
Zilog - Z16FMC32AG20EG Datasheet

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application
Specific: Tailored Solutions for Precision and
Performance

Embedded - Microcontrollers - Application Specific
represents a category of microcontrollers designed with
unique features and capabilities tailored to specific
application needs. Unlike general-purpose
microcontrollers, application-specific microcontrollers are
optimized for particular tasks, offering enhanced
performance, efficiency, and functionality to meet the
demands of specialized applications.

What Are Embedded - Microcontrollers -
Application Specific?

Application-specific microcontrollers are engineered to
excel in particular roles or environments, making them
ideal for applications where general-purpose
microcontrollers might fall short. These microcontrollers
integrate custom features and peripherals that align with
the specific requirements of an application, such as
specialized communication protocols, real-time processing
capabilities, or unique power management needs. By
focusing on particular use cases, they provide solutions
that are both efficient and effective, reducing the need for
additional components and simplifying system design.

Applications of Embedded - Microcontrollers
- Application Specific

The versatility of application-specific microcontrollers
enables their use across a wide range of industries and
applications. In automotive systems, these
microcontrollers are used for tasks like engine control,
advanced driver assistance systems (ADAS), and in-vehicle
communication. In industrial automation, they control
machinery, manage data acquisition, and handle complex
sensor interfacing. Consumer electronics benefit from
these microcontrollers in applications such as smart home
devices, wearable technology, and advanced audio
equipment. Additionally, in medical devices, they provide
precise control for diagnostic and therapeutic equipment,
ensuring reliability and accuracy in critical situations.

Common Subcategories

Within the Embedded - Microcontrollers - Application
Specific category, several subcategories address different
application needs. Automotive Microcontrollers are
designed to meet stringent automotive standards and
provide robust performance in harsh conditions.
Industrial Microcontrollers offer features tailored for
automation, including real-time processing and robust I/O
capabilities. Consumer Electronics Microcontrollers
are optimized for low power consumption and integration
with various sensors and communication modules.
Medical Microcontrollers emphasize reliability,
precision, and compliance with medical device standards.

Details

Product Status Active

Applications Motor Control

Core Processor Zneo™

Program Memory Type FLASH (32kB)

Controller Series Z16FMC

RAM Size 4K x 8

Interface I²C, IrDA, LIN, SPI, UART/USART

Number of I/O 46

Voltage - Supply 2.7V ~ 3.6V

Operating Temperature -40°C ~ 105°C

Mounting Type Surface Mount

Package / Case 64-LQFP Exposed Pad

Supplier Device Package 64-LQFP

Purchase URL https://www.e-xfl.com/product-detail/zilog/z16fmc32ag20eg

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/z16fmc32ag20eg-4512120
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific

Z16FMC Series Motor Control MCUs
Product Specification

52
Master Interrupt Enable

The master interrupt enable bit in the flag register globally enables or disables interrupts.
This bit has been moved to the flag register (bit 0). Thus, anytime the register is loaded, it
changes the state of the IRQE bit. For the IRET instruction the bit is set based on what has
been pushed on the stack.

Interrupts are globally enabled by any of the following actions:

• Execution of an Enable Interrupt (EI) instruction

• Writing 1 to the IRQE bit in the flag register

Interrupts are globally disabled by any of the following actions:

• Execution of a Disable Interrupt (DI) instruction

• CPU acknowledgement of an interrupt service request from the interrupt controller

• Writing 0 to the IRQE bit in the flag register

• Reset

• Execution of a TRAP instruction

• All System Exceptions

Interrupt Vectors and Priority

The interrupt controller supports three levels of interrupt priority. Level 3 is the highest
priority, Level 2 is the second highest priority, and Level 1 is the lowest priority. If all the
interrupts are enabled with identical interrupt priority (for example, all interrupts enabled
as Level 2 interrupts), the interrupt priority is assigned from highest to lowest as specified
in Table 27 on page 49. Level 3 interrupts always have higher priority than Level 2 inter-
rupts, which in turn, always have higher priority than Level 1 interrupts. Within each inter-
rupt priority levels (Level 1, Level 2, or Level 3), priority is assigned as specified in
Table 27. Reset and System Exceptions have the highest priority.

System Exceptions

System Exceptions are generated for stack overflow, illegal instructions, divide-by-zero,
and divide overflow, etc. The System Exceptions are not affected by the IRQE and share a
single vector.

Each exception has a bit in the system exception status register. When a system exception
occurs it pushes the program counter and the flags on the stack, fetches the system excep-
tion vector from 000008H (similar to a IRQ) and the bit associated with that exception is
set in the status register. Additional exceptions from the same source are blocked until the
status bit of the particular exception is cleared by writing 1 to that status bit. Other types of
PS028703-0611 P R E L I M I N A R Y Interrupt Controller

Z16FMC Series Motor Control MCUs
Product Specification

67
TRIGGERED ONE-SHOT Mode

In TRIGGERED ONE-SHOT mode, the timer operates as follows:

1. The timer is non-active until a trigger is received. The timer trigger is taken from the
timer input pin. The TPOL bit in the Timer Control 1 Register selects whether the trig-
ger occurs on the rising edge or the falling edge of the timer input signal.

2. Following the trigger event, the timer counts system clocks up to the 16-bit Reload
value stored in the timer reload high and low byte registers.

3. After reaching the Reload value, the timer outputs a pulse on the timer output pin,
generates an interrupt and resets the count value in the timer high and low byte
registers to 0001H. The duration of the output pulse is a single system clock. The
TPOL bit also sets the polarity of the output pulse.

4. The timer now idles until the next trigger event. Trigger events, which occur while the
timer is responding to a previous trigger is ignored.

Observe the following steps to configure timer 0 in TRIGGERED ONE-SHOT mode and
initiate operation:

1. Write to the timer control registers to:

– Disable the timer

– Configure the timer for TRIGGERED ONE-SHOT mode

– Set the prescale value

– Set the initial output level (High or Low) via the TPOL bit for the timer output
alternate function

– Set the INTERRUPT mode

2. Write to the timer high and low byte registers to set the starting count value.

3. Write to the timer reload high and low byte registers to set the reload value.

4. Enable the timer interrupt, if required and set the timer interrupt priority by writing to
the relevant interrupt registers.

5. When using the timer output function, configure the associated GPIO port pin for the
timer output alternate function.

6. Write to the Timer Control 1 Register to enable the timer. Counting does not start until
the appropriate input transition occurs.

The timer period is calculated by the following equation (Start Value = 1):

One-Shot Mode Time-Out Period(s) =
(Reload Value – Start Value + 1) x Prescale

System Clock Frequency (Hz)
PS028703-0611 P R E L I M I N A R Y Timers

Z16FMC Series Motor Control MCUs
Product Specification

144
5.5296 MHz System Clock 3.579545 MHz System Clock

Desired
Rate
(kHz)

BRG Divisor
(Decimal)

Actual Rate
(kHz)

Error
(%)

Desired
Rate
(kHz)

BRG Divisor
(Decimal)

Actual Rate
(kHz)

Error
(%)

1250.0 N/A N/A N/A 1250.0 N/A N/A N/A

625.0 N/A N/A N/A 625.0 N/A N/A N/A

250.0 1 345.6 38.24 250.0 1 223.72 –10.51

115.2 3 115.2 0.00 115.2 2 111.9 –2.90

57.6 6 57.6 0.00 57.6 4 55.9 –2.90

38.4 9 38.4 0.00 38.4 6 37.3 –2.90

19.2 18 19.2 0.00 19.2 12 18.6 –2.90

9.60 36 9.60 0.00 9.60 23 9.73 1.32

4.80 72 4.80 0.00 4.80 47 4.76 –0.83

2.40 144 2.40 0.00 2.40 93 2.41 0.23

1.20 288 1.20 0.00 1.20 186 1.20 0.23

0.60 576 0.60 0.00 0.60 373 0.60 –0.04

0.30 1152 0.30 0.00 0.30 746 0.30 –0.04

1.8432 MHz System Clock

Desired
Rate
(kHz)

BRG Divisor
(Decimal)

Actual Rate
(kHz)

Error
(%)

1250.0 N/A N/A N/A

625.0 N/A N/A N/A

250.0 N/A N/A N/A

115.2 1 115.2 0.00

57.6 2 57.6 0.00

38.4 3 38.4 0.00

19.2 6 19.2 0.00

9.60 12 9.60 0.00

4.80 24 4.80 0.00

2.40 48 2.40 0.00

1.20 96 1.20 0.00

0.60 192 0.60 0.00

0.30 384 0.30 0.00

Table 83. LIN-UART Baud Rates (Continued)
PS028703-0611 P R E L I M I N A R Y LIN-UART

Z16FMC Series Motor Control MCUs
Product Specification

147
Receiving IrDA Data

Data received from the infrared transceiver via the IR_RXD signal through the RXD pin
is decoded by the infrared endec and passed to the UART. The UART’s baud rate clock is
used by the infrared endec to generate the demodulated signal (RXD) that drives the
UART. Each UART/Infrared data bit is 16-clocks wide. Figure 24 displays data reception.
When the infrared endec is enabled, the UART’s RXD signal is internal to the Z16FMC
products when the IR_RXD signal is received through the RXD pin.

The system clock frequency must be at least 1.0 MHz to ensure proper reception of the
1.6 s minimum width pulses allowed by the IrDA standard.

Endec Receiver Synchronization

The IrDA receiver uses a local baud rate clock counter (0 to 15 clock periods) to generate
an input stream for the UART and to create a sampling window for detection of incoming
pulses. The generated UART input (UART RXD) is delayed by 8 baud rate clock periods
with respect to the incoming IrDA data stream. When a falling edge in the input data
stream is detected, the Endec counter is reset. When the count reaches a value of 8, the
UART RXD value is updated to reflect the value of the decoded data.

Figure 24. Infrared Data Reception

Baud Rate

UART’s

IR_RXD

16-clock
period

Start Bit = 0 Data Bit 0 = 1 Data Bit 1 = 0 Data Bit 2 = 1 Data Bit 3 = 1

8-clock
delay

Clock

RXD

16-clock
period

16-clock
period

16-clock
period

16-clock
period

Start Bit = 0 Data Bit 0 = 1 Data Bit 1 = 0 Data Bit 2 = 1 Data Bit 3 = 1

min. 1.6 s
pulse

Caution:
PS028703-0611 P R E L I M I N A R Y Infrared Encoder/Decoder

Z16FMC Series Motor Control MCUs
Product Specification

157
is to set the TEOF bit of the transmit data command register when the final TDRE interrupt
or DMA request is being serviced (set TEOF before or simultaneously with writing the
final data byte). When the final bit of the final character is transmitted, the hardware will
automatically deassert the SSV and TEOF bits. The second method is for software to
directly clear the SSV bit after the transaction completes. If software clears the SSV bit
directly, it is not necessary for software to also set the TEOF bit on the final transmit byte.
After writing the final transmit byte, the end of the transaction is detected by waiting for
the final RDRF interrupt or monitoring the TFST bit in the ESPI Status Register.

The transmit underrun and receive overrun errors do not occur in an SPI mode master. If
the RDRF and TDRE requests have not been serviced before the current byte transfer
completes, SCLK is paused until the data register is read and written. The transmit under-
run and receive overrun errors will occur in a slave if the slave’s software/DMA does not
keep up with the master data rate. If a transmit underrun occurs in SLAVE mode, the shift
register in the slave is loaded with all 1s.

In the SPI mode, the SCK is active only for the data transfer with one SCK period per bit
transferred. If the SPI bus has multiple slaves, the slave select lines to all or one of the
slaves must be controlled independently by software using GPIO pins.

Figure 28 displays multiple character transfer in SPI mode. Note that while character ’n’ is
being transferred using the shift register, software/DMA responds to the receive request
for character n-1 and the transmit request for character n+1.
PS028703-0611 P R E L I M I N A R Y Enhanced Serial Peripheral Interface

Z16FMC Series Motor Control MCUs
Product Specification

161
Multi-Master SPI Operation

In a multi-master SPI system, all SCK pins are tied together, all MOSI pins are tied
together and all MISO pins are tied together. All SPI pins must be configured in open-
drain mode to prevent bus contention. At any time, only one SPI device is configured as
the master and all other devices on the bus are configured as slaves. The master asserts the
SS pin on the selected slave. Then, the active master drives the clock and transmit data on
the SCK and MOSI pins to the SCK and MOSI pins on the slave (including those slaves
which are not enabled). The enabled slave drives data out its MISO pin to the MISO mas-
ter pin.

When the ESPI is configured as a master in a multi-master SPI system, the SS pin must be
configured as an input. The SS input signal on a device configured as a master must
remain High. If the SS signal on the active master goes Low (indicating another master is
accessing this device as a slave), a collision error flag is set in the ESPI status register. The
slave select outputs on a master in a multi-master system must come from GPIO pins.

SPI Slave Operation

The ESPI block is configured for SLAVE mode operation by setting the MMEN bit = 0 in
the ESPICTL Register and setting the SSIO bit = 0 in the ESPIMODE Register. The
SSMD field of the ESPI mode register is set to 00 for SPI protocol mode. The Phase,
CLKPOL and WOR bits in the ESPICTL Register and the NUMBITS field in the ESPI-
MODE Register must be set to be consistent with the other SPI devices. Typically for an
SPI slave SSPO = 0.

If the slave has data to send to the master, the data must be written to the data register
before the transaction starts (first edge of SCK when SS is asserted). If the data register is
not written prior to the slave transaction, the MISO pin outputs all 1s.

Due to the delay resulting from synchronization of the SS and SCK input signals to the
internal system clock, the maximum SCK baud rate which is supported in SLAVE mode is
the system clock frequency divided by 8. This rate is controlled by the SPI master.

Figure 32 illustrates the ESPI configuration in SPI SLAVE mode.
PS028703-0611 P R E L I M I N A R Y Enhanced Serial Peripheral Interface

Z16FMC Series Motor Control MCUs
Product Specification

170
ESPI Mode Register

The ESPI Mode Register (see Table 92) configures the character bit width and mode of the
ESPI IO pins.

Table 92. ESPI Mode Register (ESPIMODE)

Bits 7 6 5 4 3 2 1 0

Field SSMD NUMBITS[2:0] SSIO SSPO

RESET 000 000 0 0

R/W R/W R/W R/W R/W

ADDR FF_E263H

Bits Description

[7:5]
SSMD

SLAVE SELECT Mode
This field selects the behavior of SS as a framing signal. For a detailed description of
these modes; see the Slave Select section on page 152.
000 = SPI Mode
When SSIO = 1, the SS pin is driven directly from the SSV bit in the Transmit Data Com-
mand register. The Master software or DMA must set SSV (or a GPIO output if the SS pin
is not connected to the appropriate Slave) to the asserted state prior to or on the same
clock cycle with which the transmit data register is written with the initial byte.
At the end of a frame (after the final RDRF event), SSV is deasserted by software. Alter-
natively, SSV is automatically deasserted by hardware if the TEOF bit in the Transmit
Data Command register is set when the final transmit byte is loaded. In SPI mode, SCK is
active only for data transfer (one clock cycle per bit transferred).
001 = LOOPBACK Mode
When ESPI is configured as Master (MMEN = 1) the outputs are deasserted and data is
looped from shift register out to shift register in. When ESPI is configured as a Slave
(MMEN = 0) and SS in asserts, MISO (Slave output) is tied to MOSI (Slave input) to pro-
vide an a remote loop back (echo) function.
010 = I2S Mode
In this mode, the value from SSV will be output by the Master on the SS pin one SCK
period before the data and will remain in that state until the start of the next frame. Typi-
cally this mode is used to send back-to-back frames with SS alternating on each frame. A
frame boundary is indicated in the Master when SSV changes. A frame boundary is
detected in the Slave by SS changing state. The SS framing signal will lead the frame by
one SCK period. In this mode SCK will run continuously, starting with the initial SS asser-
tion. Frames will run back-to-back as long as software/DMA continue to provide data. The
I2S protocol (Inter IC Sound) is used to carry left and right channel audio data with the SS
signal indicating which channel is being sent. In Slave mode, the change in state of SS
(Low to High or High to Low) will trigger the start of a transaction on the next SCK cycle.
PS028703-0611 P R E L I M I N A R Y Enhanced Serial Peripheral Interface

Z16FMC Series Motor Control MCUs
Product Specification

178
I2C Master/Slave Controller Registers

Table 98 summarizes the I2C Master/Slave Controller software-accessible registers.

Comparison with Master Mode only I2C Controller

Porting code written for the Master-only I2C Controller found on other Z8 Encore!® parts
to the I2C Master/Slave Controller is straightforward. The I2CDATA, I2CCTL, I2CBRH
and I2CBRL register definitions are not changed. The difference between the Master-Only
I2C Controller and the I2C Master/Slave Controller designs is explained below.

• The Status register (I2CSTATE) from the Master-only I2C Controller is split into the
Interrupt Status (I2CISTAT) register and the State (I2CSTATE) register because there
are more interrupt sources. The ACK, 10B, TAS (now called AS) and DSS (now called
DS) bits formerly in the Status Register are moved to the State Register.

• The I2CSTATE register is called as Diagnostic State (I2CDST) register in the Master
Only mode version. The I2CDST register provides diagnostic information. The
I2CSTATE register contains status and state information that are useful to software in
operational mode.

• The I2CMODE register is called as Diagnostic Control (I2CDIAG) register in the
MASTER ONLY mode version. The I2CMODE register provides control for SLAVE
modes of operation as well as the most significant two bits of the 10-bit slave address.

• The I2CSLVAD register is added for programming the slave address.

• The ACKV bit in the I2CSTATE Register enables the Master to verify the Acknowl-
edge from the Slave before sending the next byte.

• Support for multi-master environments. If arbitration is lost when operating as a Mas-
ter, the ARBLST bit in the I2CISTAT Register is set and the mode automatically
switches to Slave mode.

Table 98. I2C Master/Slave Controller Registers

Name Abbreviation Description

I2C Data I2CDATA Transmit/Receive Data Register

I2C Interrupt Status I2CISTAT Interrupt Status Register

I2C Control I2CCTL Control Register – basic control functions

I2C Baud Rate High I2CBRH High byte of baud rate generator initialization value

I2C Baud Rate Low I2CBRL Low byte of baud rate generator initialization value

I2C State I2CSTATE State Register

I2C Mode I2CMODE Selects Master or Slave modes, 7-bit or 10-bit addressing. Config-
ures address recognition, Defines Slave Address bits [9:8].

I2C Slave Address I2CSLVAD Defines Slave Address bits [7:0]
PS028703-0611 P R E L I M I N A R Y I2C Master/Slave Controller

Z16FMC Series Motor Control MCUs
Product Specification

199
watermark DMA interrupt is used to notify software when the N–1st byte has been
received.

• Configure the selected DMA channel for I2C receive. The IEOB bit must be set in the
DMACTL register for the final buffer to be transferred. Typically one buffer will be de-
fined with a transfer length of N where N bytes are expected to be received from the
master. The watermark is set to 1 by writing a 0x01 to DMAxLAR[23:16].

• The I2C interrupt must be enabled in the interrupt controller to alert software of any I2C
error conditions.

• The I2C Master/Slave must be configured as defined in the sections above describing
Slave mode transactions. The TXI bit in the I2CCTL register must be cleared.

• When the SAM interrupt occurs, set the DMAIF bit in the I2CMODE register.

• The DMA transfers the data to memory as it is received from the master.

• When the first DMA interrupt occurs indicating that the (N–1)st byte is received, the
NAK bit must be set in the I2CCTL register.

• When the second DMA interrupt occurs, it indicates that the Nth byte is received. A
Stop I2C interrupt occurs (SPRS bit set in the I2CSTAT register) when the master issues
the STOP (or RESTART) condition.

• Clear the DMAIF bit in the I2CMODE register.

Slave Read Transaction with Data DMA

In this transaction the I2C Master/Slave operates as a slave, sending data to the master.

• Configure the selected DMA channel for I2C transmit. The IEOB bit must be set in the
DMACTL register for the final buffer to be transferred. Typically a single buffer with
a transfer length of N is defined.

• The I2C interrupt must be enabled in the interrupt controller to alert software of any I2C
error conditions. A Not Acknowledge interrupt occurs on the final byte transferred.

• The I2C Master/Slave must be configured as defined in the sections above describing
Slave mode transactions. The TXI bit in the I2CCTL register must be cleared.

• When the SAM interrupt occurs, set the DMAIF bit in the I2CMODE register.

• The DMA transfers the data to be transmitted to the master.

• When the DMA interrupt occurs, the final byte is being transferred to the master. The
master must send a Not Acknowledge for this final byte, setting the NCKI bit in the
I2CSTAT register and generating the I2C interrupt. A Stop or Restart interrupt (SPRS
bit set in I2CSTAT register) follows.

• Clear the DMAIF bit in the I2CMODE register.
PS028703-0611 P R E L I M I N A R Y I2C Master/Slave Controller

Z16FMC Series Motor Control MCUs
Product Specification

207
Table 106. I2CSTATE_H

State Encoding State Name State Description

0000 Idle I2C bus is idle or I2C Controller is disabled.

0001 Slave Start I2C Controller has received a start condition.

0010 Slave Bystander Address did not match – ignore remainder of transaction.

0011 Slave Wait Waiting for STOP or RESTART condition after sending a Not
Acknowledge instruction.

0100 Master Stop2 Master completing STOP condition (SCL = 1, SDA = 1).

0101 Master Start/Restart Master mode sending START condition (SCL = 1, SDA = 0).

0110 Master Stop1 Master initiating STOP condition (SCL = 1, SDA = 0).

0111 Master Wait Master received a Not Acknowledge instruction, waiting for
software to assert STOP or START control bits.

1000 Slave Transmit Data Nine substates, one for each data bit and one for the acknowl-
edge.

1001 Slave Receive Data Nine substates, one for each data bit and one for the acknowl-
edge.

1010 Slave Receive Addr1 Slave Receiving first address byte (7 and 10 bit addressing)
Nine substates, one for each address bit and one for the
acknowledge.

1011 Slave Receive Addr2 Slave Receiving second address byte (10 bit addressing)
Nine substates, one for each address bit and one for the
acknowledge.

1100 Master Transmit Data Nine substates, one for each data bit and one for the acknowl-
edge.

1101 Master Receive Data Nine substates, one for each data bit and one for the acknowl-
edge.

1110 Master Transmit Addr1 Master sending first address byte (7- and 10-bit addressing)
Nine substates, one for each address bit and one for the
acknowledge.

1111 Master Transmit Addr2 Master sending second address byte (10-bit addressing)
Nine substates, one for each address bit and one for the
acknowledge.
PS028703-0611 P R E L I M I N A R Y I2C Master/Slave Controller

Z16FMC Series Motor Control MCUs
Product Specification

227
DMA Description
The DMA is used to off load the processor from doing repetitive tasks. DMA transfers
data from one memory address to another memory address. Because all peripherals are
mapped in memory, the DMA transfers data to or from peripherals.

The DMA transfers data from the source address to the destination address. This requires a
read and/or write cycle that is generated by the DMA controller. Each DMA transfer
requires a minimum of two system clock cycles to execute.

The DMA operates in direct or linked list mode. Direct mode and Linked List mode are
almost the same. In Direct mode the software loads the DMA channel registers directly. In
linked list mode the DMA loads its registers from memory.

DMA Register Description

Each DMA channel consists of 16-bit control register, a 16-bit transfer length register, a
24-bit destination address register, a 24-bit source address register and a 24-bit list address
register (see Figure 46).

Buffers

A buffer is an allocation of contiguous memory bytes. Buffers are allocated by software to
be used by the DMA. The DMA transfers data to or from buffers. A typical application
would be to send data to serial channels such as I2C, UART and SPI. The data to be sent is
placed in a buffer by software.

Frames

A frame is a single buffer or a collection of buffers. Frame boundaries spans multiple 
buffers.

Figure 46. DMA Channel Registers

DMA Control (DMACTL)

Transfer Length (TXLN)

Destination Address (DAR)

Source Address (SAR)

List Address (LAR)
PS028703-0611 P R E L I M I N A R Y DMA Controller

Z16FMC Series Motor Control MCUs
Product Specification

231
signals are Acknowledge (ACK), Command Valid (CMDVLD), End Of Frame (EOF-
SYNC) and Read Status (RDSTAT). The two 4-bit busses are Command Bus (CMDBUS)
and Stat Bus (STATBUS).

A DMA transfer is initiated with the Request (REQ). When the DMA is servicing a
Request from a peripheral it will assert its acknowledge signal (ACK) to let the peripheral
know that a transfer is in progress. When the first byte of the transfer is written the CMD-
VLD is asserted and the command bits are placed on the CMDBUS. The peripheral needs
to latch the command from the bus when it sees this combination of signals.

If the EOF bit is set on the current buffer, and when the TXLN decrements to zero, the
EOFSYNC signal is asserted on the final data transfer to the peripheral to signal that it is
the final byte in the frame.

After receiving the EOFSYNC signal the peripheral need to assert the Request EOF signal
to the DMA to let the DMA know that the descriptor is closed. This could be immediately
or at some later time if the data transferred still needs to be processed. For peripherals,
which do not support a Request EOF, the EOFSYNC is tied to Request EOF to terminate
the transfer.

After the Request EOF is asserted the DMA closes the descriptor. The DMA asserts the
ACK and RDSTAT signal, if the descriptor EOF bit is set. The peripheral, if it has status,
places it on the STATBUS. This status is then placed in the descriptor and DMA status bits
when it is closed.

If a peripheral needs to close a descriptor because of an error or the end of a packet is
reached then it asserts it is Request EOF. If the transfer length is not zero, then the DMA
will set the EOF bit, close the descriptor and generate an interrupt.

Buffer Closure

A DMA buffer closure is requested in two ways. The first is when the transfer length
reaches zero. The second is when the DMA receives a request End Of Frame from the
peripheral. When either of these cases occur, the DMA begins closure of the buffer.

Loop Mode Closure

If the LOOP bit is set then the current buffer descriptor is not modified. The DMAxLAR
increments or a new LAR value is fetched from the descriptor.

EOF Closure

The DMAxEN bit is reset to 0. If the EOF bit is set, the CMDSTAT field is set with the status
data from the peripheral. If the channel is in linked list mode then the DMAxCTL word is
written back to the CONTROL word of the descriptor. The DMAxLAR increments or is
loaded with new LAR data from the descriptor if the TXFR bit is set.
PS028703-0611 P R E L I M I N A R Y DMA Controller

Z16FMC Series Motor Control MCUs
Product Specification

232
Normal Closure

The DMAxEN bit is reset to 0. If the channel is in linked list mode then the DMAxCTL
word is written back to the CONTROL word of the descriptor. The DMAxLAR incre-
ments or is loaded with new LAR data from the descriptor if the TXFR bit is set.

DMA Modes

Each DMA channel operates in two modes, direct and linked list. Both modes use the
DMA channel registers. The only difference is in how they are loaded. In direct mode, the
DMA channel registers are directly loaded by software. When the transfer is complete, the
DMA stops. In linked list mode the DMA will load its own registers from a descriptor list
which is pointed to by the DMAxLAR register. It then loads the next descriptor in the list
and continue executing.

The descriptor Control/Status field and address bytes have the same format as the control
and address registers in the DMA.

Direct Mode

Direct mode only uses the registers in the DMA for operation. The software writes these
register directly to set up and enable the DMA. Direct mode is entered by directly setting
the DMAxEN bit in the DMAxCTL0 register. Figure 47 displays the DMA registers and
how they point to the buffers allocated in memory.
PS028703-0611 P R E L I M I N A R Y DMA Controller

Z16FMC Series Motor Control MCUs
Product Specification

237
5. Fetch the TXLN length from the descriptor and place it in the DMAxTXLN register in
the DMA channel.

6. After the reads have been completed, the DMA starts looking for requests and transfer
data until the transfer length reaches zero or the DMA receives a Request EOF signal.

7. When the DMA receives the Request EOF signal, it performs the following operations
based upon the LOOP and EOF bit:

– 00: The DMA writes the descriptor Control/Status word with the DMAxEN bit reset
to 0.

– 01: The DMA requests status from the peripheral. It then writes the descriptor
Control/Status word with the DMAxEN bit reset to 0 and the status returned from
the peripheral. The DMA then writes the TXLN length to the descriptor.

– 1X: The DMA does not modify the descriptor.

8. If the HALT bit is set the DMA closes the current buffer but does not fetch the next
descriptor.

9. After a new DMAxLAR address has been updated, the DMA goes back to step 2
above and fetches the control/status byte.

DMA Priority

The DMA priority is based upon the final channel serviced. After a channel is serviced it
becomes the lowest-priority channel. Table 121 lists the DMA priority.

Table 121. DMA Priority

Last Channel Serviced DMA Priority

DMA0 DMA1 (Highest)
DMA2
DMA3
DMA0 (Lowest)

DMA1 DMA2 (Highest)
DMA3
DMA0
DMA1 (Lowest)

DMA2 DMA3 (Highest)
DMA0
DMA1
DMA2 (Lowest)

DMA3 DMA 0 (Highest)
DMA 1
DMA 2
DMA 3 (Lowest)
PS028703-0611 P R E L I M I N A R Y DMA Controller

Z16FMC Series Motor Control MCUs
Product Specification

239
Bits 7 6 5 4 3 2 1 0

Field CHANSTATE REQSEL

RESET 0 0 0 0 0 0 0 0

R/W R R R R R/W R/W R/W R/W

ADDR FFE400H, FFE401H, FFE402H, FFE403H

Bits Description

[7:4]
CHANSTATE

Channel State
0000 = DMA Off
0001 = Direct Mode, Waiting for End Of Frame signal
0010 = Linked List Mode, Waiting for End Of Frame signal
0011 = Reserved
0100 = Direct Mode, First byte transfer, send command
0101 = Linked List Mode, First byte transfer, send command
0110 = Direct Mode, Transfer of buffer in progress
0111 = Linked List Mode, Transfer of buffer in progress
1000 = Direct Mode, Close Descriptor
1001 = Linked List Mode, New List
1010 = Linked List Mode, Close Descriptor
1011–1111 = Reserved
PS028703-0611 P R E L I M I N A R Y DMA Controller

Z16FMC Series Motor Control MCUs
Product Specification

242
DMA Control Register

The DMA Control Register enables and controls DMA transfers (see Table 124).

Bits 15 14 13 12 11 10 9 8

Field DMAxEN LOOP TXSIZE DSTCTL SRCCTL

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR FFE410H, FFE420H, FFE430H, FFE440H

Bits 7 6 5 4 3 2 1 0

Field IEOB TXFR EOF HALT CMDSTAT

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR FFE411H, FFE421H, FFE431H, FFE441H

Bits Description

15
DMAxEN

DMA X Enable
If this bit is written directly then normal mode is executed. If this bit is read in from a descrip-
tor then linked list mode is executed.
0 = DMA is disabled.
1 = DMA is enabled.

14
LOOP

LOOP Mode
0 = Descriptor is modified when the buffer is closed.
1 = Descriptor is not modified when buffer is closed.

[13:12]
TXSIZE

Transfer Size
00 = Byte
01 = Word
10 = Quad
11 = Reserved

[11:10]
DSTCTL

Destination Control Register
00 = Destination address does not change
01 = Destination address increments
10 = Destination address decrements
11 = Reserved

[9:8]
SRCCTL

Source Control Register
00 = Source address does not change
01 = Source address increments
10 = Source address decrements
11 = Reserved
PS028703-0611 P R E L I M I N A R Y DMA Controller

Z16FMC Series Motor Control MCUs
Product Specification

265
Each bit time is of same length. The bit period is set by the baud rate generator.

When the transmitter sends a character, it first sends a Low start bit. The transmitter then
waits one bit time. After the start bit is sent, the transmitter sends the next data bit. The
transmitter sends each data bit in turn, waiting one full bit time before sending the next
data bit. After the final data bit is sent, the transmitter sends a high stop bit for one bit
time.

The receiver looks for the falling edge of the start bit. After the receiver sees the start bit is
Low, it waits one half bit time and samples the middle of the start bit. If the middle of the
start bit is High, the receiver considers this as a false start bit. The receiver ignores a false
start bit and searches for another falling edge. If the middle of the start bit is Low, the
receiver considers the start bit valid. The receiver will wait a full bit time from the middle
of the start bit to sample the next data bit. The next data bit is sampled in the middle of the
bit period. The receiver repeats this operation for each data bit, waiting one full bit time to
between sampling each data bit.

After the receiver has sampled the final data bit, it waits one full bit time and sample the
middle of the stop bit. If the stop bit is Low, the receiver detects a framing error.

If the stop bit is High, the data was correctly framed between a start and stop bit. After the
receiver samples the middle of the stop bit, it begins searching for another start bit. The
receiver does not wait for the full stop bit to be received before searching for the next start
bit, in effect correcting for any bit skew due to error between the transmit and receive baud
rate clocks.

Baud Rate Generator

The baud rate generator (BRG) is used to generate a bit clock for transmit and receive
operations. The BRG reload register is automatically configured by the auto-baud 
detector, or it is written by software.

The value in the BRG reload register is calculated as:

Figure 53. OCD Serial Data Format

ST D0 D1 D2 D3 D4 D5 D6 D7 SP

ST = Start Bit
SP = Stop Bit
D0-D7 = Data Bits
PS028703-0611 P R E L I M I N A R Y On-Chip Debugger

Z16FMC Series Motor Control MCUs
Product Specification

282
Status Register

The Status Register (DBGSTAT), shown in Table 144, contains information about the
state of the UART.

Table 144. Status Register (DBGSTAT)

Bits 7 6 5 4 3 2 1 0

Field RDRF RXOV RXFE RXBRK TDRE TXCOL RXBUSY TXBUSY

RESET 0 0 0 0 1 0 0 0

R/W R/W1C R/W1C R/W1C R/W1C R/W1S R/W1C R R

ADDR FF_E085

Bits Description

7
RDRF

Receive Data Register Full
This bit reflects the status of the Receive Data Register. When data is written to the Receive
Data Register, or data is transferred from the shift register to the Receive Data Register, this bit
is set to 1. When the Receive Data Register is read, this bit is cleared to zero. This bit is also
cleared to zero by writing a one to this bit.
0 = Receive Data Register is empty.
1 = Receive Data Register is full.

6
RXOV

Receive Overrun
This bit is set when a Receive Overrun occurs. A Receive Overrun occurs when there is data in
the Receive Data Register and another byte is written to this register.
0 = Receive Overrun has not occurred
1 = Receive Overrun has occurred.

5
RXFE

Receive Framing Error
This bit is set when a Receive Framing error has been detected. This bit is cleared by writing a
one to this bit.
0 = No Framing Error detected.
1 = Receive Framing Error detected.

4
RXBRK

Receive Break Detect
This bit is set when a Break condition has been detected. This occurs when 10 or more bits
received are Low. This bit is cleared by writing a one to this bit.
0 = No Break detected.
1 = Break detected.

3
TDRE

Transmit Data Register Empty
This bit reflects the status of the Transmit Data Register. When the Transmit Data Register is
written, this bit is cleared to zero. When data from the transmit data register is read or trans-
ferred to the transmit shift register, this bit is set to 1. This bit is written to one to abort the trans-
mission of data being held in the transmit data register.
0 = Transmit Data Register is full.
1 = Transmit Data Register is empty.
PS028703-0611 P R E L I M I N A R Y On-Chip Debugger

Z16FMC Series Motor Control MCUs
Product Specification

306
Table 158 lists the Reset and Stop Mode Recovery pin timing.
.

Table 157. POR and VBO Electrical Characteristics and Timing

Symbol Parameter

TA = –40°C to 105°C

Units ConditionsMin Typ1 Max

VPOR Power-on reset voltage
threshold

2.20 2.45 2.70 V VDD = VPOR

VVBO Voltage Brownout reset
voltage threshold

2.15 2.40 2.65 V VDD = VVBO

VPOR–VVBO 50 100 mV

Starting VDD voltage to
ensure valid POR

 – VSS – V

TANA Power-on reset analog
delay

 – 50 – ms VDD > VPOR; TPOR Digital
Reset delay follows TANA

TPOR Power-on reset digital
delay

— 12 — µs 66 IPO cycles

TVBO Voltage Brownout pulse
rejection period

— 10 — ms VDD < VVBO to generate a
Reset

TRAMP Time for VDD to transition
from VSS to VPOR to
ensure valid Reset

0.10 — 100 ms

ICC Supply current 500 µA VDD = 3.3 V

Note:
1. Data in the typical column is from characterization at 3.3 V and 0°C. These values are provided for design guid-

ance only and are not tested in production.

Table 158. Reset and Stop Mode Recovery Pin Timing

Symbol Parameter

TA = –40°C to 105°C

Units ConditionsMin Typ Max

TRESET RESET pin assertion to
initiate a System Reset

4 – – TCLK Not in STOP Mode. TCLK =
System Clock period.

TSMR Stop Mode Recovery pin
Pulse Rejection Period

10 20 40 ns RESET, DBG and GPIO
pins configured as SMR
sources.
PS028703-0611 P R E L I M I N A R Y Electrical Characteristics

Z16FMC Series Motor Control MCUs
Product Specification

318
Packaging

Figure 70 displays the 64-pin low-profile quad flat package (LQFP) available for the
Z16FMC devices.

Ordering Information
Table 172 identifies the basic features and package styles available for each device within
the Z16FMC product line.

Figure 70. 64-Pin Low-Profile Quad Flat Package (LQFP)

c

A1

A2

A

LE

E HE

e

0-7°

L

b

HD

D

DETAIL A
PS028703-0611 P R E L I M I N A R Y Packaging

