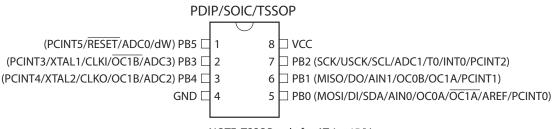
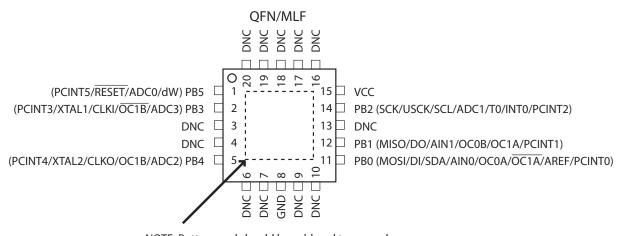


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?


"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"


Details	
Product Status	Active
Core Processor	AVR
Core Size	8-Bit
Speed	10MHz
Connectivity	USI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	2KB (1K x 16)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/attiny25v-10pu

1. Pin Configurations

Figure 1-1. Pinout ATtiny25/45/85

NOTE: TSSOP only for ATtiny45/V

NOTE: Bottom pad should be soldered to ground.

DNC: Do Not Connect

1.1 Pin Descriptions

1.1.1 VCC

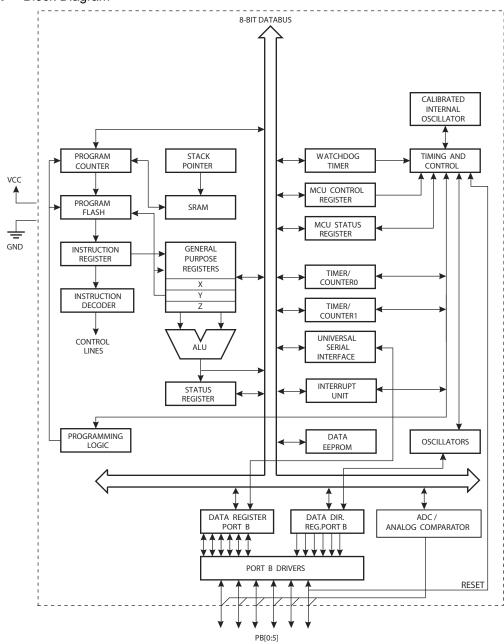
Supply voltage.

1.1.2 GND

Ground.

1.1.3 Port B (PB5:PB0)

Port B is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.



2. Overview

The ATtiny25/45/85 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny25/45/85 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

3. About

3.1 Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.

3.2 Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

For I/O Registers located in the extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically, this means "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR". Note that not all AVR devices include an extended I/O map.

3.3 Capacitive Touch Sensing

Atmel QTouch Library provides a simple to use solution for touch sensitive interfaces on Atmel AVR microcontrollers. The QTouch Library includes support for QTouch[®] and QMatrix[®] acquisition methods.

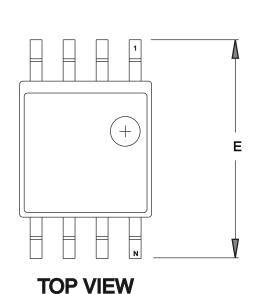
Touch sensing is easily added to any application by linking the QTouch Library and using the Application Programming Interface (API) of the library to define the touch channels and sensors. The application then calls the API to retrieve channel information and determine the state of the touch sensor.

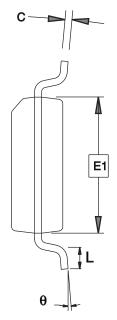
The QTouch Library is free and can be downloaded from the Atmel website. For more information and details of implementation, refer to the QTouch Library User Guide – also available from the Atmel website.

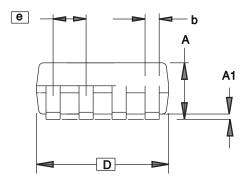
3.4 Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

- should never be written.
- 2. I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.


5. Instruction Set Summary


Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND	LOGIC INSTRUCTIONS	3		!	-
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	$Rdh : Rdl \leftarrow Rdh : Rdl + K$	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	$Rd \leftarrow Rd - Rr$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \vee Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow 0xFF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← 0x00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (0xFF - K)$	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	$Rd \leftarrow 0xFF$	None	1
BRANCH INSTRUC			T	T	
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC ← Z	None	2
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3
ICALL		Indirect Call to (Z)	PC ← Z	None	3
RET		Subroutine Return	PC ← STACK	None	4
RETI	212	Interrupt Return	PC ← STACK	l l	4
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC ← PC + 2 or 3	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1/2/2
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(Rr(b)=0)$ PC \leftarrow PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set Skip if Bit in I/O Register Cleared	if $(Rr(b)=1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
SBIC	P, b		if $(P(b)=0)$ PC \leftarrow PC + 2 or 3	None	1/2/3
BRBS	,	Skip if Bit in I/O Register is Set	if $(P(b)=1)$ PC \leftarrow PC + 2 or 3 if $(SREG(s) = 1)$ then PC \leftarrow PC+k + 1	None	
BRBC	s, k s, k	Branch if Status Flag Set Branch if Status Flag Cleared	if (SREG(s) = 0) then $PC \leftarrow PC + k + 1$	None None	1/2
BREQ	k	Branch if Equal	if $(Z = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRNE	k	Branch if Not Equal	if $(Z = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if $(N = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRPL	k	Branch if Plus	if $(N = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC ← PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC ← PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC ← PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC ← PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC ← PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC ← PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC ← PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC ← PC + k + 1	None	1/2
BIT AND BIT-TEST					
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C, Rd(n+1)\leftarrow Rd(n), C\leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
		Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	


Mnemonics	Operands	Description	Operation	Flags	#Clocks
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	s	Flag Set	$SREG(s) \leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	T	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	I ← 1	1	1
CLI		Global Interrupt Disable	1←0	ı	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	T	1
CLT		Clear T in SREG	T ← 0	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER II	NSTRUCTIONS				
MOV	Rd, Rr	Move Between Registers	$Rd \leftarrow Rr$	None	1
MOVW	Rd, Rr	Copy Register Word	$Rd+1:Rd \leftarrow Rr+1:Rr$	None	1
LDI	Rd, K	Load Immediate	$Rd \leftarrow K$	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	Rd ← (k)	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Prost-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement Store Direct to SRAM	$(Z+q) \leftarrow Rr$	None	2
STS	k, Rr	Load Program Memory	(k) ← Rr	None	2
LPM	Pd 7	Load Program Memory Load Program Memory	$R0 \leftarrow (Z)$	None	3
LPM LPM	Rd, Z Rd, Z+	Load Program Memory Load Program Memory and Post-Inc	$Rd \leftarrow (Z)$ $Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM	INU, AT	Store Program Memory		None None	3
IN	Rd, P	,	$(z) \leftarrow R1:R0$ $Rd \leftarrow P$	None	1
OUT	P, Rr	In Port Out Port	Ra ← P P ← Rr	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
MCU CONTROL INSTRUCTIONS					
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/Timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A
D. (E/ 11)	l .	5.04.	. S. Sir only boddy only	.10110	14/7

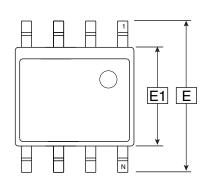
END VIEW

COMMON DIMENSIONS (Unit of Measure = mm)

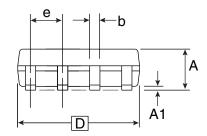
SYMBOL	MIN	NOM	MAX	NOTE
Α	1.70		2.16	
A1	0.05		0.25	
b	0.35		0.48	4
С	0.15		0.35	4
D	5.13		5.35	
E1	5.18		5.40	2
Е	7.70		8.26	
L	0.51		0.85	
θ	0°		8°	
е	1.27 BSC			3

SIDE VIEW

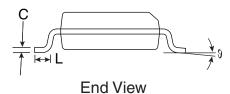
- Notes: 1. This drawing is for general information only; refer to EIAJ Drawing EDR-7320 for additional information.


 2. Mismatch of the upper and lower dies and resin burrs aren't included.

 - 3. Determines the true geometric position.
 - 4. Values b,C apply to plated terminal. The standard thickness of the plating layer shall measure between 0.007 to .021 mm.


4/15/08

	TITLE	GPC	DRAWING NO.	REV.
Package Drawing Contact: packagedrawings@atmel.com	8S2, 8-lead, 0.208" Body, Plastic Small Outline Package (EIAJ)	STN	8S2	F



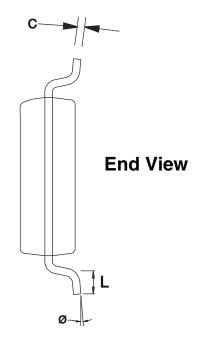
Top View

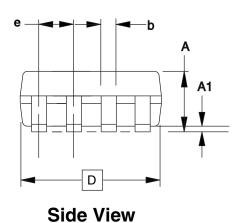
Side View

COMMON DIMENSIONS

(Unit of Measure = mm)


SYMBOL	MIN	NOM	MAX	NOTE
E	5.79		6.20	
E1	3.81		3.99	
Α	1.35		1.75	
A1	0.1		0.25	
D	4.80		4.98	
С	0.17		0.25	
b	0.31		0.51	
L	0.4		1.27	
е	1.27 BSC			
9	0°		8°	


 $Notes: \ 1. \ This \ drawing \ is \ for \ general \ information \ only; \ refer \ to \ JEDEC \ Drawing \ MS-012 \ for \ proper \ dimensions, \ tolerances, \ datums, etc.$


7/28/03

	TITLE	DRAWING NO.	REV.
2325 Orchard Parkway San Jose, CA 95131	\$8\$1 , 8-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline (JEDEC SOIC)	S8S1	А

COMMON DIMENSIONS (Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	1.05	1.10	1.20	
A1	0.05	0.10	0.15	
b	0.25	_	0.30	
С	-	0.127	ı	
D	2.90	3.05	3.10	
E1	4.30	4.40	4.50	
Е	6.20	6.40	6.60	
е	0.65 TYP			
L	0.50	0.60	0.70	
Ø	0°	_	8°	

Note: These drawings are for general information only. Refer to JEDEC Drawing MO-153AC.

4/14/05

<u>AIMEL</u>

2325 Orchard Parkway San Jose, CA 95131 **TITLE 8X**, 8-lead, 4.4 mm Body Width, Plastic Thin Shrink Small Outline Package (TSSOP)

DRAWING NO. REV. A

8. Errata

8.1 Errata ATtiny25

The revision letter in this section refers to the revision of the ATtiny25 device.

8.1.1 Rev D - F

No known errata.

8.1.2 Rev B - C

. EEPROM read may fail at low supply voltage / low clock frequency

1. EEPROM read may fail at low supply voltage / low clock frequency

Trying to read EEPROM at low clock frequencies and/or low supply voltage may result in invalid data.

Problem Fix/Workaround

Do not use the EEPROM when clock frequency is below 1MHz and supply voltage is below 2V. If operating frequency can not be raised above 1MHz then supply voltage should be more than 2V. Similarly, if supply voltage can not be raised above 2V then operating frequency should be more than 1MHz.

This feature is known to be temperature dependent but it has not been characterised. Guidelines are given for room temperature, only.

8.1.3 Rev A

Not sampled.

8.2 Errata ATtiny45

The revision letter in this section refers to the revision of the ATtiny45 device.

8.2.1 Rev F - G

No known errata

8.2.2 Rev D – E

• EEPROM read may fail at low supply voltage / low clock frequency

1. EEPROM read may fail at low supply voltage / low clock frequency

Trying to read EEPROM at low clock frequencies and/or low supply voltage may result in invalid data.

Problem Fix/Workaround

Do not use the EEPROM when clock frequency is below 1MHz and supply voltage is below 2V. If operating frequency can not be raised above 1MHz then supply voltage should be more than 2V. Similarly, if supply voltage can not be raised above 2V then operating frequency should be more than 1MHz.

This feature is known to be temperature dependent but it has not been characterised. Guidelines are given for room temperature, only.

8.2.3 Rev B - C

- PLL not locking
- EEPROM read from application code does not work in Lock Bit Mode 3
- EEPROM read may fail at low supply voltage / low clock frequency
- Timer Counter 1 PWM output generation on OC1B- XOC1B does not work correctly

1. PLL not locking

When at frequencies below 6.0 MHz, the PLL will not lock

Problem fix / Workaround

When using the PLL, run at 6.0 MHz or higher.

2. EEPROM read from application code does not work in Lock Bit Mode 3

When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does not work from the application code.

Problem Fix/Work around

Do not set Lock Bit Protection Mode 3 when the application code needs to read from EEPROM.

3. EEPROM read may fail at low supply voltage / low clock frequency

Trying to read EEPROM at low clock frequencies and/or low supply voltage may result in invalid data.

Problem Fix/Workaround

Do not use the EEPROM when clock frequency is below 1MHz and supply voltage is below 2V. If operating frequency can not be raised above 1MHz then supply voltage should be more than 2V. Similarly, if supply voltage can not be raised above 2V then operating frequency should be more than 1MHz.

This feature is known to be temperature dependent but it has not been characterised. Guidelines are given for room temperature, only.

4. Timer Counter 1 PWM output generation on OC1B - XOC1B does not work correctly

Timer Counter1 PWM output OC1B-XOC1B does not work correctly. Only in the case when the control bits, COM1B1 and COM1B0 are in the same mode as COM1A1 and COM1A0, respectively, the OC1B-XOC1B output works correctly.

Problem Fix/Work around

The only workaround is to use same control setting on COM1A[1:0] and COM1B[1:0] control bits, see table 14-4 in the data sheet. The problem has been fixed for Tiny45 rev D.

8.2.4 Rev A

- Too high power down power consumption
- DebugWIRE looses communication when single stepping into interrupts
- PLL not locking
- EEPROM read from application code does not work in Lock Bit Mode 3
- EEPROM read may fail at low supply voltage / low clock frequency

1. Too high power down power consumption

Three situations will lead to a too high power down power consumption. These are:

- An external clock is selected by fuses, but the I/O PORT is still enabled as an output.
- The EEPROM is read before entering power down.
- VCC is 4.5 volts or higher.

Problem fix / Workaround

- When using external clock, avoid setting the clock pin as Output.
- Do not read the EEPROM if power down power consumption is important.
- Use VCC lower than 4.5 Volts.

2. DebugWIRE looses communication when single stepping into interrupts

When receiving an interrupt during single stepping, debugwire will loose

Problem fix / Workaround

- When singlestepping, disable interrupts.
- When debugging interrupts, use breakpoints within the interrupt routine, and run into the interrupt.

3. PLL not locking

communication.

When at frequencies below 6.0 MHz, the PLL will not lock

Problem fix / Workaround

When using the PLL, run at 6.0 MHz or higher.

4. EEPROM read from application code does not work in Lock Bit Mode 3

When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does not work from the application code.

Problem Fix/Work around

Do not set Lock Bit Protection Mode 3 when the application code needs to read from EEPROM.

5. EEPROM read may fail at low supply voltage / low clock frequency

Trying to read EEPROM at low clock frequencies and/or low supply voltage may result in invalid data.

Problem Fix/Workaround

Do not use the EEPROM when clock frequency is below 1MHz and supply voltage is below 2V. If operating frequency can not be raised above 1MHz then supply voltage should be more than 2V. Similarly, if supply voltage can not be raised above 2V then operating frequency should be more than 1MHz.

This feature is known to be temperature dependent but it has not been characterized. Guidelines are given for room temperature, only.

9. Datasheet Revision History

9.1 Rev. 2586Q-08/13

1. "Bit 3 – FOC1B: Force Output Compare Match 1B" description in "GTCCR – General Timer/Counter1 Control Register" on page 90 updated: PB3 in "compare match output pin PB3 (OC1B)" corrected to PB4.

9.2 Rev. 2586P-06/13

1. Updated description of "EEARH – EEPROM Address Register" and "EEARL – EEPROM Address Register" on page 20.

9.3 Rev. 2586O-02/13

Updated ordering codes on page 11, page 12, and page 13.

9.4 Rev. 2586N-04/11

- 1. Added:
 - Section "Capacitive Touch Sensing" on page 6.
- 2. Updated:
 - Document template.
 - Removed "Preliminary" on front page. All devices now final and in production.
 - Section "Limitations" on page 36.
 - Program example on page 49.
 - Section "Overview" on page 122.
 - Table 17-4 on page 135.
 - Section "Limitations of debugWIRE" on page 140.
 - Section "Serial Programming Algorithm" on page 151.
 - Table 21-7 on page 166.
 - EEPROM errata on pages 19, 19, 20, 21, and 22
 - Ordering information on pages 11, 12, and 13.

9.5 Rev. 2586M-07/10

- 1. Clarified Section 6.4 "Clock Output Buffer" on page 31.
- 2. Added Ordering Codes -SN and -SNR for ATtiny25 extended temperature.

9.6 Rev. 2586L-06/10

- 1. Added:
 - TSSOP for ATtiny45 in "Features" on page 1, Pinout Figure 1-1 on page 2, Ordering Information in Section 6.2 "ATtiny45" on page 12, and Packaging Information in Section 7.4 "8X" on page 17
 - Table 6-11, "Capacitance of Low-Frequency Crystal Oscillator," on page 29
 - Figure 22-36 on page 191 and Figure 22-37 on page 191, Typical Characteristics plots for Bandgap Voltage vs. V_{CC} and Temperature
 - Extended temperature in Section 6.1 "ATtiny25" on page 11, Ordering Information

 Tape & reel part numbers in Ordering Information, in Section 6.1 "ATtiny25" on page 11 and Section 6.2 "ATtiny45" on page 12

2. Updated:

- "Features" on page 1, removed Preliminary from ATtiny25
- Section 8.4.2 "Code Example" on page 44
- "PCMSK Pin Change Mask Register" on page 52, Bit Descriptions
- "TCCR1 Timer/Counter1 Control Register" on page 89 and "GTCCR General Timer/Counter1
 Control Register" on page 90, COM bit descriptions clarified
- Section 20.3.2 "Calibration Bytes" on page 150, frequencies (8 MHz, 6.4 MHz)
- Table 20-11, "Minimum Wait Delay Before Writing the Next Flash or EEPROM Location," on page 153, value for t_{WD_ERASE}
- Table 20-16, "High-voltage Serial Programming Instruction Set for ATtiny25/45/85," on page 158
- Table 21-1, "DC Characteristics. T_A = -40°C to +85°C," on page 161, notes adjusted
- Table 21-11, "Serial Programming Characteristics, T_A = -40°C to +85°C, V_{CC} = 1.8 5.5V (Unless Otherwise Noted)," on page 170, added t_{SLIV}
- Bit syntax throughout the datasheet, e.g. from CS02:0 to CS0[2:0].

9.7 Rev. 2586K-01/08

- 1. Updated Document Template.
- 2. Added Sections:
 - "Data Retention" on page 6
 - "Low Level Interrupt" on page 49
 - "Device Signature Imprint Table" on page 149
- 3. Updated Sections:
 - "Internal PLL for Fast Peripheral Clock Generation clkPCK" on page 24
 - "System Clock and Clock Options" on page 23
 - "Internal PLL in ATtiny15 Compatibility Mode" on page 24
 - "Sleep Modes" on page 34
 - "Software BOD Disable" on page 35
 - "External Interrupts" on page 49
 - "Timer/Counter1 in PWM Mode" on page 97
 - "USI Universal Serial Interface" on page 108
 - "Temperature Measurement" on page 133
 - "Reading Lock, Fuse and Signature Data from Software" on page 143
 - "Program And Data Memory Lock Bits" on page 147
 - "Fuse Bytes" on page 148
 - "Signature Bytes" on page 150
 - "Calibration Bytes" on page 150
 - "System and Reset Characteristics" on page 165
- 4. Added Figures:
 - "Reset Pin Output Voltage vs. Sink Current (V_{CC} = 3V)" on page 184
 - "Reset Pin Output Voltage vs. Sink Current ($V_{CC} = 5V$)" on page 185
 - "Reset Pin Output Voltage vs. Source Current (V_{CC} = 3V)" on page 185

- "Reset Pin Output Voltage vs. Source Current (V_{CC} = 5V)" on page 186
- 5. Updated Figure:
 - "Reset Logic" on page 39
- 6. Updated Tables:
 - "Start-up Times for Internal Calibrated RC Oscillator Clock" on page 28
 - "Start-up Times for Internal Calibrated RC Oscillator Clock (in ATtiny15 Mode)" on page 28
 - "Start-up Times for the 128 kHz Internal Oscillator" on page 28
 - "Compare Mode Select in PWM Mode" on page 86
 - "Compare Mode Select in PWM Mode" on page 98
 - "DC Characteristics. $T_A = -40$ °C to +85 °C" on page 161
 - "Calibration Accuracy of Internal RC Oscillator" on page 164
 - "ADC Characteristics" on page 167
- 7. Updated Code Example in Section:
 - "Write" on page 17
- 8. Updated Bit Descriptions in:
 - "MCUCR MCU Control Register" on page 37
 - "Bits 7:6 COM0A[1:0]: Compare Match Output A Mode" on page 77
 - "Bits 5:4 COM0B[1:0]: Compare Match Output B Mode" on page 77
 - "Bits 2:0 ADTS[2:0]: ADC Auto Trigger Source" on page 138
 - "SPMCSR Store Program Memory Control and Status Register" on page 145.
- Updated description of feature "EEPROM read may fail at low supply voltage / low clock frequency" in Sections:
 - "Errata ATtiny25" on page 19
 - "Errata ATtiny45" on page 19
 - "Errata ATtiny85" on page 22
- 10. Updated Package Description in Sections:
 - "ATtiny25" on page 11
 - "ATtiny45" on page 12
 - "ATtiny85" on page 13
- 11. Updated Package Drawing:
 - "S8S1" on page 16
- 12. Updated Order Codes for:
 - "ATtiny25" on page 11

9.8 Rev. 2586J-12/06

- 1. Updated "Low Power Consumption" on page 1.
- 2. Updated description of instruction length in "Architectural Overview" .
- 3. Updated Flash size in "In-System Re-programmable Flash Program Memory" on page 15.
- 4. Updated cross-references in sections "Atomic Byte Programming", "Erase" and "Write", starting on page 17.
- 5. Updated "Atomic Byte Programming" on page 17.

- 6. Updated "Internal PLL for Fast Peripheral Clock Generation clkPCK" on page 24.
- 7. Replaced single clocking system figure with two: Figure 6-2 and Figure 6-3.
- 8. Updated Table 6-1 on page 25, Table 6-13 on page 30 and Table 6-6 on page 27.
- 9. Updated "Calibrated Internal Oscillator" on page 27.
- 10. Updated Table 6-5 on page 26.
- 11. Updated "OSCCAL Oscillator Calibration Register" on page 31.
- 12. Updated "CLKPR Clock Prescale Register" on page 32.
- 13. Updated "Power-down Mode" on page 35.
- 14. Updated "Bit 0" in "PRR Power Reduction Register" on page 38.
- 15. Added footnote to Table 8-3 on page 46.
- 16. Updated Table 10-5 on page 63.
- 17. Deleted "Bits 7, 2" in "MCUCR MCU Control Register" on page 64.
- 18. Updated and moved section "Timer/Counter0 Prescaler and Clock Sources", now located on page 66.
- 19. Updated "Timer/Counter1 Initialization for Asynchronous Mode" on page 86.
- 20. Updated bit description in "PLLCSR PLL Control and Status Register" on page 94 and "PLLCSR PLL Control and Status Register" on page 103.
- 21. Added recommended maximum frequency in "Prescaling and Conversion Timing" on page 125.
- 22. Updated Figure 17-8 on page 129.
- 23. Updated "Temperature Measurement" on page 133.
- 24. Updated Table 17-3 on page 134.
- 25. Updated bit R/W descriptions in:
 - "TIMSK Timer/Counter Interrupt Mask Register" on page 81,
 - "TIFR Timer/Counter Interrupt Flag Register" on page 81,
 - "TIMSK Timer/Counter Interrupt Mask Register" on page 92,
 - "TIFR Timer/Counter Interrupt Flag Register" on page 93,
 - "PLLCSR PLL Control and Status Register" on page 94,
 - "TIMSK Timer/Counter Interrupt Mask Register" on page 102,
 - "TIFR Timer/Counter Interrupt Flag Register" on page 103,
 - "PLLCSR PLL Control and Status Register" on page 103 and
 - "DIDR0 Digital Input Disable Register 0" on page 138.
- 26. Added limitation to "Limitations of debugWIRE" on page 140.
- 27. Updated "DC Characteristics" on page 161.
- 28. Updated Table 21-7 on page 166.
- 29. Updated Figure 21-6 on page 171.
- 30. Updated Table 21-12 on page 171.
- 31. Updated Table 22-1 on page 177.
- 32. Updated Table 22-2 on page 177.
- 33. Updated Table 22-30, Table 22-31 and Table 22-32, starting on page 188.
- 34. Updated Table 22-33, Table 22-34 and Table 22-35, starting on page 189.
- 35. Updated Table 22-39 on page 192.
- 36. Updated Table 22-46, Table 22-47, Table 22-48 and Table 22-49.

9.9 Rev. 2586I-09/06

- 1. All Characterization data moved to "Electrical Characteristics" on page 161.
- 2. All Register Descriptions are gathered up in seperate sections in the end of each chapter.
- 3. Updated Table 11-3 on page 78, Table 11-5 on page 79, Table 11-6 on page 80 and Table 20-4 on page 148.
- 4. Updated "Calibrated Internal Oscillator" on page 27.
- 5. Updated Note in Table 7-1 on page 34.
- 6. Updated "System Control and Reset" on page 39.
- 7. Updated Register Description in "I/O Ports" on page 53.
- 8. Updated Features in "USI Universal Serial Interface" on page 108.
- Updated Code Example in "SPI Master Operation Example" on page 110 and "SPI Slave Operation Example" on page 111.
- 10. Updated "Analog Comparator Multiplexed Input" on page 119.
- 11. Updated Figure 17-1 on page 123.
- 12. Updated "Signature Bytes" on page 150.
- 13. Updated "Electrical Characteristics" on page 161.

9.10 Rev. 2586H-06/06

- 1. Updated "Calibrated Internal Oscillator" on page 27.
- 2. Updated Table 6.5.1 on page 31.
- 3. Added Table 21-2 on page 164.

9.11 Rev. 2586G-05/06

- 1. Updated "Internal PLL for Fast Peripheral Clock Generation clkPCK" on page 24.
- 2. Updated "Default Clock Source" on page 30.
- 3. Updated "Low-Frequency Crystal Oscillator" on page 29.
- 4. Updated "Calibrated Internal Oscillator" on page 27.
- 5. Updated "Clock Output Buffer" on page 31.
- 6. Updated "Power Management and Sleep Modes" on page 34.
- 7. Added "Software BOD Disable" on page 35.
- 8. Updated Figure 16-1 on page 119.
- 9. Updated "Bit 6 ACBG: Analog Comparator Bandgap Select" on page 120.
- 10. Added note for Table 17-2 on page 125.
- 11. Updated "Register Summary" on page 7.

9.12 Rev. 2586F-04/06

- 1. Updated "Digital Input Enable and Sleep Modes" on page 57.
- 2. Updated Table 20-16 on page 158.
- 3. Updated "Ordering Information" on page 11.

9.13 Rev. 2586E-03/06

- 1. Updated Features in "Analog to Digital Converter" on page 122.
- 2. Updated Operation in "Analog to Digital Converter" on page 122.
- 3. Updated Table 17-2 on page 133.
- 4. Updated Table 17-3 on page 134.
- 5. Updated "Errata" on page 19.

9.14 Rev. 2586D-02/06

- 1. Updated Table 6-13 on page 30, Table 6-10 on page 29, Table 6-3 on page 26, Table 6-9 on page 28, Table 6-5 on page 26, Table 9-1 on page 48, Table 17-4 on page 135, Table 20-16 on page 158, Table 21-8 on page 167.
- Updated "Timer/Counter1 in PWM Mode" on page 86.
- 3. Updated text "Bit 2 TOV1: Timer/Counter1 Overflow Flag" on page 93.
- 4. Updated values in "DC Characteristics" on page 161.
- 5. Updated "Register Summary" on page 7.
- 6. Updated "Ordering Information" on page 11.
- 7. Updated Rev B and C in "Errata ATtiny45" on page 19.
- 8. All references to power-save mode are removed.
- 9. Updated Register Adresses.

9.15 Rev. 2586C-06/05

- 1. Updated "Features" on page 1.
- 2. Updated Figure 1-1 on page 2.
- 3. Updated Code Examples on page 18 and page 19.
- 4. Moved "Temperature Measurement" to Section 17.12 page 133.
- 5. Updated "Register Summary" on page 7.
- 6. Updated "Ordering Information" on page 11.

9.16 Rev. 2586B-05/05

- CLKI added, instances of EEMWE/EEWE renamed EEMPE/EEPE, removed some TBD.
 - Removed "Preliminary Description" from "Temperature Measurement" on page 133.
- 2. Updated "Features" on page 1.
- 3. Updated Figure 1-1 on page 2 and Figure 8-1 on page 39.
- 4. Updated Table 7-2 on page 38, Table 10-4 on page 63, Table 10-5 on page 63
- 5. Updated "Serial Programming Instruction set" on page 153.
- 6. Updated SPH register in "Instruction Set Summary" on page 9.
- 7. Updated "DC Characteristics" on page 161.
- 8. Updated "Ordering Information" on page 11.
- 9. Updated "Errata" on page 19.

9.17 Rev. 2586A-02/05

Initial revision.

Enabling Unlimited Possibilities®

Atmel Corporation

1600 Technology Drive San Jose, CA 95110 USA

Tel: (+1) (408) 441-0311 Fax: (+1) (408) 487-2600

www.atmel.com

Atmel Asia Limited

Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Roa Kwun Tong, Kowloon

Tel: (+852) 2245-6100

HONG KONG

Fax: (+852) 2722-1369

Atmel Munich GmbH

Business Campus Parkring 4 D-85748 Garching b. Munich **GERMANY**

Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621

Atmel Japan G.K.

16F Shin-Osaki Kangyo Bldg 1-6-4 Osaki, Shinagawa-ku

Tokyo 141-0032

JAPAN

Tel: (+81) (3) 6417-0300 Fax: (+81) (3) 6417-0370

© 2013 Atmel Corporation. All rights reserved. / Rev.: 2586QS-AVR-08/2013

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, tinyAVR® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.