

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.75K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f8525-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Nomo	Pin N	umber	Pin	Buffer	Description
Pin Name	PIC18F6X2X	PIC18F8X2X	Туре	Туре	Description
					PORTH is a bidirectional I/O port ⁽⁶⁾ .
RH0/A16	_	79			
RH0			I/O	ST	Digital I/O.
A16			0	TTL	External memory address 16.
RH1/A17	_	80			
RH1			I/O	ST	Digital I/O.
A17			0	TTL	External memory address 17.
RH2/A18	_	1			
RH2			I/O	ST	Digital I/O.
A18			0	TTL	External memory address 18.
RH3/A19	—	2			
RH3			I/O	ST	Digital I/O.
A19			0	TTL	External memory address 19.
RH4/AN12/P3C	—	22			
RH4			I/O	ST	Digital I/O.
AN12 P3C ⁽⁷⁾				Analog	Analog input 12.
			0	_	ECCP3 output P3C.
RH5/AN13/P3B	—	21			
RH5 AN13			I/O	ST	Digital I/O.
P3B ⁽⁷⁾				Analog	Analog input 13. ECCP3 output P3B.
-		20		_	
RH6/AN14/P1C RH6	_	20	I/O	ST	Digital I/O.
AN14				Analog	Analog input 14.
P1C ⁽⁷⁾			Ö		ECCP1 output P1C.
RH7/AN15/P1B	_	19	-		
RH7		10	I/O	ST	Digital I/O.
AN15			1	Analog	Analog input 15.
P1B ⁽⁷⁾			0	_ Ŭ	ECCP1 output P1B.

TABLE 1-2: PIC18F6525/6621/8525/8621 PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL compatible input

I.

Р

ST = Schmitt Trigger input with CMOS levels

CMOS = CMOS compatible input or output

Analog = Analog input

= Input = Power O = Output

OD = Open-Drain (no P diode to VDD)

Note 1: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX (CONFIG3H<0>) is not set (all Program Memory modes except Microcontroller).

2: Default assignment for ECCP2/P2A when CCP2MX is set (all devices).

3: External memory interface functions are only available on PIC18F8525/8621 devices.

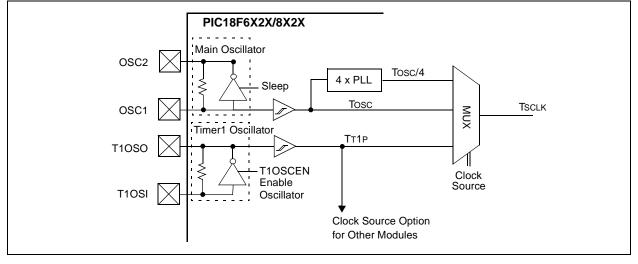
4: Default assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is set and for all PIC18F6525/6621 devices.

5: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX is not set (Microcontroller mode).

6: PORTH and PORTJ (and their multiplexed functions) are only available on PIC18F8525/8621 devices.

7: Alternate assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is not set.

8: AVDD must be connected to a positive supply and AVss must be connected to a ground reference for proper operation of the part in user or ICSP[™] modes. See parameter D001 for details.


9: RG5 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.

2.6 Oscillator Switching Feature

The PIC18F6525/6621/8525/8621 devices include a feature that allows the system clock source to be switched from the main oscillator to an alternate low frequency clock source. For the PIC18F6525/6621/8525/8621 devices, this alternate clock source is the Timer1 oscillator. If a low-frequency crystal (32 kHz, for example) has been attached to the Timer1 oscillator pins and the Timer1 oscillator has been enabled, the device can switch to a low-power execution mode.

Figure 2-7 shows a block diagram of the system clock sources. The clock switching feature is enabled by programming the Oscillator Switching Enable (OSCSEN) bit in the CONFIG1H Configuration register to a '0'. Clock switching is disabled in an erased device. See Section 12.0 "Timer1 Module" for further details of the Timer1 oscillator. See Section 24.0 "Special Features of the CPU" for Configuration register details.

FIGURE 2-7: DEVICE CLOCK SOURCES

5.0 FLASH PROGRAM MEMORY

The Flash program memory is readable, writable and erasable, during normal operation over the entire VDD range.

A read from program memory is executed on one byte at a time. A write to program memory is executed on blocks of 8 bytes at a time. Program memory is erased in blocks of 64 bytes at a time. A bulk erase operation may not be issued from user code.

Writing or erasing program memory will cease instruction fetches until the operation is complete. The program memory cannot be accessed during the write or erase, therefore, code cannot execute. An internal programming timer terminates program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program memory location that forms an invalid instruction results in a NOP.

5.1 Table Reads and Table Writes

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:

- Table Read (TBLRD)
- Table Write (TBLWT)

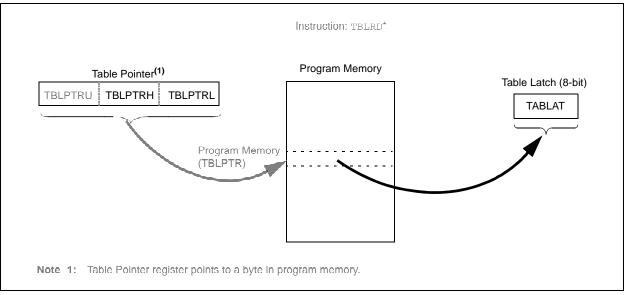

The program memory space is 16 bits wide, while the data RAM space is 8 bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register (TABLAT).

Table read operations retrieve data from program memory and place it into the data RAM space. Figure 5-1 shows the operation of a table read with program memory and data RAM.

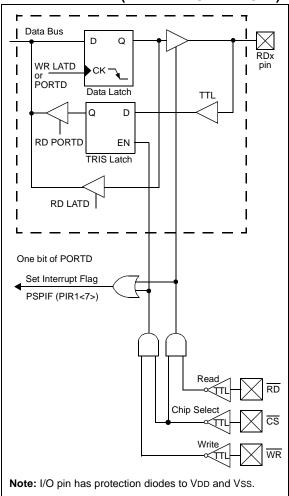
Table write operations store data from the data memory space into holding registers in program memory. The procedure to write the contents of the holding registers into program memory is detailed in **Section 5.5 "Writing to Flash Program Memory"**. Figure 5-2 shows the operation of a table write with program memory and data RAM.

Table operations work with byte entities. A table block containing data, rather than program instructions, is not required to be word aligned. Therefore, a table block can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word aligned.

FIGURE 5-1: TABLE READ OPERATION

10.10 Parallel Slave Port

PORTD also operates as an 8-bit wide Parallel Slave Port, or microprocessor port, when control bit PSPMODE (PSPCON<4>) is set. It is asynchronously readable and writable by the external world through RD control input pin, RE0/RD and WR control input pin, RE1/WR.

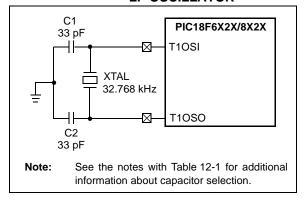

Note:	For PIC	18F852	25/86	21 devices,	the Para	allel				
	Slave	Port	is	available	only	in				
	Microco	ontroller	Microcontroller mode.							

The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD to be the RD input, RE1/WR to be the WR input and RE2/CS to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits, PCFG2:PCFG0 (ADCON1<2:0>), must be set, which will configure pins RE2:RE0 as digital I/O.

A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low.

The PORTE I/O pins become control inputs for the microprocessor port when bit PSPMODE (PSPCON<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs) and the ADCON1 is configured for digital I/O. In this mode, the input buffers are TTL.

FIGURE 10-24: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)



12.2 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low-power oscillator rated up to 200 kHz. It will continue to run during Sleep. It is primarily intended for a 32 kHz crystal. The circuit for a typical LP oscillator is shown in Figure 12-3. Table 12-1 shows the capacitor selection for the Timer1 oscillator.

The user must provide a software time delay to ensure proper start-up of the Timer1 oscillator.

FIGURE 12-3: EXTERNAL COMPONENTS FOR THE TIMER1 LP OSCILLATOR

TABLE 12-1: CAPACITOR SELECTION FOR THE ALTERNATE OSCILLATOR⁽²⁻⁴⁾

Osc Type	Freq	C1	C2					
LP	32 kHz	15-22 pF ⁽¹⁾	15-22 pF ⁽¹⁾					
Crystal Tested								
32.768 kHz								

- **Note 1:** Microchip suggests 33 pF as a starting point in validating the oscillator circuit.
 - **2:** Higher capacitance increases the stability of the oscillator but also increases the start-up time.
 - 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - 4: Capacitor values are for design guidance only.

12.3 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing the TMR1 Interrupt Enable bit, TMR1IE (PIE1<0>).

12.4 Resetting Timer1 Using an ECCP Special Trigger Output

If either the ECCP1 or ECCP2 module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1. The trigger for ECCP2 will also start an A/D conversion if the A/D module is enabled.

Note:	The special event triggers from the
	ECCP1 module will not set interrupt flag
	bit TMR1IF (PIR1<0>).

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from ECCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L register pair effectively becomes the period register for Timer1.

12.5 Timer1 16-Bit Read/Write Mode

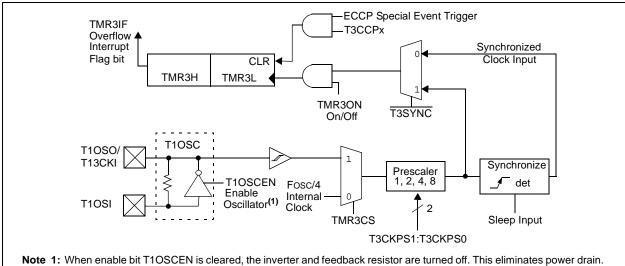
Timer1 can be configured for 16-bit reads and writes (see Figure 12-2). When the RD16 control bit (T1CON<7>) is set, the address for TMR1H is mapped to a buffer register for the high byte of Timer1. A read from TMR1L will load the contents of the high byte of Timer1 into the Timer1 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, is valid due to a rollover between reads.

A write to the high byte of Timer1 must also take place through the TMR1H Buffer register. Timer1 high byte is updated with the contents of TMR1H when a write occurs to TMR1L. This allows a user to write all 16 bits to both the high and low bytes of Timer1 at once.

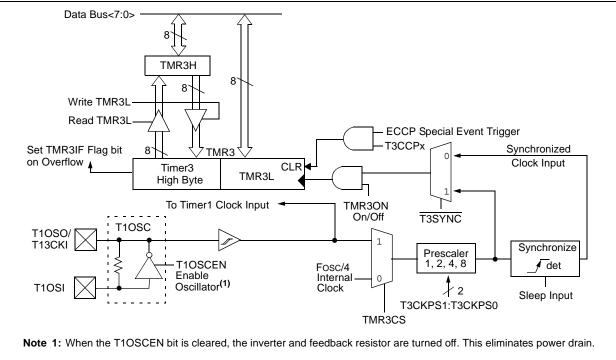
The high byte of Timer1 is not directly readable or writable in this mode. All reads and writes must take place through the Timer1 High Byte Buffer register. Writes to TMR1H do not clear the Timer1 prescaler. The prescaler is only cleared on writes to TMR1L.

14.1 Timer3 Operation

Timer3 can operate in one of these modes:


- As a timer
- As a synchronous counter
- As an asynchronous counter

The operating mode is determined by the clock select bit, TMR3CS (T3CON<1>).


When TMR3CS = 0, Timer3 increments every instruction cycle. When TMR3CS = 1, Timer3 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T13CKI pins become inputs. That is, the TRISC<1:0> value is ignored and the pins are read as '0'.

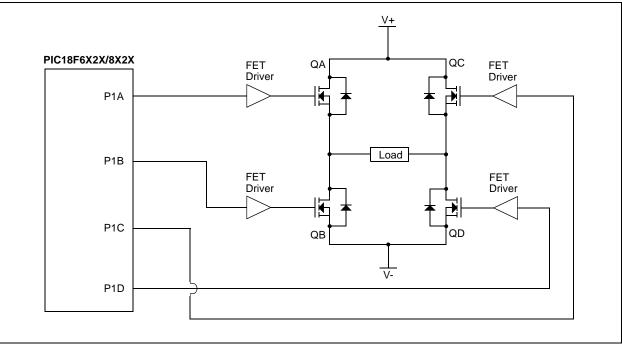

Timer3 also has an internal "Reset input". This Reset can be generated by the ECCP module (**Section 14.0** "**Timer3 Module**").

FIGURE 14-2: TIMER3 BLOCK DIAGRAM CONFIGURED IN 16-BIT READ/WRITE MODE

FIGURE 14-1: TIMER3 BLOCK DIAGRAM

FIGURE 17-7: EXAMPLE OF FULL-BRIDGE APPLICATION

17.4.5.1 Direction Change in Full-Bridge Mode

In the Full-Bridge Output mode, the P1M1 bit in the CCP1CON register allows users to control the forward/ reverse direction. When the application firmware changes this direction control bit, the module will assume the new direction on the next PWM cycle.

Just before the end of the current PWM period, the modulated outputs (P1B and P1D) are placed in their inactive state, while the unmodulated outputs (P1A and P1C) are switched to drive in the opposite direction. This occurs in a time interval of (4 Tosc * (Timer2 Prescale Value) before the next PWM period begins. The Timer2 prescaler will be either 1, 4 or 16, depending on the value of the T2CKPS bit (T2CON<1:0>). During the interval from the switch of the unmodulated outputs to the beginning of the next period, the modulated outputs (P1B and P1D) remain inactive. This relationship is shown in Figure 17-8.

Note that in the Full-Bridge Output mode, the ECCP1 module does not provide any dead-band delay. In general, since only one output is modulated at all times, dead-band delay is not required. However, there is a situation where a dead-band delay might be required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn-off time of the power switch, including the power device and driver circuit, is greater than the turn-on time.

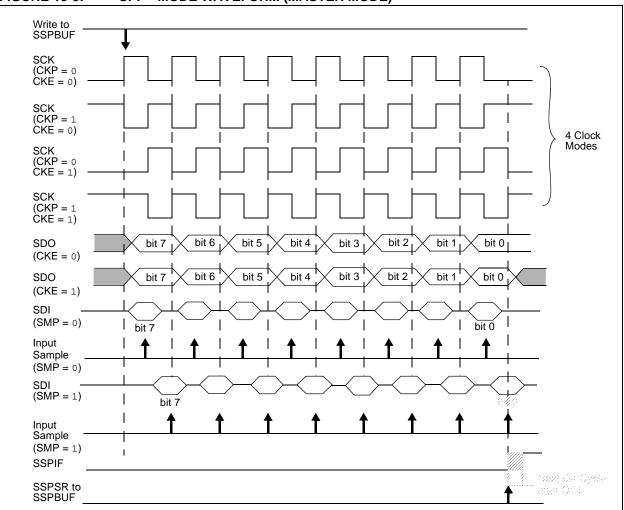
Figure 17-9 shows an example where the PWM direction changes from forward to reverse at a near 100% duty cycle. At time t1, the output P1A and P1D become inactive, while output P1C becomes active. In this example, since the turn-off time of the power devices is longer than the turn-on time, a shoot-through current may flow through power devices QC and QD (see Figure 17-7) for the duration of 't'. The same phenomenon will occur to power devices QA and QB for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, one of the following requirements must be met:

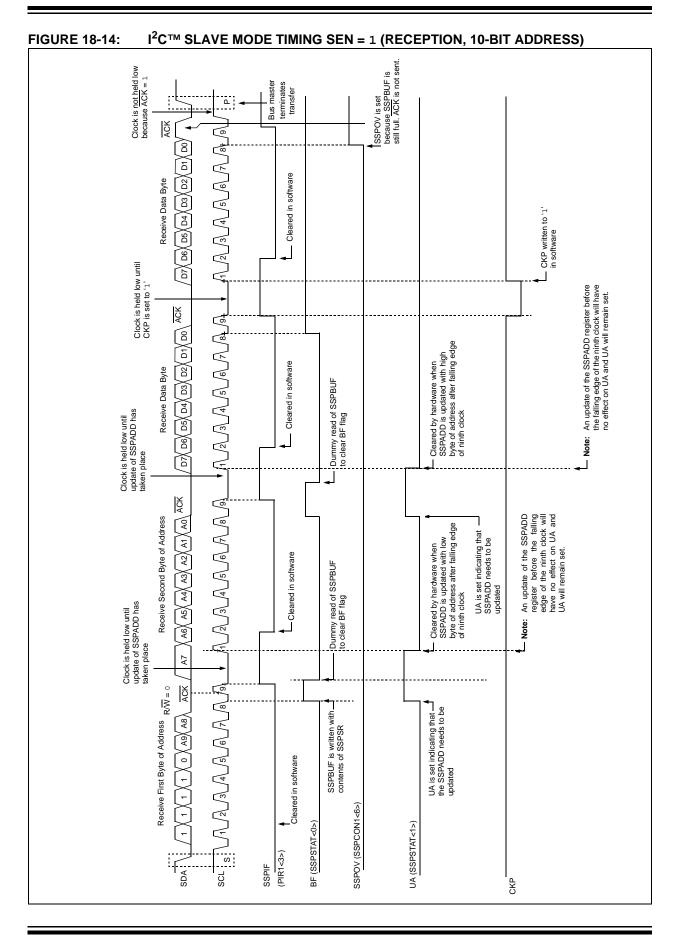
- 1. Reduce PWM for a PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

18.3.5 MASTER MODE


The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 18-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode. The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This then, would give waveforms for SPI communication as shown in Figure 18-3, Figure 18-5 and Figure 18-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:


- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 18-3 shows the waveforms for Master mode.

19.2.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper byte reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RXx/DTx line, while the EUSART is operating in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit (BAUDCONx<1>). Once set, the typical receive sequence on RXx/DTx is disabled and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RXx/DTx line. (This coincides with the start of a Sync Break or a Wake-up Signal character for the LIN protocol.)

Following a wake-up event, the module generates an RC1IF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 19-7) and asynchronously, if the device is in Sleep mode (Figure 19-8). The interrupt condition is cleared by reading the RCREGx register.

The WUE bit is automatically cleared once a low-to-high transition is observed on the RXx line following the wake-up event. At this point, the EUSART module is in Idle mode and returns to normal operation. This signals to the user that the Sync Break event is over.

19.2.4.1 Special Considerations Using Auto-Wake-up

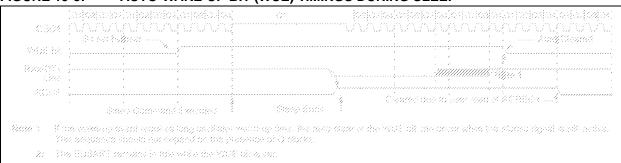
Since auto-wake-up functions by sensing rising edge transitions on RXx/DTx, information with any state changes before the Stop bit may signal a false end-of-

character and cause data or framing errors. To work properly, therefore, the initial character in the transmission must be all '0's. This can be 00h (8 bytes) for standard RS-232 devices, or 000h (12 bits) for LIN bus.

Oscillator start-up time must also be considered, especially in applications using oscillators with longer start-up intervals (i.e., XT or HS mode). The Sync Break (or Wake-up Signal) character must be of sufficient length and be followed by a sufficient interval to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

19.2.4.2 Special Considerations Using the WUE Bit

The timing of WUE and RCxIF events may cause some confusion when it comes to determining the validity of received data. As noted, setting the WUE bit places the EUSART in an Idle mode. The wake-up event causes a receive interrupt by setting the RCxIF bit. The WUE bit is cleared after this when a rising edge is seen on RXx/DTx. The interrupt condition is then cleared by reading the RCREGx register. Ordinarily, the data in RCREGx will be dummy data and should be discarded.


The fact that the WUE bit has been cleared (or is still set) and the RCxIF flag is set should not be used as an indicator of the integrity of the data in RCREGx. Users should consider implementing a parallel method in firmware to verify received data integrity.

To assure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

FIGURE 19-7: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION

0.906	yanana.	punun	punna.	<i>m.</i> n	JAN J	NA AM	ijunin.	nyniain	INAN	UNUNUNU	NAVAVA	10A.
	4 – BB set by	Wester and the	2 3			2		*				99-90
8036.03				·····	······ ,	2	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	······	·····		
areco ex	-	?			unconce	ar?	4	,	i (seconde contractor		
1948			2 2	* 100 * 5	0000000000 ',			·····;······	.:9009000			
20.00	s		×	×	¢		⁹ . улт. т. т			······································	N	
		* *	4 4	1	3		· ·	- Classed de	60 20 USAN	1086 oc 8803	aax (j	
	1		2	÷	4						,	

FIGURE 19-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

REGISTER 20-2: ADCON1: A/D CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5-4 VCFG1:VCFG0: Voltage Reference Configuration bits:

VCFG1 VCFG0	A/D VREF+	A/D VREF-				
00	AVdd	AVss				
01	External VREF+	AVss				
10	AVdd	External VREF-				
11	External VREF+	External VREF-				

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits:

PCFG3 PCFG0	AN15	AN14	AN13	AN12	AN11	AN10	AN9	AN8	AN7	AN6	AN5	AN4	AN3	AN2	AN1	ANO
0000	Α	Α	А	Α	А	А	А	А	А	А	Α	А	Α	А	Α	Α
0001	D	D	А	Α	А	А	А	А	Α	А	А	А	Α	А	А	А
0010	D	D	D	Α	А	А	А	А	А	А	А	А	Α	А	Α	Α
0011	D	D	D	D	А	А	А	А	А	А	А	А	Α	А	Α	Α
0100	D	D	D	D	D	А	А	А	А	А	А	А	Α	А	А	А
0101	D	D	D	D	D	D	А	А	А	А	А	А	Α	А	А	А
0110	D	D	D	D	D	D	D	А	А	А	А	А	А	А	А	А
0111	D	D	D	D	D	D	D	D	А	А	А	А	А	А	Α	А
1000	D	D	D	D	D	D	D	D	D	А	А	А	А	А	А	А
1001	D	D	D	D	D	D	D	D	D	D	А	А	А	А	А	А
1010	D	D	D	D	D	D	D	D	D	D	D	А	А	А	А	А
1011	D	D	D	D	D	D	D	D	D	D	D	D	А	А	А	А
1100	D	D	D	D	D	D	D	D	D	D	D	D	D	А	А	Α
1101	D	D	D	D	D	D	D	D	D	D	D	D	D	D	А	А
1110	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	А
1111	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D

A = Analog input D = Digital I/O

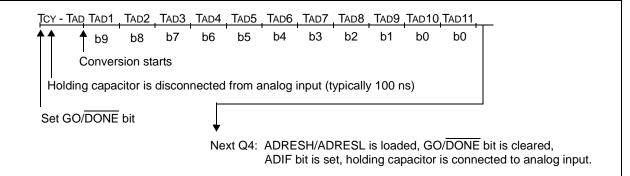
Note: Shaded cells indicate A/D channels available only on PIC18F8525/8621 devices.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

20.4 Configuring Analog Port Pins

The ADCON1, TRISA, TRISF and TRISH registers control the operation of the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS3:CHS0 bits and the TRIS bits.


- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as a digital input will convert as an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - Analog levels on any pin defined as a digital input may cause the input buffer to consume current out of the device's specification limits.

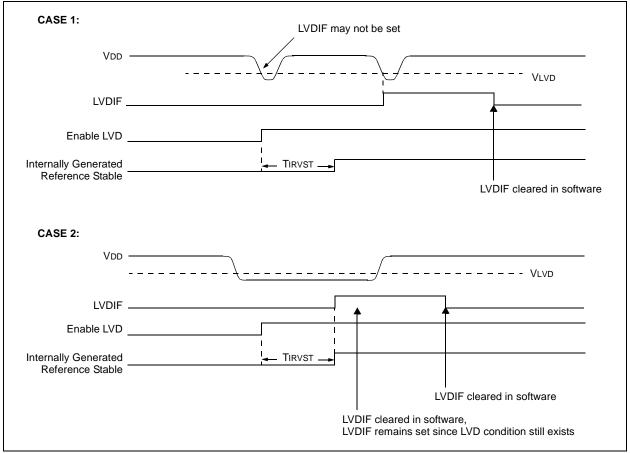
20.5 A/D Conversions

Figure 20-3 shows the operation of the A/D converter after the GODONE bit has been set. Clearing the GO/ DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. That is, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is aborted, a 2 TAD wait is required before the next acquisition is started. After this 2 TAD wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

FIGURE 20-3: A/D CONVERSION TAD CYCLES

23.2 Operation


Depending on the power source for the device voltage, the voltage normally decreases relatively slowly. This means that the LVD module does not need to be constantly operating. To decrease the current requirements, the LVD circuitry only needs to be enabled for short periods where the voltage is checked. After doing the check, the LVD module may be disabled.

Each time that the LVD module is enabled, the circuitry requires some time to stabilize. After the circuitry has stabilized, all status flags may be cleared. The module will then indicate the proper state of the system.

The following steps are needed to set up the LVD module:

- Write the value to the LVDL3:LVDL0 bits (LVDCON register) which selects the desired LVD trip point.
- 2. Ensure that LVD interrupts are disabled (the LVDIE bit is cleared or the GIE bit is cleared).
- 3. Enable the LVD module (set the LVDEN bit in the LVDCON register).
- 4. Wait for the LVD module to stabilize (the IRVST bit to become set).
- Clear the LVD interrupt flag, which may have falsely become set, until the LVD module has stabilized (clear the LVDIF bit).
- 6. Enable the LVD interrupt (set the LVDIE and the GIE bits).

Figure 23-4 shows typical waveforms that the LVD module may be used to detect.

FIGURE 23-4: LOW-VOLTAGE DETECT WAVEFORMS

REGISTER 24-12:	CONFIG7	H: CONFIG		I REGISTE	R 7 HIGH	(BYTE AD	DRESS 30	000Dh)		
	U-0	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0		
		EBTRB	_	_	_	_	—	—		
	bit 7							bit 0		
bit 7	Unimplem	ented: Read	d as '0'							
bit 6	EBTRB: B	oot Block Ta	ble Read Pr	otection bit						
					d from table					
	0 = Boot b	ock (000000)-0007FFh)	protected fro	om table rea	ds executed	l in other blo	ocks		
bit 5-0	Unimplem	ented: Read	d as '0'							
	<u> </u>									
	Legend:									
	R = Reada	ble bit	C = Clear	able bit	U = Unir	nplemented	bit, read as	'0'		
	-n = Value	when device	e is unprogra	ammed	u = Uncł	u = Unchanged from programmed state				
REGISTER 24-13:	(ADDRES	DEVICE ID S 3FFFFEI		R 1 FOR P	IC18F6525	5/6621/852	5/8621 DE			
	R	R	R	R	R	R	R	R		
	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0		
	bit 7							bit 0		
bit 7-5	DEV2:DEV 100 = PIC 101 = PIC 110 = PIC 111 = PIC	18F6621 18F8525) bits							

bit 4-0 **REV4:REV0:** Revision ID bits

These bits are used to indicate the device revision.

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when devic	e is unprogrammed	u = Unchanged from programmed state

REGISTER 24-14: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F6525/6621/8525/8621 DEVICES (ADDRESS 3FFFFh)

R-0	R-0	R-0	R-0	R-1	R-0	R-1	R-0
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

bit 7-0 DEV10:DEV3: Device ID bits

These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the part number.

0000 1010 = PIC18F6525/6621/8525/8621

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device	is unprogrammed	u = Unchanged from programmed state

27.2 DC Characteristics: Power-Down and Supply Current PIC18F6525/6621/8525/8621 (Industrial, Extended) PIC18LF6X2X/8X2X (Industrial) (Continued)

PIC18LF6X2X/8X2X (Industrial) PIC18F6525/6621/8525/8621 (Industrial, Extended)			rd Oper		onditions (unless -40°C \leq TA	s otherwise stated ≤ +85°C for indust				
		$ \begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Device	Тур	Max	Units	Conditions					
	Module Differential Currer	nts (∆lw	от, ∆Іво	R, ∆ILVD	, Δ IOSCB, Δ IAD)					
D022	Watchdog Timer	<1	2.0	μA	-40°C					
(∆IWDT)		<1	2	μA	+25°C	VDD = 2.0V				
		5	20	μΑ	+85°C					
		3	10	μA	-40°C					
		3	20	μΑ	+25°C		VDD = 3.0V			
		10	35	μΑ	+85°C					
		12	25	μΑ	-40°C					
		15	35	μΑ	+25°C		VDD = 5.0V			
		20	50	μΑ	+85°C					
D022A	Brown-out Reset ⁽⁴⁾	55	115	μA	-40°C to +85°C	VDD = 3.0V VDD = 5.0V				
(Δ IBOR)		105	175	μA	-40°C to +85°C					
D022B	Low-Voltage Detect ⁽⁴⁾	45	125	μΑ	-40°C to +85°C		VDD = 2.0V			
(∆ILVD)		45	150	μΑ	-40°C to +85°C	VDD = 3.0V				
		45	225	μΑ	-40°C to +85°C	VDD = 5.0V				
D025	Timer1 Oscillator	20	27	μΑ	-10°C					
(∆IOSCB)		20	30	μΑ	+25°C	VDD = 2.0V	32 kHz on Timer1			
		25	35	μA	+70°C					
		22	60	μA	-10°C					
		22	65	μA	+25°C	VDD = 3.0V	32 kHz on Timer1			
		25	75	μA	+70°C					
		30	75	μA	-10°C					
		30	85	μA	+25°C	VDD = 5.0V	32 kHz on Timer1			
		35	100	μΑ	+70°C					
D026	A/D Converter	<1	2	μA	+25°C	VDD = 2.0V				
(Δ IAD)		<1	2	μΑ	+25°C	VDD = 3.0V	A/D on, not converting			
		<1	2	μA	+25°C	VDD = 5.0V				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

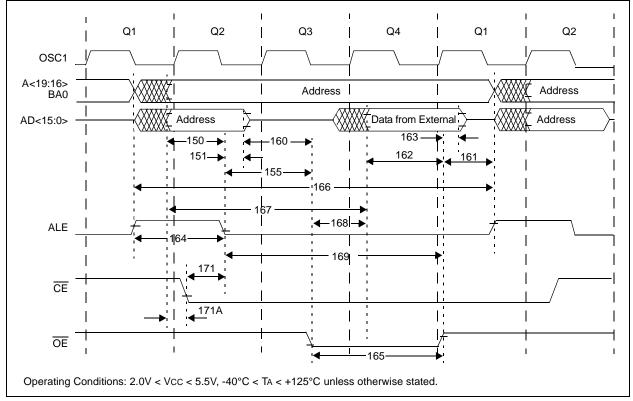
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.


4: The band gap reference is a shared resource used by both BOR and LVD modules. Enabling both modules will consume less than the specified sum current of the modules.

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
22†	TINP	INT pin High or Low Time	Тсү			ns	
23†	Trbp	RB7:RB4 Change INT High or Low Time	Тсү	—	_	ns	
24†	TRCP	RC7:RC4 Change INT High or Low Time	20			ns	

† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

FIGURE 27-7: PROGRAM MEMORY READ TIMING DIAGRAM

TABLE 27-9: PROGRAM MEMORY READ TIMING REQUIREMENTS

Param. No	Symbol	Characteristics	Min	Тур	Max	Units
150	TadV2alL	Address Out Valid to ALE \downarrow (address setup time)	0.25 Tcy – 10	—		ns
151	TalL2adl	ALE \downarrow to Address Out Invalid (address hold time)	5	_	_	ns
155	TalL2oeL	ALE \downarrow to $\overline{OE} \downarrow$	10	0.125 Tcy	—	ns
160	TadZ2oeL	AD high-Z to $\overline{OE} \downarrow$ (bus release to \overline{OE})	0	—	—	ns
161	ToeH2adD	OE ↑ to AD Driven	0.125 Tcy – 5	_	_	ns
162	TadV2oeH	LS Data Valid before $\overline{OE} \uparrow$ (data setup time)	20	_		ns
163	ToeH2adl	\overline{OE} \uparrow to Data In Invalid (data hold time)	0	_	_	ns
164	TalH2alL	ALE Pulse Width	—	0.25 TCY	_	ns
165	ToeL2oeH	OE Pulse Width	0.5 Tcy – 5	0.5 TCY	_	ns
166	TalH2alH	ALE \uparrow to ALE \uparrow (cycle time)	40 ns	Тсү		ns

APPENDIX A: REVISION HISTORY

Revision A (July 2003)

Original data sheet for PIC18F6525/6621/8525/8621 family.

Revision B (August 2004)

This revision includes updates to the Electrical Specifications in **Section 27.0**, the DC and AC Characteristics Graphs and Tables in **Section 28.0** have been added and includes minor corrections to the data sheet text.

Revision C (January 2013)

Added a note to each package outline drawing.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

TABLE B-1: DEVICE DIFFERENCES

PIC18F6525 PIC18F6621 PIC18F8525 PIC18F8621 Feature On-chip Program Memory (Kbytes) 48K 64K 48K 64K I/O Ports Ports A, B, C, D, E, F, G E, F, G E, F, G, H, J E, F, G, H, J A/D Channels 12 12 16 16 Yes External Memory Interface No No Yes Package Types 64-pin TQFP 64-pin TQFP 80-pin TQFP 80-pin TQFP

NOTES:

Analog Port Pins	
Associated Registers	
Functions	116
LATE Register	
PORTE Register	
PSP Mode Select (PSPMODE Bit)	
RE0/AD8/RD/P2D Pin	
RE1/AD9/WR/P2C Pin	
RE2/AD10/CS/P2B Pin	
TRISE Register	114
PORTF	
Associated Registers	119
Functions	
LATF Register	
PORTF Register	
TRISF Register	
PORTG	
	404
Associated Registers	
Functions	
LATG Register	
PORTG Register	
TRISG Register	120
PORTH	
Associated Registers	
Functions	
LATH Register	
PORTH Register	
TRISH Register	
PORTJ	
Associated Registers	
Functions	
LATJ Register	125
PORTJ Register	125
TRISJ Register	
Postscaler, WDT	
Assignment (PSA Bit)	133
Assignment (PSA Bit)	
Rate Select (T0PS2:T0PS0 Bits)	133
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT	133
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep.	133 133
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR)	133 133 30, 259
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST)	133 133 30, 259 30, 259
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR)	133 133 30, 259 30, 259
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST)	
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT)	
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence Prescaler	
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence Prescaler Timer2	
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence Prescaler Timer2 Prescaler, Capture	
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence Prescaler Timer2 Prescaler, Capture Prescaler, Timer0	
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence Prescaler Timer2 Prescaler, Capture Prescaler, Timer0 Assignment (PSA Bit)	
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence Prescaler Timer2 Prescaler, Capture Prescaler, Timer0 Assignment (PSA Bit) Rate Select (T0PS2:T0PS0 Bits)	
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence Prescaler Timer2 Prescaler, Capture Prescaler, Capture Prescaler, Timer0 Assignment (PSA Bit) Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT	
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence Prescaler Timer2 Prescaler, Capture Prescaler, Capture Prescaler, Timer0 Assignment (PSA Bit) Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Prescaler, Timer2	
Rate Select (TOPS2:TOPS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence. Prescaler Timer2. Prescaler, Capture Prescaler, Timer0. Assignment (PSA Bit) Rate Select (TOPS2:TOPS0 Bits) Switching Between Timer0 and WDT Prescaler, Timer2.	
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence Prescaler Timer2 Prescaler, Capture Prescaler, Capture Prescaler, Timer0 Assignment (PSA Bit) Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Prescaler, Timer2	
Rate Select (TOPS2:TOPS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence. Prescaler Timer2. Prescaler, Capture Prescaler, Timer0. Assignment (PSA Bit) Rate Select (TOPS2:TOPS0 Bits) Switching Between Timer0 and WDT Prescaler, Timer2.	
Rate Select (TOPS2:TOPS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence. Prescaler Timer2 Prescaler, Capture Prescaler, Timer0 Assignment (PSA Bit) Rate Select (TOPS2:TOPS0 Bits) Switching Between Timer0 and WDT Prescaler, Timer2 PRO MATE II Universal Device Programmer Program Counter	
Rate Select (TOPS2:TOPS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence. Prescaler Timer2. Prescaler, Capture Prescaler, Timer0. Assignment (PSA Bit) Rate Select (TOPS2:TOPS0 Bits) Switching Between Timer0 and WDT Prescaler, Timer2. PRO MATE II Universal Device Programmer Program Counter PCL, PCLATH and PCLATU Register	
Rate Select (TOPS2:TOPS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence. Prescaler Timer2 Prescaler, Capture Prescaler, Timer0 Assignment (PSA Bit) Rate Select (TOPS2:TOPS0 Bits) Switching Between Timer0 and WDT Prescaler, Timer2 PRO MATE II Universal Device Programmer Program Counter PCL, PCLATH and PCLATU Register	
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence Prescaler Timer2 Prescaler, Capture Prescaler, Capture Prescaler, Timer0 Assignment (PSA Bit) Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Prescaler, Timer2 PRO MATE II Universal Device Programmer Program Counter PCL, PCLATH and PCLATU Register Program Memory Extended Microcontroller Mode	
Rate Select (TOPS2:TOPS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence. Prescaler Timer2. Prescaler, Capture Prescaler, Timer0. Assignment (PSA Bit) Rate Select (TOPS2:TOPS0 Bits) Switching Between Timer0 and WDT Prescaler, Timer2. PRO MATE II Universal Device Programmer Program Counter PCL, PCLATH and PCLATU Register Program Memory Extended Microcontroller Mode	133
Rate Select (TOPS2:TOPS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence. Prescaler Timer2 Prescaler, Capture Prescaler, Timer0 Assignment (PSA Bit) Rate Select (TOPS2:TOPS0 Bits) Switching Between Timer0 and WDT Prescaler, Timer2 PRO MATE II Universal Device Programmer Program Counter PCL, PCLATH and PCLATU Register Program Memory Extended Microcontroller Mode Instructions	133
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence Prescaler Timer2 Prescaler, Capture Prescaler, Capture Prescaler, Timer0 Assignment (PSA Bit) Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Prescaler, Timer2 PRO MATE II Universal Device Programmer Program Counter PCL, PCLATH and PCLATU Register Program Memory Extended Microcontroller Mode Instructions Two-Word Interrupt Vector	133
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence Prescaler Timer2 Prescaler, Capture Prescaler, Capture Prescaler, Timer0 Assignment (PSA Bit) Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Prescaler, Timer2 PRO MATE II Universal Device Programmer Product Identification System Program Counter PCL, PCLATH and PCLATU Register Program Memory Extended Microcontroller Mode Instructions Two-Word Interrupt Vector Map and Stack for PIC18FX525	133
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence Prescaler Timer2 Prescaler, Capture Prescaler, Capture Prescaler, Timer0 Assignment (PSA Bit) Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Prescaler, Timer2 PRO MATE II Universal Device Programmer Product Identification System Program Counter PCL, PCLATH and PCLATU Register Program Memory Extended Microcontroller Mode Instructions Two-Word Map and Stack for PIC18FX525 Map and Stack for PIC18FX525	133
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence Prescaler Timer2 Prescaler, Capture Prescaler, Capture Prescaler, Timer0 Assignment (PSA Bit) Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Prescaler, Timer2 PRO MATE II Universal Device Programmer Product Identification System Program Counter PCL, PCLATH and PCLATU Register Program Memory Extended Microcontroller Mode Instructions Two-Word Interrupt Vector Map and Stack for PIC18FX525	133
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence Prescaler Timer2 Prescaler, Capture Prescaler, Capture Prescaler, Timer0 Assignment (PSA Bit) Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Prescaler, Timer2 PRO MATE II Universal Device Programmer Product Identification System Program Counter PCL, PCLATH and PCLATU Register Program Memory Extended Microcontroller Mode Instructions Two-Word Map and Stack for PIC18FX525 Map and Stack for PIC18FX525	133
Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Power-Down Mode. See Sleep. Power-on Reset (POR) Oscillator Start-up Timer (OST) Power-up Timer (PWRT) Time-out Sequence Prescaler Timer2 Prescaler, Capture Prescaler, Capture Prescaler, Timer0 Assignment (PSA Bit) Rate Select (T0PS2:T0PS0 Bits) Switching Between Timer0 and WDT Prescaler, Timer2 PRO MATE II Universal Device Programmer Product Identification System Program Counter PCL, PCLATH and PCLATU Register Program Memory Extended Microcontroller Mode Instructions Two-Word Map and Stack for PIC18FX525 Map and Stack for PIC18FX521	133

Program Verification
Programming, Device Instructions
PSP. See Parallel Slave Port.
Pulse-Width Modulation. See PWM (CCP Module)
and PWM (ECCP Module).
PUSH
PWM (CCP Module) 154
Associated Registers
CCPR4H:CCPR4L Registers
Duty Cycle
Example Frequencies/Resolutions 155
Period 154
Setup for PWM Operation155
TMR2 to PR2 Match 141, 154
TMR4 to PR4 Match 147
PWM (ECCP Module)
Associated Registers
CCPR1H:CCPR1L Registers 160
Direction Change in Full-Bridge
Output Mode166
Duty Cycle 161
Effects of a Reset
Enhanced PWM Auto-Shutdown
Example Frequencies/Resolutions 161
Full-Bridge Application Example 166
Full-Bridge Mode 165
Half-Bridge Mode163
Half-Bridge Output Mode
Applications Example
Output Configurations162
Output Relationships (Active-High) 162
Output Relationships (Active-Low) 163
Period
Programmable Dead-Band Delay 168
Setup for PWM Operation
Start-up Considerations
TMR2 to PR2 Match 160
0
Q
Q Clock
R
RAM. See Data Memory.
RC Oscillator
RCALL
RCON Registers 101
Register File
Registers
ADCON0 (A/D Control 0)
ADCON1 (A/D Control 1)
ADCON2 (A/D Control 2)
BAUDCONx (Baud Rate Control) 216
CCPxCON (Capture/Compare/PWM
Control - CCP4, CCP5) 149
CCPxCON (Capture/Compare/PWM Control -
ECCP1, ECCP2, ECCP3 Modules)
CMCON (Comparator Control)
CONFIG1H (Configuration 1 High) 260
CONFIG2H (Configuration 2 High) 261
CONFIG2L (Configuration 2 Low) 261

CONFIG3H (Configuration 3 High)262CONFIG3L (Configuration 3 Low)41, 262CONFIG4L (Configuration 4 Low)263CONFIG5H (Configuration 5 High)264CONFIG5L (Configuration 5 Low)263CONFIG6H (Configuration 6 High)265CONFIG6L (Configuration 6 Low)264