a Read-Only register that indicates the source of the most recent Reset event, indicates a Stop Mode Recovery event, and indicates a Watchdog Timer time-out. Reading this register resets the upper four bits to 0.

Writing the 55H, AAH unlock sequence to the Watchdog Timer Control (WDTCTL) register address unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL register address produce no effect on the bits in the WDTCTL register. The locking mechanism prevents spurious writes to the Reload registers.

BITS	7	6	5	4	3	2	1	0
FIELD	POR	STOP	WDT	EXT	Reserved			SM
RESET	See d	lescriptions	below	0				
R/W		R						
ADDR				FF	0H			


Table 48. V	Natchdog '	Timer Control	Register	(WDTCTL)
-------------	------------	---------------	----------	----------

Reset or Stop Mode Recovery Event	POR	STOP	WDT	EXT
Power-On Reset	1	0	0	0
Reset using RESET pin assertion	0	0	0	1
Reset using Watchdog Timer time-out	0	0	1	0
Reset using the On-Chip Debugger (OCDCTL[1] set to 1)	1	0	0	0
Reset from STOP Mode using DBG Pin driven Low	1	0	0	0
Stop Mode Recovery using GPIO pin transition	0	1	0	0
Stop Mode Recovery using Watchdog Timer time-out	0	1	1	0

100

zilog 1

when a byte is written to the UART Transmit Data register. The Driver Enable signal asserts at least one UART bit period and no greater than two UART bit periods before the Start bit is transmitted. This timing allows a setup time to enable the transceiver. The Driver Enable signal deasserts one system clock period after the last Stop bit is transmitted. This one system clock delay allows both time for data to clear the transceiver before disabling it, as well as the ability to determine if another character follows the current character. In the event of back to back characters (new data must be written to the Transmit Data Register before the previous character is completely transmitted) the DE signal is not deasserted between characters. The DEPOL bit in the UART Control Register 1 sets the polarity of the Driver Enable signal.

Figure 17. UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity)

The Driver Enable to Start bit setup time is calculated as follows:

$$\left(\frac{1}{\text{Baud Rate (Hz)}}\right) \le \text{DE to Start Bit Setup Time (s)} \le \left(\frac{2}{\text{Baud Rate (Hz)}}\right)$$

UART Interrupts

The UART features separate interrupts for the transmitter and the receiver. In addition, when the UART primary functionality is disabled, the Baud Rate Generator can also function as a basic timer with interrupt capability.

Transmitter Interrupts

The transmitter generates a single interrupt when the Transmit Data Register Empty bit (TDRE) is set to 1. This indicates that the transmitter is ready to accept new data for transmission. The TDRE interrupt occurs after the Transmit shift register has shifted the first bit of data out. At this point, the Transmit Data register may be written with the next character to send. This provides 7 bit periods of latency to load the Transmit Data register before the Transmit shift register completes shifting the current character. Writing to the UART Transmit Data register clears the TDRE bit to 0.

18.432 MHz System Clock

122

Table 61. UART Baud Rates

20.0 MHz System Clock

20.0 Mil 12 Oy3	Certi Olock			10.452 10112	Oystern Oloc	n	
Desired Rate	BRG Divisor	Actual Rate	Error	Desired Rate	BRG Divisor	Actual Rate	Error
(kHz)	(Decimal)	(kHz)	(%)	(kHz)	(Decimal)	(kHz)	(%)
1250.0	1	1250.0	0.00	1250.0	1	1152.0	-7.84%
625.0	2	625.0	0.00	625.0	2	576.0	-7.84%
250.0	5	250.0	0.00	250.0	5	230.4	-7.84%
115.2	11	113.6	-1.36	115.2	10	115.2	0.00
57.6	22	56.8	-1.36	57.6	20	57.6	0.00
38.4	33	37.9	-1.36	38.4	30	38.4	0.00
19.2	65	19.2	0.16	19.2	60	19.2	0.00
9.60	130	9.62	0.16	9.60	120	9.60	0.00
4.80	260	4.81	0.16	4.80	240	4.80	0.00
2.40	521	2.40	-0.03	2.40	480	2.40	0.00
1.20	1042	1.20	-0.03	1.20	960	1.20	0.00
0.60	2083	0.60	0.02	0.60	1920	0.60	0.00
0.30	4167	0.30	-0.01	0.30	3840	0.30	0.00
	intern Clask			44.0500 MU	- 0	-l-	

16.667 MHz System Clock

	0.30	-0.01	0.30	3840	
k			11.0592 MHz	System Clo	ck
sor	Actual Rate	Error	Desired Rate	BRG Divisor	Ac
l)	(kHz)	(%)	(kHz)	(Decimal)	
	1041.69	-16.67	1250.0	N/A	
	520.8	-16.67	625.0	1	
	260.4	4.17	250.0	3	
	115.7	0.47	115.2	6	

4.80

2.40

	Desired	BRG		
ror	Rate	Divisor	Actual Rate	Error
%)	(kHz)	(Decimal)	(kHz)	(%)
6.67	1250.0	N/A	N/A	N/A
5.67	625.0	1	691.2	10.59
.17	250.0	3	230.4	-7.84
.47	115.2	6	115.2	0.00
.47	57.6	12	57.6	0.00
.47	38.4	18	38.4	0.00
.47	19.2	36	19.2	0.00
.45	9.60	72	9.60	0.00

144

288

4.80

2.40

Desired Rate	BRG Divisor	Actual Rate	Error
(kHz)	(Decimal)	(kHz)	(%)
1250.0	1	1041.69	-16.67
625.0	2	520.8	-16.67
250.0	4	260.4	4.17
115.2	9	115.7	0.47
57.6	18	57.87	0.47
38.4	27	38.6	0.47
19.2	54	19.3	0.47
9.60	109	9.56	-0.45
4.80	217	4.80	-0.83

434

2.40

0.01

2.40

0.00

0.00

Operation

When the Infrared Endec is enabled, the transmit data from the associated on-chip UART is encoded as digital signals in accordance with the IrDA standard and output to the infrared transceiver via the TXD pin. Likewise, data received from the infrared transceiver is passed to the Infrared Endec via the RXD pin, decoded by the Infrared Endec, and then passed to the UART. Communication is half-duplex, which means simultaneous data transmission and reception is not allowed.

The baud rate is set by the UART's Baud Rate Generator and supports IrDA standard baud rates from 9600 baud to 115.2 Kbaud. Higher baud rates are possible, but do not meet IrDA specifications. The UART must be enabled to use the Infrared Endec. The Infrared Endec data rate is calculated using the following equation:

Infrared Data Rate (bits/s)	_	System Clock Frequency (Hz)
Inflated Data Rate (bits/s) -	-	$16 \times \text{UART}$ Baud Rate Divisor Value

Transmitting IrDA Data

The data to be transmitted using the infrared transceiver is first sent to the UART. The UART's transmit signal (TXD) and baud rate clock are used by the IrDA to generate the modulation signal (IR_TXD) that drives the infrared transceiver. Each UART/Infrared data bit is 16-clock wide. If the data to be transmitted is 1, the IR_TXD signal remains low for the full 16-clock period. If the data to be transmitted is 0, a 3-clock high pulse is output following a 7-clock low period. After the 3-clock high pulse, a 6-clock low pulse is output to complete the full 16-clock data period. Figure 20 displays IrDA data transmission. When the Infrared Endec is enabled, the UART's TXD signal is internal to the 64K Series products while the IR_TXD signal is output through the TXD pin.

140

 $0 = \overline{SS}$ input pin is asserted (Low). $1 = \overline{SS}$ input is not asserted (High). If SPI enabled as a Master, this bit is not applicable.

SPI Mode Register

The SPI Mode register (Table 66) configures the character bit width and the direction and value of the \overline{SS} pin.

Table 6	66. SPI	Mode	Register	(SPIMODE)
				(••••••••••••••••••••••••••••••••••••••

BITS	7	6	5	4	3	2	1	0
FIELD	Rese	erved	DIAG NUMBITS[2:0]			SSIO	SSV	
RESET		0						
R/W	R R/W							
ADDR				F6	3H			

Reserved—Must be 0.

DIAG-Diagnostic Mode Control bit

This bit is for SPI diagnostics. Setting this bit allows the Baud Rate Generator value to be read using the SPIBRH and SPIBRL register locations.

- 0 = Reading SPIBRH, SPIBRL returns the value in the SPIBRH and SPIBRL registers
- 1 = Reading SPIBRH returns bits [15:8] of the SPI Baud Rate Generator; and reading SPIBRL returns bits [7:0] of the SPI Baud Rate Counter. The Baud Rate Counter High and Low byte values are not buffered.

Caution: *Exercise caution if reading the values while the BRG is counting.*

NUMBITS[2:0]—Number of Data Bits Per Character to Transfer

This field contains the number of bits to shift for each character transfer. For information on valid bit positions when the character length is less than 8-bits, see SPI Data Register description.

000 = 8 bits 001 = 1 bit 010 = 2 bits 011 = 3 bits 100 = 4 bits 101 = 5 bits 110 = 6 bits 111 = 7 bits

0101 = ADC Analog Inputs 0-5 updated. 0110 = ADC Analog Inputs 0-6 updated. 0111 = ADC Analog Inputs 0-7 updated. 1000 = ADC Analog Inputs 0-8 updated. 1001 = ADC Analog Inputs 0-9 updated. 1010 = ADC Analog Inputs 0-10 updated. 1011 = ADC Analog Inputs 0-11 updated. 1100-1111 = Reserved.

DMA Status Register

The DMA Status register (Table 85 on page 173) indicates the DMA channel that generated the interrupt and the ADC Analog Input that is currently undergoing conversion. Reads from this register reset the Interrupt Request Indicator bits (IRQA, IRQ1, and IRQ0) to 0. Therefore, software interrupt service routines that read this register must process all three interrupt sources from the DMA.

BITS	7	6	5	4	3	2	1	0	
FIELD	CADC[3:0]				Reserved	IRQA	IRQ1	IRQ0	
RESET		0							
R/W		R							
ADDR		FBFH							

Table 85. DMA_ADC Status Register (DMAA_STAT)

CADC[3:0]—Current ADC Analog Input

This field identifies the Analog Input that the ADC is currently converting.

Reserved

This bit is reserved and must be 0.

IRQA—DMA_ADC Interrupt Request Indicator

This bit is automatically reset to 0 each time a read from this register occurs.

 $0 = DMA_ADC$ is not the source of the interrupt from the DMA Controller.

1 = DMA_ADC completed transfer of data from the last ADC Analog Input and generated an interrupt.

IRQ1—DMA1 Interrupt Request Indicator

This bit is automatically reset to 0 each time a read from this register occurs.

0 = DMA1 is not the source of the interrupt from the DMA Controller.

1 = DMA1 completed transfer of data to/from the End Address and generated an interrupt.

IRQ0—DMA0 Interrupt Request Indicator

This bit is automatically reset to 0 each time a read from this register occurs.

Analog-to-Digital Converter

Overview

The Analog-to-Digital Converter (ADC) converts an analog input signal to a 10-bit binary number. The features of the sigma-delta ADC include:

- 12 analog input sources are multiplexed with general-purpose I/O ports
- Interrupt upon conversion complete
- Internal voltage reference generator
- Direct Memory Access (DMA) controller can automatically initiate data conversion and transfer of the data from 1 to 12 of the analog inputs

Architecture

Figure 34 displays the three major functional blocks (converter, analog multiplexer, and voltage reference generator) of the ADC. The ADC converts an analog input signal to its digital representation. The 12-input analog multiplexer selects one of the 12 analog input sources. The ADC requires an input reference voltage for the conversion. The voltage reference for the conversion may be input through the external VREF pin or generated internally by the voltage reference generator.

Flash Sector Protect Register

The Flash Sector Protect register (Table 95) protects Flash memory sectors from being programmed or erased from user code. The Flash Sector Protect register shares its Register File address with the Page Select register. The Flash Sector protect register can be accessed only after writing the Flash Control register with 5EH.

User code can only write bits in this register to 1 (bits cannot be cleared to 0 by user code).

Table 95. Flash Sector Protect Register (FPROT)

BITS	7	6	5	4	3	2	1	0	
FIELD	SECT7	SECT6	SECT5	SECT4	SECT3	SECT2	SECT1	SECT0	
RESET		0							
R/W	R/W1								
ADDR	FF9H								
Note: R/W	1 = Register i	s accessible f	or Read oper	ations. Regist	er can be wri	tten to 1 only	(via user code	e).	

SECT*n*—Sector Protect

0 = Sector *n* can be programmed or erased from user code.

1 =Sector *n* is protected and cannot be programmed or erased from user code.

* User code can only write bits from 0 to 1.

Flash Frequency High and Low Byte Registers

The Flash Frequency High and Low Byte registers (Table 96 and Table 97) combine to form a 16-bit value, FFREQ, to control timing for Flash program and erase operations. The 16-bit Flash Frequency registers must be written with the system clock frequency in kHz for Program and Erase operations. Calculate the Flash Frequency value using the following equation:

 $FFREQ[15:0] = \{FFREQH[7:0], FFREQL[7:0]\} = \frac{System Clock Frequency}{1000}$

Caution: Flash programming and erasure is not supported for system clock frequencies below 20 kHz, above 20 MHz, or outside of the valid operating frequency range for the device. The Flash Frequency High and Low Byte registers must be loaded with the correct value to insure proper program and erase times.

• Write OCD Control Register (04H)—The Write OCD Control Register command writes the data that follows to the OCDCTL register. When the Read Protect Option Bit is enabled, the DBGMODE bit (OCDCTL[7]) can only be set to 1, it cannot be cleared to 0 and the only method of putting the device back into normal operating mode is to reset the device.

```
DBG \leftarrow 04H
DBG \leftarrow OCDCTL[7:0]
```

• **Read OCD Control Register (05H)**—The Read OCD Control Register command reads the value of the OCDCTL register.

```
DBG \leftarrow 05H
DBG \rightarrow OCDCTL[7:0]
```

• Write Program Counter (06H)—The Write Program Counter command writes the data that follows to the eZ8 CPU's Program Counter (PC). If the device is not in DEBUG mode or if the Read Protect Option Bit is enabled, the Program Counter (PC) values are discarded.

```
DBG ← 06H
DBG ← ProgramCounter[15:8]
DBG ← ProgramCounter[7:0]
```

• **Read Program Counter (07H)**—The Read Program Counter command reads the value in the eZ8 CPU's Program Counter (PC). If the device is not in DEBUG mode or if the Read Protect Option Bit is enabled, this command returns FFFFH.

```
DBG \leftarrow 07H
DBG \rightarrow ProgramCounter[15:8]
DBG \rightarrow ProgramCounter[7:0]
```

• Write Register (08H)—The Write Register command writes data to the Register File. Data can be written 1-256 bytes at a time (256 bytes can be written by setting size to zero). If the device is not in DEBUG mode, the address and data values are discarded. If the Read Protect Option Bit is enabled, then only writes to the Flash Control Registers are allowed and all other register write data values are discarded.

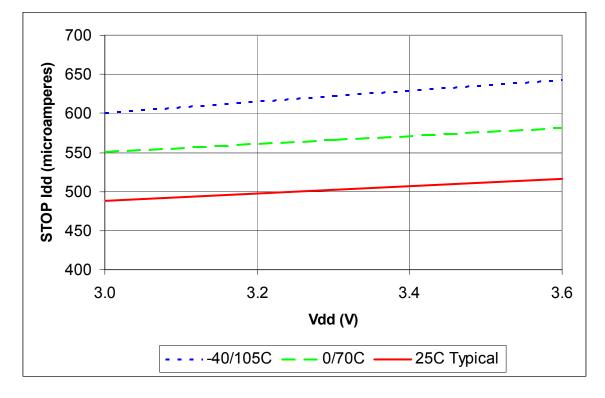
```
DBG \leftarrow 08H
DBG \leftarrow {4'h0,Register Address[11:8]}
DBG \leftarrow Register Address[7:0]
DBG \leftarrow Size[7:0]
DBG \leftarrow 1-256 data bytes
```

• **Read Register (09H)**—The Read Register command reads data from the Register File. Data can be read 1-256 bytes at a time (256 bytes can be read by setting size to zero). If the device is not in DEBUG mode or if the Read Protect Option Bit is enabled, this command returns FFH for all the data values.

```
DBG \leftarrow 09H
DBG \leftarrow {4'h0,Register Address[11:8]
DBG \leftarrow Register Address[7:0]
```


y	219
---	-----

		T _A = -40 °	T _A = –40 °C to 125 °C			
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
I _{DDS}	Stop Mode Supply Current	_	520	700	μΑ	V _{DD} = 3.6 V, VBO and WDT Enabled
	(See Figure 47 and			650		V _{DD} = 3.3 V
	Figure 48) GPIO pins configured as outputs	_	10	25	μΑ	V_{DD} = 3.6 V, T_A = 0 to 70 °C VBO
						Disabled
				20		WDT
						Enabled V _{DD} = 3.3 V
		-		80	μΑ	V _{DD} = 3.6 V, T _A = −40 to +105 °C
				70		VBO
				70		Disabled WDT
						Enabled V _{DD} = 3.3 V
		_		250	μΑ	V _{DD} = 3.6 V, T _A = -40 to +125 °C
						VBO
				150		Disabled
						WDT
						V _{DD} = 3.3 V

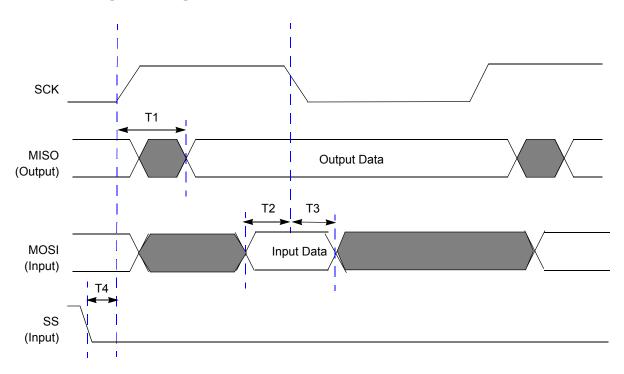

Table 106. DC Characteristics (Continued)

¹This condition excludes all pins that have on-chip pull-ups, when driven Low.

²These values are provided for design guidance only and are not tested in production.

zilog 224

Figure 47 displays the maximum current consumption in STOP mode with the VBO and Watchdog Timer enabled versus the power supply voltage. All GPIO pins are configured as outputs and driven High.


Figure 47. Maximum STOP Mode Idd with VBO enabled versus Power Supply Voltage

236

SPI Slave Mode Timing

Figure 54 and Table 118 provide timing information for the SPI slave mode pins. Timing is shown with SCK rising edge used to source MISO output data, SCK falling edge used to sample MOSI input data.

Figure 54. SPI Slave Mode Timing

Table 118. SPI Slave Mode Timing

		Delay (ns)			
Parameter	Abbreviation	Minimum	Maximum		
SPI Slave					
T ₁	SCK (transmit edge) to MISO output Valid Delay	2 * Xin period	3 * Xin period + 20 nsec		
T ₂	MOSI input to SCK (receive edge) Setup Time	0			
T ₃	MOSI input to SCK (receive edge) Hold Time	3 * Xin period			
T ₄	SS input assertion to SCK setup	1 * Xin period			