

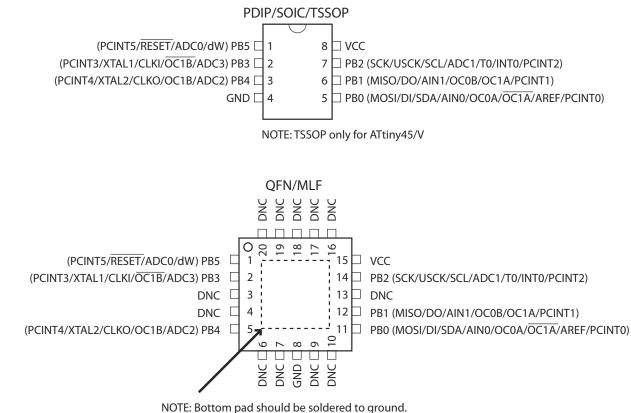
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Active
Core Processor	AVR
Core Size	8-Bit
Speed	10MHz
Connectivity	USI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.209", 5.30mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/attiny85v-10sur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Pin Configurations

Figure 1-1. Pinout ATtiny25/45/85

DNC: Do Not Connect

1.1 Pin Descriptions

1.1.1 VCC

Supply voltage.

1.1.2 GND

Ground.

1.1.3 Port B (PB5:PB0)

Port B is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATtiny25/45/85 as listed in "Alternate Functions of Port B" on page 60.

On ATtiny25, the programmable I/O ports PB3 and PB4 (pins 2 and 3) are exchanged in ATtiny15 Compatibility Mode for supporting the backward compatibility with ATtiny15.

1.1.4 **RESET**

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running and provided the reset pin has not been disabled. The minimum pulse length is given in Table 21-4 on page 165. Shorter pulses are not guaranteed to generate a reset.

The reset pin can also be used as a (weak) I/O pin.

The ATtiny25/45/85 provides the following features: 2/4/8K bytes of In-System Programmable Flash, 128/256/512 bytes EEPROM, 128/256/256 bytes SRAM, 6 general purpose I/O lines, 32 general purpose working registers, one 8-bit Timer/Counter with compare modes, one 8-bit high speed Timer/Counter, Universal Serial Interface, Internal and External Interrupts, a 4-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, and three software selectable power saving modes. Idle mode stops the CPU while allowing the SRAM, Timer/Counter, ADC, Analog Comparator, and Interrupt system to continue functioning. Power-down mode saves the register contents, disabling all chip functions until the next Interrupt or Hardware Reset. ADC Noise Reduction mode stops the CPU and all I/O modules except ADC, to minimize switching noise during ADC conversions.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the Program memory to be re-programmed In-System through an SPI serial interface, by a conventional non-volatile memory programmer or by an On-chip boot code running on the AVR core.

The ATtiny25/45/85 AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators and Evaluation kits. should never be written.

- 2. I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

Mnemonics	Operands	Description	Operation	Flags	#Clocks
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	s	Flag Set	$SREG(s) \leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	C	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable		1	1
CLI		Global Interrupt Disable		1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER I	NSTRUCTIONS				
MOV	Rd, Rr	Move Between Registers	$Rd \leftarrow Rr$	None	1
MOVW	Rd, Rr	Copy Register Word	$Rd+1:Rd \leftarrow Rr+1:Rr$	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1, Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD				None	2
LDD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$		
	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1, Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	$(Y + q) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	$(Z) \leftarrow Rr$	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow \operatorname{Rr}, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z+q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	$(k) \leftarrow Rr$	None	2
LPM	1	Load Program Memory	$R0 \leftarrow (Z)$	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
	Rd, Z+	Load Program Memory and Post-Inc		None	3
	ιζu, ∠+		$Rd \leftarrow (Z), Z \leftarrow Z+1$		3
SPM	D4 D	Store Program Memory	(z) ← R1:R0	None	
IN	Rd, P	In Port	Rd ← P	None	1
OUT	P, Rr	Out Port	$P \leftarrow Rr$	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
MCU CONTROL INS	STRUCTIONS				1
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/Timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

10

6. Ordering Information

6.1 ATtiny25

Speed (MHz) ⁽¹⁾	Supply Voltage (V)	Temperature Range	Package (2)	Ordering Code ⁽³⁾
10	1.8 – 5.5	Industrial (-40°C to +85°C) ⁽⁴⁾	8P3	ATtiny25V-10PU
			8S2	ATtiny25V-10SU ATtiny25V-10SUR ATtiny25V-10SH ATtiny25V-10SHR
			S8S1	ATtiny25V-10SSU ATtiny25V-10SSUR ATtiny25V-10SSH ATtiny25V-10SSHR
			20M1	ATtiny25V-10MU ATtiny25V-10MUR
		Industrial (-40°C to +105°C) ⁽⁵⁾	8S2	ATtiny25V-10SN ATtiny25V-10SNR
			S8S1	ATtiny25V-10SSN ATtiny25V-10SSNR
		Industrial (-40°C to +125°C) ⁽⁶⁾	20M1	ATtiny25V-10MF ATtiny25V-10MFR
			8P3	ATtiny25-20PU
20	2.7 – 5.5	Industrial (-40°C to +85°C) ⁽⁴⁾	8S2	ATtiny25-20SU ATtiny25-20SUR ATtiny25-20SH ATtiny25-20SHR
			S8S1	ATtiny25-20SSU ATtiny25-20SSUR ATtiny25-20SSH ATtiny25-20SSHR
			20M1	ATtiny25-20MU ATtiny25-20MUR
		Industrial (-40°C to +105°C) ⁽⁵⁾	8S2	ATtiny25-20SN ATtiny25-20SNR
			S8S1	ATtiny25-20SSN ATtiny25-20SSNR
		Industrial (-40°C to +125°C) ⁽⁶⁾	20M1	ATtiny25-20MF ATtiny25-20MFR

Notes: 1. For speed vs. supply voltage, see section 21.3 "Speed" on page 163.

2. All Pb-free, halide-free, fully green, and comply with European directive for Restriction of Hazardous Substances (RoHS).

3. Code indicators: H = NiPdAu lead finish, U/N = matte tin, R = tape & reel.

4. Can also be supplied in wafer form. Contact your local Atmel sales office for ordering information and minimum quantities.

5. For characteristics, see "Appendix A – Specification at 105°C".

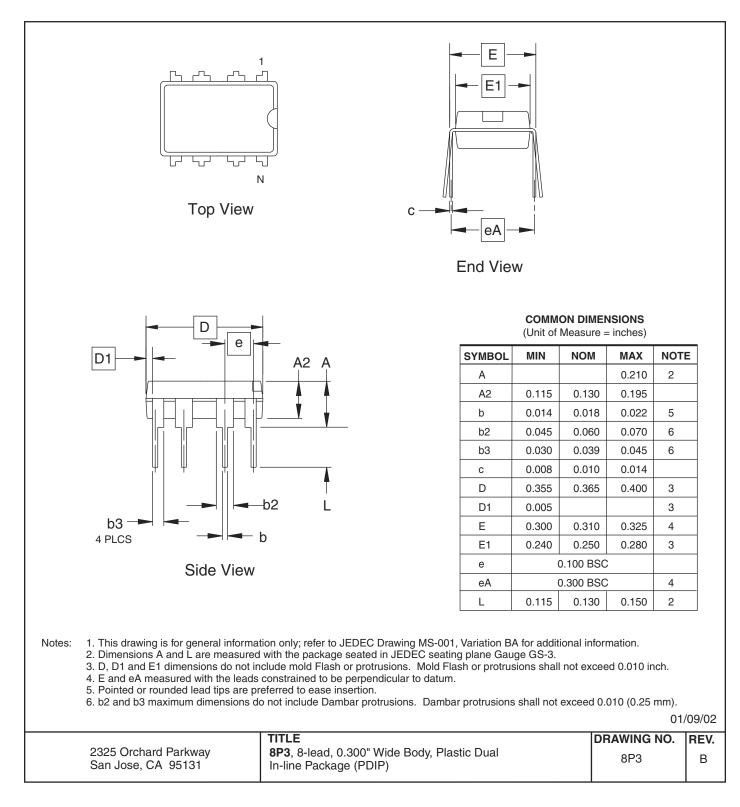
6. For characteristics, see "Appendix B – Specification at 125°C".

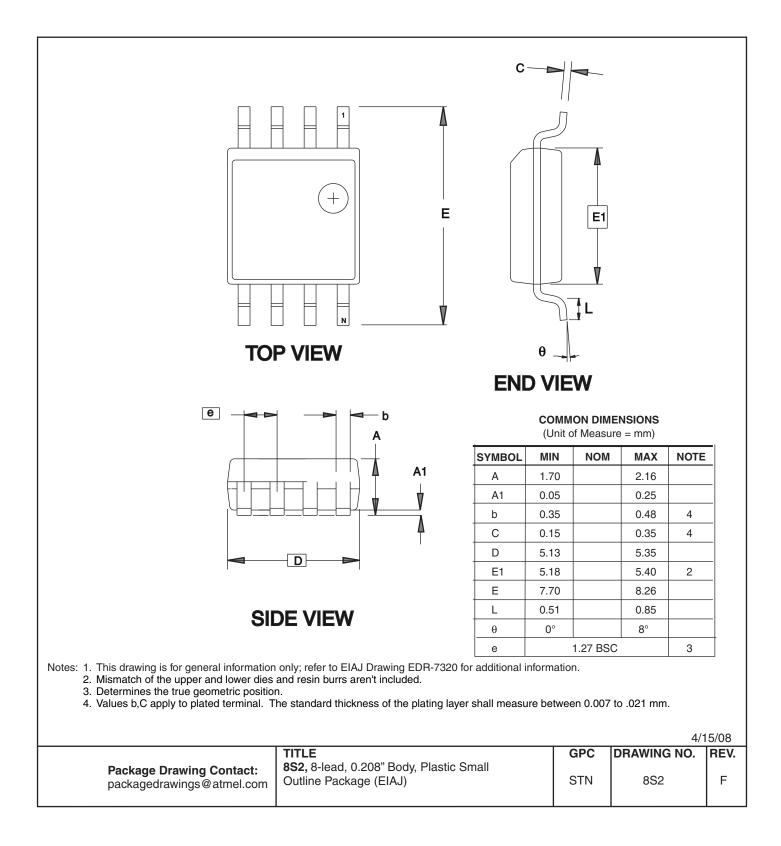
Package Types		
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)	
8S2	8-lead, 0.208" Wide, Plastic Gull-Wing Small Outline (EIAJ SOIC)	
S8S1	8-lead, 0.150" Wide, Plastic Gull-Wing Small Outline (JEDEC SOIC)	
20M1	20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)	

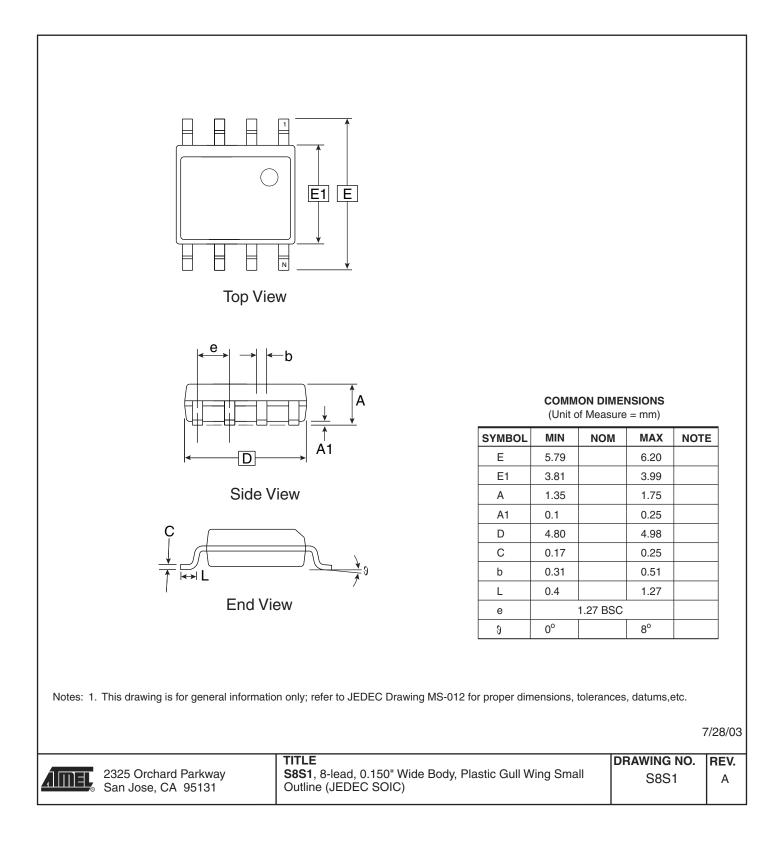
6.2 ATtiny45

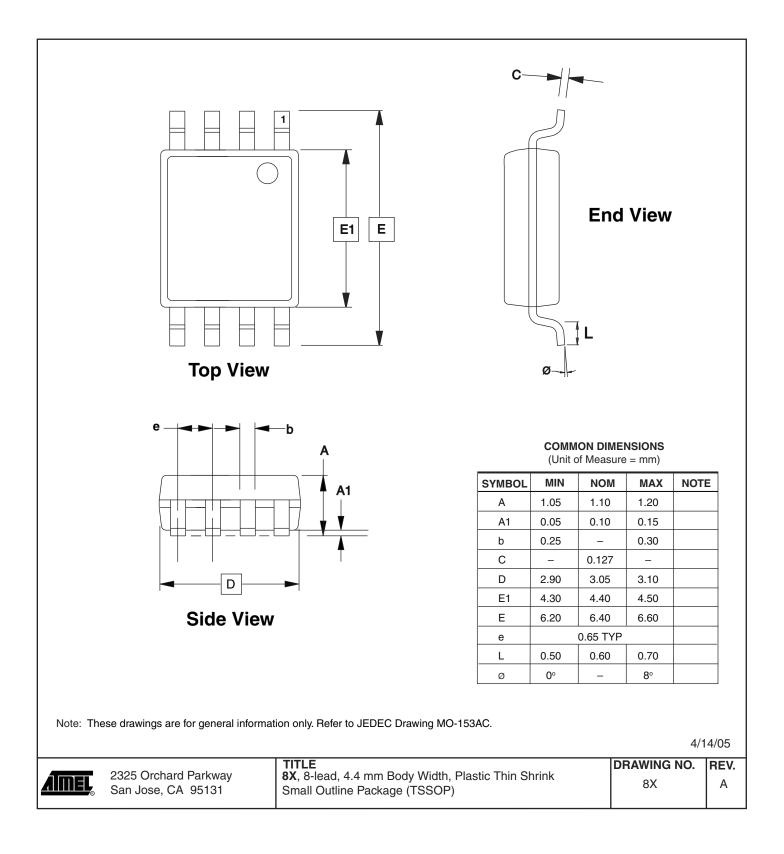
Speed (MHz) ⁽¹⁾	Supply Voltage (V)	Temperature Range	Package (2)	Ordering Code ⁽³⁾
10	1.8 – 5.5	Industrial (-40°C to +85°C) ⁽⁴⁾	8P3	ATtiny45V-10PU
			8S2	ATtiny45V-10SU ATtiny45V-10SUR ATtiny45V-10SH ATtiny45V-10SHR
			8X	ATtiny45V-10XU ATtiny45V-10XUR
			20M1	ATtiny45V-10MU ATtiny45V-10MUR
	2.7 – 5.5	Industrial (-40°C to +85°C) ⁽⁴⁾	8P3	ATtiny45-20PU
20			8S2	ATtiny45-20SU ATtiny45-20SUR ATtiny45-20SH ATtiny45-20SHR
			8X	ATtiny45-20XU ATtiny45-20XUR
			20M1	ATtiny45-20MU ATtiny45-20MUR

Notes: 1. For speed vs. supply voltage, see section 21.3 "Speed" on page 163.


2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS).


- 3. Code indicators:
 - H: NiPdAu lead finish
 - U: matte tin
 - R: tape & reel
- 4. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.


Package Types		
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)	
8S2	8-lead, 0.208" Wide, Plastic Gull-Wing Small Outline (EIAJ SOIC)	
8X	8-lead, 4.4 mm Wide, Plastic Thin Shrink Small Outline Package (TSSOP)	
20M1	20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)	


7. Packaging Information

7.1 8P3

8. Errata

8.1 Errata ATtiny25

The revision letter in this section refers to the revision of the ATtiny25 device.

8.1.1 Rev D – F

No known errata.

8.1.2 Rev B – C

• EEPROM read may fail at low supply voltage / low clock frequency

1. EEPROM read may fail at low supply voltage / low clock frequency

Trying to read EEPROM at low clock frequencies and/or low supply voltage may result in invalid data.

Problem Fix/Workaround

Do not use the EEPROM when clock frequency is below 1MHz and supply voltage is below 2V. If operating frequency can not be raised above 1MHz then supply voltage should be more than 2V. Similarly, if supply voltage can not be raised above 2V then operating frequency should be more than 1MHz.

This feature is known to be temperature dependent but it has not been characterised. Guidelines are given for room temperature, only.

8.1.3 Rev A

Not sampled.

8.2 Errata ATtiny45

The revision letter in this section refers to the revision of the ATtiny45 device.

8.2.1 Rev F – G

No known errata

8.2.2 Rev D – E

• EEPROM read may fail at low supply voltage / low clock frequency

1. EEPROM read may fail at low supply voltage / low clock frequency

Trying to read EEPROM at low clock frequencies and/or low supply voltage may result in invalid data.

Problem Fix/Workaround

Do not use the EEPROM when clock frequency is below 1MHz and supply voltage is below 2V. If operating frequency can not be raised above 1MHz then supply voltage should be more than 2V. Similarly, if supply voltage can not be raised above 2V then operating frequency should be more than 1MHz.

This feature is known to be temperature dependent but it has not been characterised. Guidelines are given for room temperature, only.

- When using external clock, avoid setting the clock pin as Output.
- Do not read the EEPROM if power down power consumption is important.
- Use VCC lower than 4.5 Volts.

2. DebugWIRE looses communication when single stepping into interrupts

When receiving an interrupt during single stepping, debugwire will loose

communication.

Problem fix / Workaround

- When singlestepping, disable interrupts.
- When debugging interrupts, use breakpoints within the interrupt routine, and run into the interrupt.

3. PLL not locking

When at frequencies below 6.0 MHz, the PLL will not lock

Problem fix / Workaround

When using the PLL, run at 6.0 MHz or higher.

4. EEPROM read from application code does not work in Lock Bit Mode 3

When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does not work from the application code.

Problem Fix/Work around

Do not set Lock Bit Protection Mode 3 when the application code needs to read from EEPROM.

5. EEPROM read may fail at low supply voltage / low clock frequency

Trying to read EEPROM at low clock frequencies and/or low supply voltage may result in invalid data.

Problem Fix/Workaround

Do not use the EEPROM when clock frequency is below 1MHz and supply voltage is below 2V. If operating frequency can not be raised above 1MHz then supply voltage should be more than 2V. Similarly, if supply voltage can not be raised above 2V then operating frequency should be more than 1MHz.

This feature is known to be temperature dependent but it has not been characterized. Guidelines are given for room temperature, only.

8.3 Errata ATtiny85

The revision letter in this section refers to the revision of the ATtiny85 device.

8.3.1 Rev B – C

No known errata.

8.3.2 Rev A

• EEPROM read may fail at low supply voltage / low clock frequency

1. EEPROM read may fail at low supply voltage / low clock frequency

Trying to read EEPROM at low clock frequencies and/or low supply voltage may result in invalid data.

Problem Fix/Workaround

Do not use the EEPROM when clock frequency is below 1MHz and supply voltage is below 2V. If operating frequency can not be raised above 1MHz then supply voltage should be more than 2V. Similarly, if supply voltage can not be raised above 2V then operating frequency should be more than 1MHz.

This feature is known to be temperature dependent but it has not been characterised. Guidelines are given for room temperature, only.

9. Datasheet Revision History

9.1 Rev. 2586Q-08/13

1. "Bit 3 – FOC1B: Force Output Compare Match 1B" description in "GTCCR – General Timer/Counter1 Control Register" on page 90 updated: PB3 in "compare match output pin PB3 (OC1B)" corrected to PB4.

9.2 Rev. 2586P-06/13

1. Updated description of "EEARH – EEPROM Address Register" and "EEARL – EEPROM Address Register" on page 20.

9.3 Rev. 2586O-02/13

Updated ordering codes on page 11, page 12, and page 13.

9.4 Rev. 2586N-04/11

- 1. Added:
 - Section "Capacitive Touch Sensing" on page 6.
- 2. Updated:
 - Document template.
 - Removed "Preliminary" on front page. All devices now final and in production.
 - Section "Limitations" on page 36.
 - Program example on page 49.
 - Section "Overview" on page 122.
 - Table 17-4 on page 135.
 - Section "Limitations of debugWIRE" on page 140.
 - Section "Serial Programming Algorithm" on page 151.
 - Table 21-7 on page 166.
 - EEPROM errata on pages 19, 19, 20, 21, and 22
 - Ordering information on pages 11, 12, and 13.

9.5 Rev. 2586M-07/10

- 1. Clarified Section 6.4 "Clock Output Buffer" on page 31.
- 2. Added Ordering Codes -SN and -SNR for ATtiny25 extended temperature.

9.6 Rev. 2586L-06/10

- 1. Added:
 - TSSOP for ATtiny45 in "Features" on page 1, Pinout Figure 1-1 on page 2, Ordering Information in Section 6.2 "ATtiny45" on page 12, and Packaging Information in Section 7.4 "8X" on page 17
 - Table 6-11, "Capacitance of Low-Frequency Crystal Oscillator," on page 29
 - Figure 22-36 on page 191 and Figure 22-37 on page 191, Typical Characteristics plots for Bandgap Voltage vs. V_{CC} and Temperature
 - Extended temperature in Section 6.1 "ATtiny25" on page 11, Ordering Information

- Tape & reel part numbers in Ordering Information, in Section 6.1 "ATtiny25" on page 11 and Section 6.2 "ATtiny45" on page 12
- 2. Updated:
 - "Features" on page 1, removed Preliminary from ATtiny25
 - Section 8.4.2 "Code Example" on page 44
 - "PCMSK Pin Change Mask Register" on page 52, Bit Descriptions
 - "TCCR1 Timer/Counter1 Control Register" on page 89 and "GTCCR General Timer/Counter1 Control Register" on page 90, COM bit descriptions clarified
 - Section 20.3.2 "Calibration Bytes" on page 150, frequencies (8 MHz, 6.4 MHz)
 - Table 20-11, "Minimum Wait Delay Before Writing the Next Flash or EEPROM Location," on page 153, value for t_{WD_ERASE}
 - Table 20-16, "High-voltage Serial Programming Instruction Set for ATtiny25/45/85," on page 158
 - Table 21-1, "DC Characteristics. $T_A = -40^{\circ}C$ to +85°C," on page 161, notes adjusted
 - Table 21-11, "Serial Programming Characteristics, $T_A = -40$ °C to +85°C, $V_{CC} = 1.8 5.5V$ (Unless Otherwise Noted)," on page 170, added t_{SLIV}
 - Bit syntax throughout the datasheet, e.g. from CS02:0 to CS0[2:0].

9.7 Rev. 2586K-01/08

- 1. Updated Document Template.
- 2. Added Sections:
 - "Data Retention" on page 6
 - "Low Level Interrupt" on page 49
 - "Device Signature Imprint Table" on page 149
- 3. Updated Sections:
 - "Internal PLL for Fast Peripheral Clock Generation clkPCK" on page 24
 - "System Clock and Clock Options" on page 23
 - "Internal PLL in ATtiny15 Compatibility Mode" on page 24
 - "Sleep Modes" on page 34
 - "Software BOD Disable" on page 35
 - "External Interrupts" on page 49
 - "Timer/Counter1 in PWM Mode" on page 97
 - "USI Universal Serial Interface" on page 108
 - "Temperature Measurement" on page 133
 - "Reading Lock, Fuse and Signature Data from Software" on page 143
 - "Program And Data Memory Lock Bits" on page 147
 - "Fuse Bytes" on page 148
 - "Signature Bytes" on page 150
 - "Calibration Bytes" on page 150
 - "System and Reset Characteristics" on page 165
- 4. Added Figures:
 - "Reset Pin Output Voltage vs. Sink Current (V_{CC} = 3V)" on page 184
 - "Reset Pin Output Voltage vs. Sink Current ($V_{CC} = 5V$)" on page 185
 - "Reset Pin Output Voltage vs. Source Current ($V_{CC} = 3V$)" on page 185

- "Reset Pin Output Voltage vs. Source Current (V_{CC} = 5V)" on page 186
- 5. Updated Figure:
 - "Reset Logic" on page 39
- 6. Updated Tables:
 - "Start-up Times for Internal Calibrated RC Oscillator Clock" on page 28
 - "Start-up Times for Internal Calibrated RC Oscillator Clock (in ATtiny15 Mode)" on page 28
 - "Start-up Times for the 128 kHz Internal Oscillator" on page 28
 - "Compare Mode Select in PWM Mode" on page 86
 - "Compare Mode Select in PWM Mode" on page 98
 - "DC Characteristics. $T_A = -40^{\circ}C$ to $+85^{\circ}C$ " on page 161
 - "Calibration Accuracy of Internal RC Oscillator" on page 164
 - "ADC Characteristics" on page 167
- 7. Updated Code Example in Section:
 - "Write" on page 17
- 8. Updated Bit Descriptions in:
 - "MCUCR MCU Control Register" on page 37
 - "Bits 7:6 COM0A[1:0]: Compare Match Output A Mode" on page 77
 - "Bits 5:4 COM0B[1:0]: Compare Match Output B Mode" on page 77
 - "Bits 2:0 ADTS[2:0]: ADC Auto Trigger Source" on page 138
 - "SPMCSR Store Program Memory Control and Status Register" on page 145.
- 9. Updated description of feature "EEPROM read may fail at low supply voltage / low clock frequency" in Sections:
 - "Errata ATtiny25" on page 19
 - "Errata ATtiny45" on page 19
 - "Errata ATtiny85" on page 22
- 10. Updated Package Description in Sections:
 - "ATtiny25" on page 11
 - "ATtiny45" on page 12
 - "ATtiny85" on page 13
- 11. Updated Package Drawing:
 - "S8S1" on page 16
- 12. Updated Order Codes for:
 - "ATtiny25" on page 11

9.8 Rev. 2586J-12/06

- 1. Updated "Low Power Consumption" on page 1.
- 2. Updated description of instruction length in "Architectural Overview" .
- Updated Flash size in "In-System Re-programmable Flash Program Memory" on page 15.
- 4. Updated cross-references in sections "Atomic Byte Programming", "Erase" and "Write", starting on page 17.
- 5. Updated "Atomic Byte Programming" on page 17.

9.9 Rev. 2586I-09/06

- 1. All Characterization data moved to "Electrical Characteristics" on page 161.
- 2. All Register Descriptions are gathered up in seperate sections in the end of each chapter.
- 3. Updated Table 11-3 on page 78, Table 11-5 on page 79, Table 11-6 on page 80 and Table 20-4 on page 148.
- 4. Updated "Calibrated Internal Oscillator" on page 27.
- 5. Updated Note in Table 7-1 on page 34.
- 6. Updated "System Control and Reset" on page 39.
- 7. Updated Register Description in "I/O Ports" on page 53.
- 8. Updated Features in "USI Universal Serial Interface" on page 108.
- 9. Updated Code Example in "SPI Master Operation Example" on page 110 and "SPI Slave Operation Example" on page 111.
- 10. Updated "Analog Comparator Multiplexed Input" on page 119.
- 11. Updated Figure 17-1 on page 123.
- 12. Updated "Signature Bytes" on page 150.
- 13. Updated "Electrical Characteristics" on page 161.

9.10 Rev. 2586H-06/06

- 1. Updated "Calibrated Internal Oscillator" on page 27.
- 2. Updated Table 6.5.1 on page 31.
- 3. Added Table 21-2 on page 164.

9.11 Rev. 2586G-05/06

- 1. Updated "Internal PLL for Fast Peripheral Clock Generation clkPCK" on page 24.
- 2. Updated "Default Clock Source" on page 30.
- 3. Updated "Low-Frequency Crystal Oscillator" on page 29.
- 4. Updated "Calibrated Internal Oscillator" on page 27.
- 5. Updated "Clock Output Buffer" on page 31.
- 6. Updated "Power Management and Sleep Modes" on page 34.
- 7. Added "Software BOD Disable" on page 35.
- 8. Updated Figure 16-1 on page 119.
- 9. Updated "Bit 6 ACBG: Analog Comparator Bandgap Select" on page 120.
- 10. Added note for Table 17-2 on page 125.
- 11. Updated "Register Summary" on page 7.

9.12 Rev. 2586F-04/06

- 1. Updated "Digital Input Enable and Sleep Modes" on page 57.
- 2. Updated Table 20-16 on page 158.
- 3. Updated "Ordering Information" on page 11.

9.13 Rev. 2586E-03/06

- 1. Updated Features in "Analog to Digital Converter" on page 122.
- 2. Updated Operation in "Analog to Digital Converter" on page 122.
- 3. Updated Table 17-2 on page 133.
- 4. Updated Table 17-3 on page 134.
- 5. Updated "Errata" on page 19.

9.14 Rev. 2586D-02/06

- 1. Updated Table 6-13 on page 30, Table 6-10 on page 29, Table 6-3 on page 26, Table 6-9 on page 28, Table 6-5 on page 26, Table 9-1 on page 48, Table 17-4 on page 135, Table 20-16 on page 158, Table 21-8 on page 167.
- 2. Updated "Timer/Counter1 in PWM Mode" on page 86.
- 3. Updated text "Bit 2 TOV1: Timer/Counter1 Overflow Flag" on page 93.
- 4. Updated values in "DC Characteristics" on page 161.
- 5. Updated "Register Summary" on page 7.
- 6. Updated "Ordering Information" on page 11.
- 7. Updated Rev B and C in "Errata ATtiny45" on page 19.
- 8. All references to power-save mode are removed.
- 9. Updated Register Adresses.

9.15 Rev. 2586C-06/05

- 1. Updated "Features" on page 1.
- 2. Updated Figure 1-1 on page 2.
- 3. Updated Code Examples on page 18 and page 19.
- 4. Moved "Temperature Measurement" to Section 17.12 page 133.
- 5. Updated "Register Summary" on page 7.
- 6. Updated "Ordering Information" on page 11.

9.16 Rev. 2586B-05/05

- 1. CLKI added, instances of EEMWE/EEWE renamed EEMPE/EEPE, removed some TBD.
 - Removed "Preliminary Description" from "Temperature Measurement" on page 133.
- 2. Updated "Features" on page 1.
- 3. Updated Figure 1-1 on page 2 and Figure 8-1 on page 39.
- 4. Updated Table 7-2 on page 38, Table 10-4 on page 63, Table 10-5 on page 63
- 5. Updated "Serial Programming Instruction set" on page 153.
- 6. Updated SPH register in "Instruction Set Summary" on page 9.
- 7. Updated "DC Characteristics" on page 161.
- 8. Updated "Ordering Information" on page 11.
- 9. Updated "Errata" on page 19.

9.17 Rev. 2586A-02/05

Initial revision.