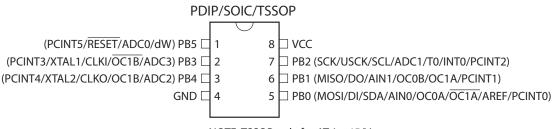


Welcome to **E-XFL.COM**

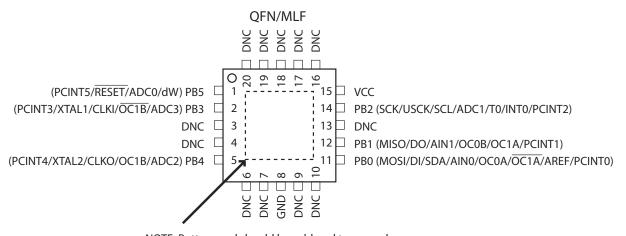
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"


Details	
Details	
Product Status	Active
Core Processor	AVR
Core Size	8-Bit
Speed	10MHz
Connectivity	USI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/attiny45v-10pu

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Pin Configurations

Figure 1-1. Pinout ATtiny25/45/85

NOTE: TSSOP only for ATtiny45/V

NOTE: Bottom pad should be soldered to ground.

DNC: Do Not Connect

1.1 Pin Descriptions

1.1.1 VCC

Supply voltage.

1.1.2 GND

Ground.

1.1.3 Port B (PB5:PB0)

Port B is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

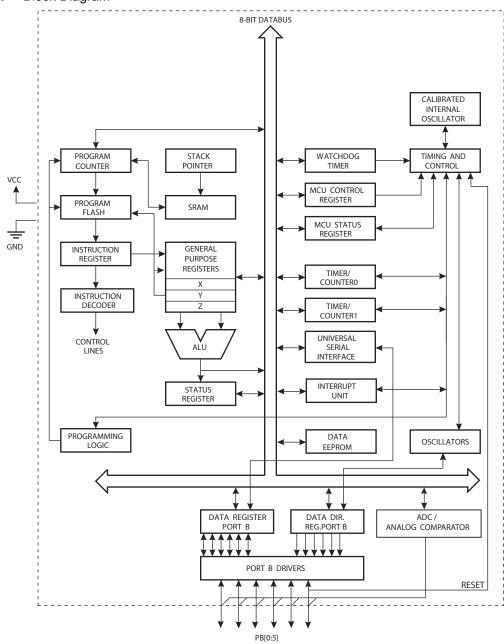
Port B also serves the functions of various special features of the ATtiny25/45/85 as listed in "Alternate Functions of Port B" on page 60.

On ATtiny25, the programmable I/O ports PB3 and PB4 (pins 2 and 3) are exchanged in ATtiny15 Compatibility Mode for supporting the backward compatibility with ATtiny15.

1.1.4 **RESET**

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running and provided the reset pin has not been disabled. The minimum pulse length is given in Table 21-4 on page 165. Shorter pulses are not guaranteed to generate a reset.

The reset pin can also be used as a (weak) I/O pin.



2. Overview

The ATtiny25/45/85 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny25/45/85 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATtiny25/45/85 provides the following features: 2/4/8K bytes of In-System Programmable Flash, 128/256/512 bytes EEPROM, 128/256/256 bytes SRAM, 6 general purpose I/O lines, 32 general purpose working registers, one 8-bit Timer/Counter with compare modes, one 8-bit high speed Timer/Counter, Universal Serial Interface, Internal and External Interrupts, a 4-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, and three software selectable power saving modes. Idle mode stops the CPU while allowing the SRAM, Timer/Counter, ADC, Analog Comparator, and Interrupt system to continue functioning. Power-down mode saves the register contents, disabling all chip functions until the next Interrupt or Hardware Reset. ADC Noise Reduction mode stops the CPU and all I/O modules except ADC, to minimize switching noise during ADC conversions.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the Program memory to be re-programmed In-System through an SPI serial interface, by a conventional non-volatile memory programmer or by an On-chip boot code running on the AVR core.

The ATtiny25/45/85 AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators and Evaluation kits.

4. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x3F	SREG	1	T	Н	S	V	N	Z	С	page 8
0x3E	SPH	-	-	_	-	_	-	SP9	SP8	page 11
0x3D	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	page 11
0x3C	Reserved		•	•	•	_				, ,
0x3B	GIMSK	-	INT0	PCIE	_	_	_	_	-	page 51
0x3A	GIFR	_	INTF0	PCIF	-	_	_	_	_	page 52
0x39	TIMSK	-	OCIE1A	OCIE1B	OCIE0A	OCIE0B	TOIE1	TOIE0	-	pages 81, 102
0x38	TIFR	_	OCF1A	OCF1B	OCF0A	OCF0B	TOV1	TOV0	_	page 81
0x37	SPMCSR	-	-	RSIG	СТРВ	RFLB	PGWRT	PGERS	SPMEN	page 145
0x36	Reserved					_				
0x35	MCUCR	BODS	PUD	SE	SM1	SM0	BODSE	ISC01	ISC00	pages 37, 51, 64
0x34	MCUSR	-	-	_	-	WDRF	BORF	EXTRF	PORF	page 44,
0x33	TCCR0B	FOC0A	FOC0B	_	-	WGM02	CS02	CS01	CS00	page 79
0x32	TCNT0		•	•	Timer/0	Counter0		•	'	page 80
0x31	OSCCAL				Oscillator Calil	oration Register				page 31
0x30	TCCR1	CTC1	PWM1A	COM1A1	COM1A0	CS13	CS12	CS11	CS10	pages 89, 100
0x2F	TCNT1					Counter1				pages 91, 102
0x2E	OCR1A			Time	r/Counter1 Outp		ister A			pages 91, 102
0x2D	OCR1C				/Counter1 Outp					pages 91, 102
0x2C	GTCCR	TSM	PWM1B	COM1B1	COM1B0	FOC1B	FOC1A	PSR1	PSR0	pages 77, 90, 101
0x2B	OCR1B	1		1	r/Counter1 Outp					page 92
0x2A	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0			WGM01	WGM00	page 77
0x29	OCR0A	001110711	00		Counter0 - Out	out Compare Re	nister A		11000	page 80
0x28	OCR0B				Counter0 - Out		•			page 81
0x27	PLLCSR	LSM	_	_		_	PCKE	PLLE	PLOCK	pages 94, 103
0x26	CLKPR	CLKPCE	_	_	_	CLKPS3	CLKPS2	CLKPS1	CLKPS0	page 32
0x25	DT1A	DT1AH3	DT1AH2	DT1AH1	DT1AH0	DT1AL3	DT1AL2	DT1AL1	DT1AL0	page 107
0x24	DT1B	DT1BH3	DT1BH2	DT1BH1	DT1BH0	DT1BL3	DT1BL2	DT1BL1	DT1BL0	page 107
0x23	DTPS1	-	-	-	-	-	-	DTPS11	DTPS10	page 106
0x22	DWDR				DWD	R[7:0]		DITOIT	D11 010	page 140
0x21	WDTCR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	page 45
0x20	PRR	-	WDIE	WBI 3	WDGE	PRTIM1	PRTIM0	PRUSI	PRADC	page 36
0x1F	EEARH	_				FIXTHVIT	FICTIVIO	FROSI	EEAR8	page 30
0x1E	EEARL	EEAR7	EEAR6	EEAR5	EEAR4	EEAR3	EEAR2	EEAR1	EEAR0	
0x1D	EEDR	LLAN7	LLANO	LLANS		ata Register	LLANZ	LLANI	LLANO	page 21 page 21
0x1C	EECR	_	_	EEPM1	EEPM0	EERIE	EEMPE	EEPE	EERE	
0x1C 0x1B	Reserved	_	_	EEFIVII	EEFINIO	EERIE	CEIVIFE	CCFC	EERE	page 21
0x1A	Reserved									
						_				
0x19	Reserved	_	_	DODTDE	DODTD4	DODTDA	DODTDO	DODTD4	DODTDO	nana C4
0x18	PORTB			PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 64
0x17	DDRB	-	_	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	page 64
0x16	PINB	_	-	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	page 64
0x15	PCMSK	_	-	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	page 52
0x14	DIDR0	-	_	ADC0D	ADC2D	ADC3D	ADC1D	AIN1D	AIN0D	pages 121, 138
0x13	GPIOR2	+				se I/O Register 2				page 10
0x12	GPIOR1	+				se I/O Register 1				page 10
0x11	GPIOR0	+				se I/O Register 0				page 10
0x10	USIBR	+				er Register				page 115
0x0F	USIDR	LICIOIE	HOIOIE	Heise	1	Register	LIGICATES	HOICHT	LIGIONETO	page 115
0x0E	USISR	USISIF	USIOIF	USIPF	USIDC	USICNT3	USICNT2	USICNT1	USICNT0	page 115
0x0D	USICR	USISIE	USIOIE	USIWM1	USIWM0	USICS1	USICS0	USICLK	USITC	page 116
0x0C	Reserved					_				
0x0B	Reserved					_				
0x0A	Reserved					-				
0x09	Reserved					_				
0x08	ACSR	ACD	ACBG	ACO	ACI	ACIE	_	ACIS1	ACIS0	page 120
0x07	ADMUX	REFS1	REFS0	ADLAR	REFS2	MUX3	MUX2	MUX1	MUX0	page 134
0x06	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	page 136
0x05	ADCH	1			ADC Data Reg	gister High Byte				page 137
0x04	ADCL		1		ADC Data Re	gister Low Byte	ı	ı		page 137
0x03	ADCSRB	BIN	ACME	IPR	-	_	ADTS2	ADTS1	ADTS0	pages 120, 137
0x02	Reserved									
0x01	Reserved					-				
0/10 1						_				

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses

Ordering Information

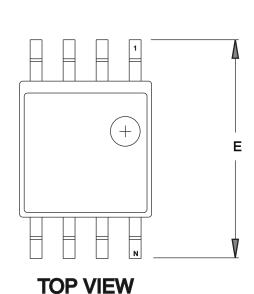
ATtiny25 6.1

Speed (MHz) (1)	Supply Voltage (V)	Temperature Range	Package ⁽²⁾	Ordering Code (3)
			8P3	ATtiny25V-10PU
			8S2	ATtiny25V-10SU ATtiny25V-10SUR ATtiny25V-10SH ATtiny25V-10SHR
10	1.8 – 5.5	Industrial (-40°C to +85°C) ⁽⁴⁾	S8S1	ATtiny25V-10SSU ATtiny25V-10SSUR ATtiny25V-10SSH ATtiny25V-10SSHR
.0	110 010		20M1	ATtiny25V-10MU ATtiny25V-10MUR
		Industrial (-40°C to +105°C) ⁽⁵⁾	8S2	ATtiny25V-10SN ATtiny25V-10SNR
			S8S1	ATtiny25V-10SSN ATtiny25V-10SSNR
		Industrial (-40°C to +125°C) (6)	20M1	ATtiny25V-10MF ATtiny25V-10MFR
		Industrial (-40°C to +85°C) ⁽⁴⁾ 2.7 – 5.5	8P3	ATtiny25-20PU
	2.7 – 5.5		8S2	ATtiny25-20SU ATtiny25-20SUR ATtiny25-20SH ATtiny25-20SHR
20			S8S1	ATtiny25-20SSU ATtiny25-20SSUR ATtiny25-20SSH ATtiny25-20SSHR
			20M1	ATtiny25-20MU ATtiny25-20MUR
		Industrial	8S2	ATtiny25-20SN ATtiny25-20SNR
		(-40°C to +105°C) ⁽⁵⁾	S8S1	ATtiny25-20SSN ATtiny25-20SSNR
		Industrial (-40°C to +125°C) (6)	20M1	ATtiny25-20MF ATtiny25-20MFR

- Notes: 1. For speed vs. supply voltage, see section 21.3 "Speed" on page 163.
 - 2. All Pb-free, halide-free, fully green, and comply with European directive for Restriction of Hazardous Substances (RoHS).
 - 3. Code indicators: H = NiPdAu lead finish, U/N = matte tin, R = tape & reel.
 - 4. Can also be supplied in wafer form. Contact your local Atmel sales office for ordering information and minimum quantities.
 - 5. For characteristics, see "Appendix A Specification at 105°C".
 - 6. For characteristics, see "Appendix B Specification at 125°C".

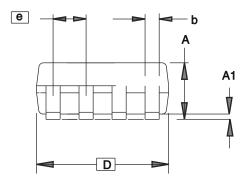
Package Types					
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)				
8S2 8-lead, 0.208" Wide, Plastic Gull-Wing Small Outline (EIAJ SOIC)					
S8S1	8-lead, 0.150" Wide, Plastic Gull-Wing Small Outline (JEDEC SOIC)				
20M1	20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)				

6.3 ATtiny85


Speed (MHz) (1)	Supply Voltage (V)	Temperature Range	Package (2)	Ordering Code (3)
	1.8 – 5.5	Industrial (-40°C to +85°C) ⁽⁴⁾	8P3	ATtiny85V-10PU
10			8S2	ATtiny85V-10SU ATtiny85V-10SUR ATtiny85V-10SH ATtiny85V-10SHR
			20M1	ATtiny85V-10MU ATtiny85V-10MUR
	2.7 – 5.5	Industrial (-40°C to +85°C) ⁽⁴⁾	8P3	ATtiny85-20PU
20			8S2	ATtiny85-20SU ATtiny85-20SUR ATtiny85-20SH ATtiny85-20SHR
			20M1	ATtiny85-20MU ATtiny85-20MUR


Notes: 1. For speed vs. supply voltage, see section 21.3 "Speed" on page 163.

- 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard-ous Substances (RoHS).
- 3. Code indicators:
 - H: NiPdAu lead finish
 - U: matte tinR: tape & reel
- 4. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.


Package Types					
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)				
8S2 8-lead, 0.208" Wide, Plastic Gull-Wing Small Outline (EIAJ SOIC)					
20M1	20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)				

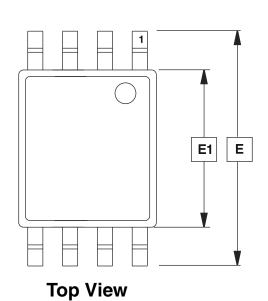
END VIEW

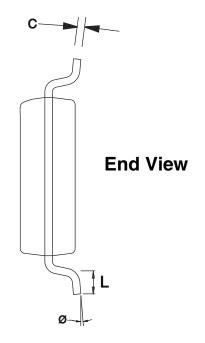
COMMON DIMENSIONS (Unit of Measure = mm)

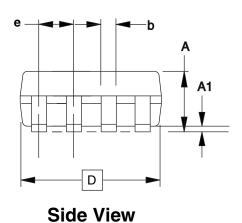
SYMBOL	MIN	NOM	MAX	NOTE
Α	1.70		2.16	
A1	0.05		0.25	
b	0.35		0.48	4
С	0.15		0.35	4
D	5.13		5.35	
E1	5.18		5.40	2
Е	7.70		8.26	
L	0.51		0.85	
θ	0°		8°	
е	1.27 BSC			3

SIDE VIEW

- Notes: 1. This drawing is for general information only; refer to EIAJ Drawing EDR-7320 for additional information.


 2. Mismatch of the upper and lower dies and resin burrs aren't included.


 - 3. Determines the true geometric position.
 - 4. Values b,C apply to plated terminal. The standard thickness of the plating layer shall measure between 0.007 to .021 mm.

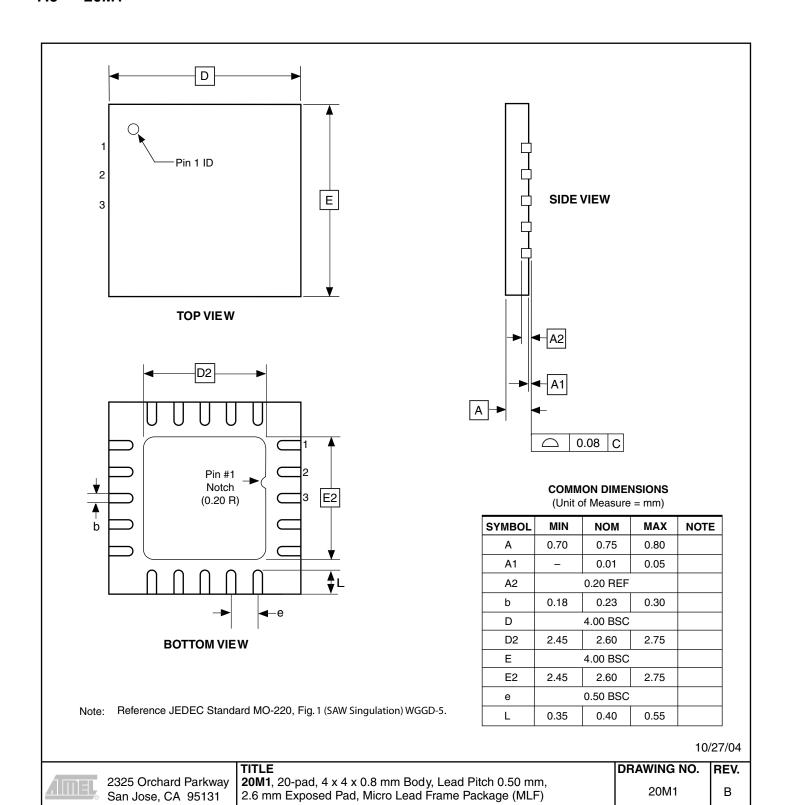

4/15/08

	TITLE	GPC	DRAWING NO.	REV.
Package Drawing Contact: packagedrawings@atmel.com	8S2, 8-lead, 0.208" Body, Plastic Small Outline Package (EIAJ)	STN	8S2	F

COMMON DIMENSIONS (Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	1.05	1.10	1.20	
A1	0.05	0.10	0.15	
b	0.25	_	0.30	
С	-	0.127	ı	
D	2.90	3.05	3.10	
E1	4.30	4.40	4.50	
Е	6.20	6.40	6.60	
е				
L	0.50	0.60	0.70	
Ø	0°	_	8°	

Note: These drawings are for general information only. Refer to JEDEC Drawing MO-153AC.


4/14/05

<u>AIMEL</u>

2325 Orchard Parkway San Jose, CA 95131 **TITLE 8X**, 8-lead, 4.4 mm Body Width, Plastic Thin Shrink Small Outline Package (TSSOP)

DRAWING NO. REV. A

7.5 20M1

8. Errata

8.1 Errata ATtiny25

The revision letter in this section refers to the revision of the ATtiny25 device.

8.1.1 Rev D - F

No known errata.

8.1.2 Rev B - C

. EEPROM read may fail at low supply voltage / low clock frequency

1. EEPROM read may fail at low supply voltage / low clock frequency

Trying to read EEPROM at low clock frequencies and/or low supply voltage may result in invalid data.

Problem Fix/Workaround

Do not use the EEPROM when clock frequency is below 1MHz and supply voltage is below 2V. If operating frequency can not be raised above 1MHz then supply voltage should be more than 2V. Similarly, if supply voltage can not be raised above 2V then operating frequency should be more than 1MHz.

This feature is known to be temperature dependent but it has not been characterised. Guidelines are given for room temperature, only.

8.1.3 Rev A

Not sampled.

8.2 Errata ATtiny45

The revision letter in this section refers to the revision of the ATtiny45 device.

8.2.1 Rev F - G

No known errata

8.2.2 Rev D – E

• EEPROM read may fail at low supply voltage / low clock frequency

1. EEPROM read may fail at low supply voltage / low clock frequency

Trying to read EEPROM at low clock frequencies and/or low supply voltage may result in invalid data.

Problem Fix/Workaround

Do not use the EEPROM when clock frequency is below 1MHz and supply voltage is below 2V. If operating frequency can not be raised above 1MHz then supply voltage should be more than 2V. Similarly, if supply voltage can not be raised above 2V then operating frequency should be more than 1MHz.

This feature is known to be temperature dependent but it has not been characterised. Guidelines are given for room temperature, only.

8.2.3 Rev B - C

- PLL not locking
- EEPROM read from application code does not work in Lock Bit Mode 3
- EEPROM read may fail at low supply voltage / low clock frequency
- Timer Counter 1 PWM output generation on OC1B- XOC1B does not work correctly

1. PLL not locking

When at frequencies below 6.0 MHz, the PLL will not lock

Problem fix / Workaround

When using the PLL, run at 6.0 MHz or higher.

2. EEPROM read from application code does not work in Lock Bit Mode 3

When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does not work from the application code.

Problem Fix/Work around

Do not set Lock Bit Protection Mode 3 when the application code needs to read from EEPROM.

3. EEPROM read may fail at low supply voltage / low clock frequency

Trying to read EEPROM at low clock frequencies and/or low supply voltage may result in invalid data.

Problem Fix/Workaround

Do not use the EEPROM when clock frequency is below 1MHz and supply voltage is below 2V. If operating frequency can not be raised above 1MHz then supply voltage should be more than 2V. Similarly, if supply voltage can not be raised above 2V then operating frequency should be more than 1MHz.

This feature is known to be temperature dependent but it has not been characterised. Guidelines are given for room temperature, only.

4. Timer Counter 1 PWM output generation on OC1B - XOC1B does not work correctly

Timer Counter1 PWM output OC1B-XOC1B does not work correctly. Only in the case when the control bits, COM1B1 and COM1B0 are in the same mode as COM1A1 and COM1A0, respectively, the OC1B-XOC1B output works correctly.

Problem Fix/Work around

The only workaround is to use same control setting on COM1A[1:0] and COM1B[1:0] control bits, see table 14-4 in the data sheet. The problem has been fixed for Tiny45 rev D.

8.2.4 Rev A

- Too high power down power consumption
- DebugWIRE looses communication when single stepping into interrupts
- PLL not locking
- EEPROM read from application code does not work in Lock Bit Mode 3
- EEPROM read may fail at low supply voltage / low clock frequency

1. Too high power down power consumption

Three situations will lead to a too high power down power consumption. These are:

- An external clock is selected by fuses, but the I/O PORT is still enabled as an output.
- The EEPROM is read before entering power down.
- VCC is 4.5 volts or higher.

Problem fix / Workaround

- When using external clock, avoid setting the clock pin as Output.
- Do not read the EEPROM if power down power consumption is important.
- Use VCC lower than 4.5 Volts.

2. DebugWIRE looses communication when single stepping into interrupts

When receiving an interrupt during single stepping, debugwire will loose

Problem fix / Workaround

- When singlestepping, disable interrupts.
- When debugging interrupts, use breakpoints within the interrupt routine, and run into the interrupt.

3. PLL not locking

communication.

When at frequencies below 6.0 MHz, the PLL will not lock

Problem fix / Workaround

When using the PLL, run at 6.0 MHz or higher.

4. EEPROM read from application code does not work in Lock Bit Mode 3

When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does not work from the application code.

Problem Fix/Work around

Do not set Lock Bit Protection Mode 3 when the application code needs to read from EEPROM.

5. EEPROM read may fail at low supply voltage / low clock frequency

Trying to read EEPROM at low clock frequencies and/or low supply voltage may result in invalid data.

Problem Fix/Workaround

Do not use the EEPROM when clock frequency is below 1MHz and supply voltage is below 2V. If operating frequency can not be raised above 1MHz then supply voltage should be more than 2V. Similarly, if supply voltage can not be raised above 2V then operating frequency should be more than 1MHz.

This feature is known to be temperature dependent but it has not been characterized. Guidelines are given for room temperature, only.

8.3 Errata ATtiny85

The revision letter in this section refers to the revision of the ATtiny85 device.

8.3.1 Rev B - C

No known errata.

8.3.2 Rev A

• EEPROM read may fail at low supply voltage / low clock frequency

1. EEPROM read may fail at low supply voltage / low clock frequency

Trying to read EEPROM at low clock frequencies and/or low supply voltage may result in invalid data.

Problem Fix/Workaround

Do not use the EEPROM when clock frequency is below 1MHz and supply voltage is below 2V. If operating frequency can not be raised above 1MHz then supply voltage should be more than 2V. Similarly, if supply voltage can not be raised above 2V then operating frequency should be more than 1MHz.

This feature is known to be temperature dependent but it has not been characterised. Guidelines are given for room temperature, only.

9. Datasheet Revision History

9.1 Rev. 2586Q-08/13

1. "Bit 3 – FOC1B: Force Output Compare Match 1B" description in "GTCCR – General Timer/Counter1 Control Register" on page 90 updated: PB3 in "compare match output pin PB3 (OC1B)" corrected to PB4.

9.2 Rev. 2586P-06/13

1. Updated description of "EEARH – EEPROM Address Register" and "EEARL – EEPROM Address Register" on page 20.

9.3 Rev. 2586O-02/13

Updated ordering codes on page 11, page 12, and page 13.

9.4 Rev. 2586N-04/11

- 1. Added:
 - Section "Capacitive Touch Sensing" on page 6.
- 2. Updated:
 - Document template.
 - Removed "Preliminary" on front page. All devices now final and in production.
 - Section "Limitations" on page 36.
 - Program example on page 49.
 - Section "Overview" on page 122.
 - Table 17-4 on page 135.
 - Section "Limitations of debugWIRE" on page 140.
 - Section "Serial Programming Algorithm" on page 151.
 - Table 21-7 on page 166.
 - EEPROM errata on pages 19, 19, 20, 21, and 22
 - Ordering information on pages 11, 12, and 13.

9.5 Rev. 2586M-07/10

- 1. Clarified Section 6.4 "Clock Output Buffer" on page 31.
- 2. Added Ordering Codes -SN and -SNR for ATtiny25 extended temperature.

9.6 Rev. 2586L-06/10

- 1. Added:
 - TSSOP for ATtiny45 in "Features" on page 1, Pinout Figure 1-1 on page 2, Ordering Information in Section 6.2 "ATtiny45" on page 12, and Packaging Information in Section 7.4 "8X" on page 17
 - Table 6-11, "Capacitance of Low-Frequency Crystal Oscillator," on page 29
 - Figure 22-36 on page 191 and Figure 22-37 on page 191, Typical Characteristics plots for Bandgap Voltage vs. V_{CC} and Temperature
 - Extended temperature in Section 6.1 "ATtiny25" on page 11, Ordering Information

 Tape & reel part numbers in Ordering Information, in Section 6.1 "ATtiny25" on page 11 and Section 6.2 "ATtiny45" on page 12

2. Updated:

- "Features" on page 1, removed Preliminary from ATtiny25
- Section 8.4.2 "Code Example" on page 44
- "PCMSK Pin Change Mask Register" on page 52, Bit Descriptions
- "TCCR1 Timer/Counter1 Control Register" on page 89 and "GTCCR General Timer/Counter1
 Control Register" on page 90, COM bit descriptions clarified
- Section 20.3.2 "Calibration Bytes" on page 150, frequencies (8 MHz, 6.4 MHz)
- Table 20-11, "Minimum Wait Delay Before Writing the Next Flash or EEPROM Location," on page 153, value for t_{WD_ERASE}
- Table 20-16, "High-voltage Serial Programming Instruction Set for ATtiny25/45/85," on page 158
- Table 21-1, "DC Characteristics. T_A = -40°C to +85°C," on page 161, notes adjusted
- Table 21-11, "Serial Programming Characteristics, T_A = -40°C to +85°C, V_{CC} = 1.8 5.5V (Unless Otherwise Noted)," on page 170, added t_{SLIV}
- Bit syntax throughout the datasheet, e.g. from CS02:0 to CS0[2:0].

9.7 Rev. 2586K-01/08

- 1. Updated Document Template.
- 2. Added Sections:
 - "Data Retention" on page 6
 - "Low Level Interrupt" on page 49
 - "Device Signature Imprint Table" on page 149
- 3. Updated Sections:
 - "Internal PLL for Fast Peripheral Clock Generation clkPCK" on page 24
 - "System Clock and Clock Options" on page 23
 - "Internal PLL in ATtiny15 Compatibility Mode" on page 24
 - "Sleep Modes" on page 34
 - "Software BOD Disable" on page 35
 - "External Interrupts" on page 49
 - "Timer/Counter1 in PWM Mode" on page 97
 - "USI Universal Serial Interface" on page 108
 - "Temperature Measurement" on page 133
 - "Reading Lock, Fuse and Signature Data from Software" on page 143
 - "Program And Data Memory Lock Bits" on page 147
 - "Fuse Bytes" on page 148
 - "Signature Bytes" on page 150
 - "Calibration Bytes" on page 150
 - "System and Reset Characteristics" on page 165
- 4. Added Figures:
 - "Reset Pin Output Voltage vs. Sink Current (V_{CC} = 3V)" on page 184
 - "Reset Pin Output Voltage vs. Sink Current ($V_{CC} = 5V$)" on page 185
 - "Reset Pin Output Voltage vs. Source Current (V_{CC} = 3V)" on page 185

9.9 Rev. 2586I-09/06

- 1. All Characterization data moved to "Electrical Characteristics" on page 161.
- 2. All Register Descriptions are gathered up in seperate sections in the end of each chapter.
- 3. Updated Table 11-3 on page 78, Table 11-5 on page 79, Table 11-6 on page 80 and Table 20-4 on page 148.
- 4. Updated "Calibrated Internal Oscillator" on page 27.
- 5. Updated Note in Table 7-1 on page 34.
- 6. Updated "System Control and Reset" on page 39.
- 7. Updated Register Description in "I/O Ports" on page 53.
- 8. Updated Features in "USI Universal Serial Interface" on page 108.
- Updated Code Example in "SPI Master Operation Example" on page 110 and "SPI Slave Operation Example" on page 111.
- 10. Updated "Analog Comparator Multiplexed Input" on page 119.
- 11. Updated Figure 17-1 on page 123.
- 12. Updated "Signature Bytes" on page 150.
- 13. Updated "Electrical Characteristics" on page 161.

9.10 Rev. 2586H-06/06

- 1. Updated "Calibrated Internal Oscillator" on page 27.
- 2. Updated Table 6.5.1 on page 31.
- 3. Added Table 21-2 on page 164.

9.11 Rev. 2586G-05/06

- 1. Updated "Internal PLL for Fast Peripheral Clock Generation clkPCK" on page 24.
- 2. Updated "Default Clock Source" on page 30.
- 3. Updated "Low-Frequency Crystal Oscillator" on page 29.
- 4. Updated "Calibrated Internal Oscillator" on page 27.
- 5. Updated "Clock Output Buffer" on page 31.
- 6. Updated "Power Management and Sleep Modes" on page 34.
- 7. Added "Software BOD Disable" on page 35.
- 8. Updated Figure 16-1 on page 119.
- 9. Updated "Bit 6 ACBG: Analog Comparator Bandgap Select" on page 120.
- 10. Added note for Table 17-2 on page 125.
- 11. Updated "Register Summary" on page 7.

9.12 Rev. 2586F-04/06

- 1. Updated "Digital Input Enable and Sleep Modes" on page 57.
- 2. Updated Table 20-16 on page 158.
- 3. Updated "Ordering Information" on page 11.

9.13 Rev. 2586E-03/06

- 1. Updated Features in "Analog to Digital Converter" on page 122.
- 2. Updated Operation in "Analog to Digital Converter" on page 122.
- 3. Updated Table 17-2 on page 133.
- 4. Updated Table 17-3 on page 134.
- 5. Updated "Errata" on page 19.

9.14 Rev. 2586D-02/06

- 1. Updated Table 6-13 on page 30, Table 6-10 on page 29, Table 6-3 on page 26, Table 6-9 on page 28, Table 6-5 on page 26, Table 9-1 on page 48, Table 17-4 on page 135, Table 20-16 on page 158, Table 21-8 on page 167.
- Updated "Timer/Counter1 in PWM Mode" on page 86.
- 3. Updated text "Bit 2 TOV1: Timer/Counter1 Overflow Flag" on page 93.
- 4. Updated values in "DC Characteristics" on page 161.
- 5. Updated "Register Summary" on page 7.
- 6. Updated "Ordering Information" on page 11.
- 7. Updated Rev B and C in "Errata ATtiny45" on page 19.
- 8. All references to power-save mode are removed.
- 9. Updated Register Adresses.

9.15 Rev. 2586C-06/05

- 1. Updated "Features" on page 1.
- 2. Updated Figure 1-1 on page 2.
- 3. Updated Code Examples on page 18 and page 19.
- 4. Moved "Temperature Measurement" to Section 17.12 page 133.
- 5. Updated "Register Summary" on page 7.
- 6. Updated "Ordering Information" on page 11.

9.16 Rev. 2586B-05/05

- CLKI added, instances of EEMWE/EEWE renamed EEMPE/EEPE, removed some TBD.
 - Removed "Preliminary Description" from "Temperature Measurement" on page 133.
- 2. Updated "Features" on page 1.
- 3. Updated Figure 1-1 on page 2 and Figure 8-1 on page 39.
- 4. Updated Table 7-2 on page 38, Table 10-4 on page 63, Table 10-5 on page 63
- 5. Updated "Serial Programming Instruction set" on page 153.
- 6. Updated SPH register in "Instruction Set Summary" on page 9.
- 7. Updated "DC Characteristics" on page 161.
- 8. Updated "Ordering Information" on page 11.
- 9. Updated "Errata" on page 19.

9.17 Rev. 2586A-02/05

Initial revision.

Enabling Unlimited Possibilities®

Atmel Corporation

1600 Technology Drive San Jose, CA 95110 USA

Tel: (+1) (408) 441-0311 **Fax:** (+1) (408) 487-2600

www.atmel.com

Atmel Asia Limited

Unit 01-5 & 16, 19F

BEA Tower, Millennium City 5 418 Kwun Tong Roa

Kwun Tong, Kowloon

HONG KONG

Tel: (+852) 2245-6100 **Fax:** (+852) 2722-1369

Atmel Munich GmbH

Business Campus Parkring 4

D-85748 Garching b. Munich

GERMANY

Tel: (+49) 89-31970-0 **Fax:** (+49) 89-3194621

Atmel Japan G.K.

16F Shin-Osaki Kangyo Bldg 1-6-4 Osaki, Shinagawa-ku

Tokyo 141-0032

JAPAN

Tel: (+81) (3) 6417-0300 **Fax:** (+81) (3) 6417-0370

© 2013 Atmel Corporation. All rights reserved. / Rev.: 2586QS-AVR-08/2013

Atmel[®], Atmel logo and combinations thereof, Enabling Unlimited Possibilities[®], AVR[®], tinyAVR[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.