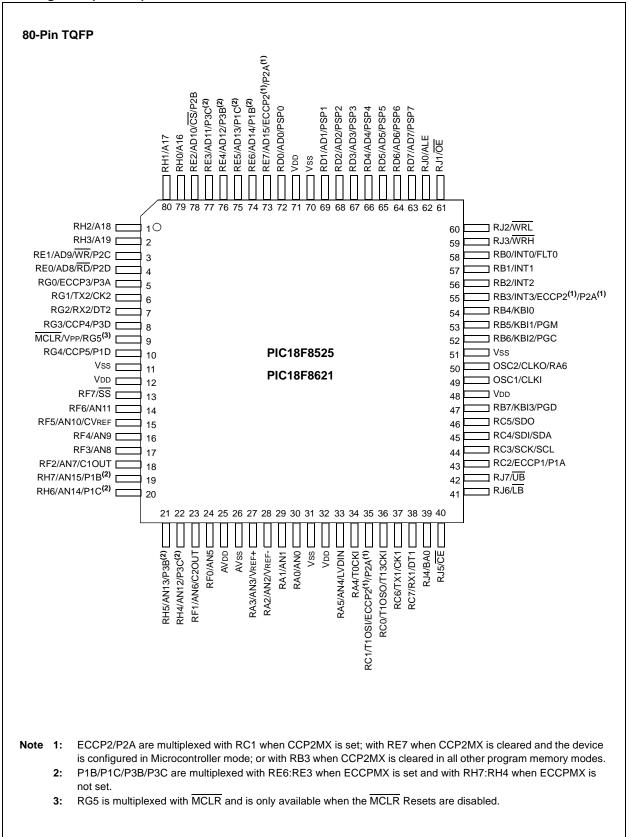


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.75K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f8525t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Cont.'d)

Din Nome	Pin N	Pin Number			Description
Pin Name	PIC18F6X2X PIC18F8X2X Type Type		Description		
					PORTG is a bidirectional I/O port.
RG0/ECCP3/P3A	3	5			
RG0	Ū,	Ũ	I/O	ST	Digital I/O.
ECCP3			1/O	ST	Enhanced Capture 3 input, Compare 3
200.0			., C	•	output, PWM 3 output.
P3A			0	_	ECCP3 output P3A.
RG1/TX2/CK2	4	6	_		
RG1	4	0	I/O	ST	Digital I/O.
TX2			0	01	USART2 asynchronous transmit.
CK2			1/0	ST	USART2 asynchronous clock
UNZ			1/0	51	(see RX2/DT2).
	_	-			
RG2/RX2/DT2	5	7	1/0	от	
RG2			I/O	ST	Digital I/O.
RX2				ST	USART2 asynchronous receive.
DT2			I/O	ST	USART2 synchronous data
					(see TX2/CK2).
RG3/CCP4/P3D	6	8			
RG3			I/O	ST	Digital I/O.
CCP4			I/O	ST	Capture 4 input, Compare 4 output,
					PWM 4 output.
P3D			0	—	ECCP3 output P3D.
RG4/CCP5/P1D	8	10			
RG4			I/O	ST	Digital I/O.
CCP5			I/O	ST	Capture 5 input, Compare 5 output,
					PWM 5 output.
P1D			0	—	ECCP1 output P1D.
RG5	7	9	—	—	See MCLR/VPP/RG5 pin.
Legend: TTL = TTL c	ompatible input		CMOS	S = CMOS	compatible input or output
	itt Trigger input with C	CMOS levels		g = Analog	
I = Input			0	= Output	
P = Power	r		OD	= Open-I	Drain (no P diode to VDD)

TABLE 1-2: PIC18F6525/6621/8525/8621 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX (CONFIG3H<0>) is not set (all Program Memory modes except Microcontroller).

2: Default assignment for ECCP2/P2A when CCP2MX is set (all devices).

3: External memory interface functions are only available on PIC18F8525/8621 devices.

4: Default assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is set and for all PIC18F6525/6621 devices.

5: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX is not set (Microcontroller mode).

6: PORTH and PORTJ (and their multiplexed functions) are only available on PIC18F8525/8621 devices.

7: Alternate assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is not set.

8: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for proper operation of the part in user or ICSP[™] modes. See parameter D001 for details.

9: RG5 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.

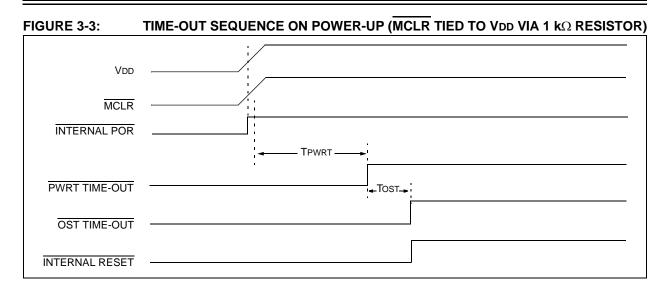


FIGURE 3-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

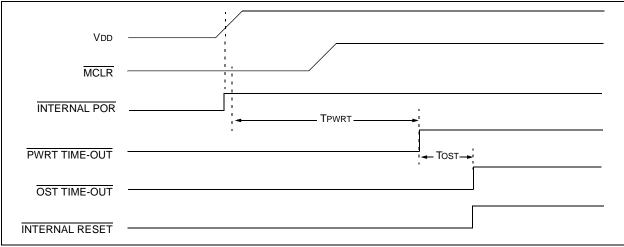
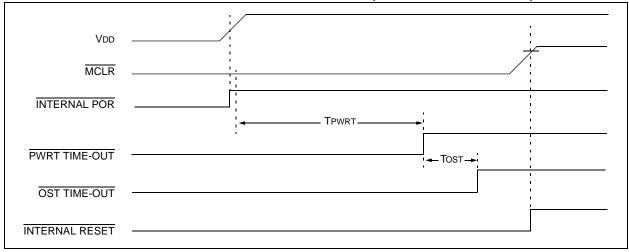



FIGURE 3-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

NOTES:

9.4 IPR Registers

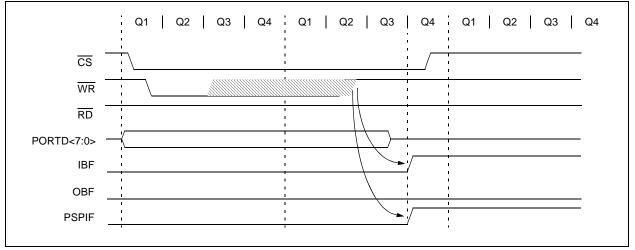
The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Priority registers (IPR1, IPR2 and IPR3). The operation of the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	PSPIP ⁽¹⁾	ADIP	RC1IP	TX1IP	SSPIP	CCP1IP	TMR2IP	TMR1IP
	bit 7							bit 0
it 7	PSPIP: Par	allel Slave	Port Read/W	/rite Interrup	ot Priority bit	(1)		
	1 = High pr 0 = Low pri	•						
	Note:	Enabled or	nly in Microc	ontroller mo	de for PIC1	8F8525/862	1 devices.	
oit 6	ADIP: A/D (Converter li	nterrupt Prio	rity bit				
	1 = High pr 0 = Low pri	•						
bit 5	RC1IP: US/	ART1 Rece	ive Interrupt	Priority bit				
	1 = High pr 0 = Low pri							
oit 4	TX1IP: USA	RT1 Trans	mit Interrupt	Priority bit				
	1 = High pr 0 = Low pri	,						
bit 3	SSPIP: Mas	ster Synchr	onous Seria	l Port Interru	upt Priority b	it		
	1 = High pr 0 = Low pri	•						
bit 2	CCP1IP: EC	CCP1 Interr	upt Priority I	bit				
	1 = High pr 0 = Low pri							
oit 1	TMR2IP: TN	/IR2 to PR2	2 Match Inte	rrupt Priority	/ bit			
	1 = High pr 0 = Low pri	•						
oit 0			ow Interrupt	Priority bit				
	1 = High pr							
	0 = Low pri	ority						
	Legend:							
	R = Readat	ole bit	W = W	/ritable bit	U = Unir	nplemented	bit, read as	'0'

R = Readable bit	vv = vvritable bit	U = Unimplemented	bit, read as 0
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

9.5 RCON Register

The RCON register contains the IPEN bit which is used to enable prioritized interrupts. The functions of the other bits in this register are discussed in more detail in **Section 4.14 "RCON Register"**.


REGISTER 9-13:	RCON: RE	RCON: RESET CONTROL REGISTER										
	R/W-0	U-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0				
	IPEN	_	_	RI	TO	PD	POR	BOR				
	bit 7							bit 0				
bit 7	1 = Enable	IPEN: Interrupt Priority Enable bit 1 = Enable priority levels on interrupts 0 = Disable priority levels on interrupts (PIC16 Compatibility mode)										
bit 6-5	Unimplem	Unimplemented: Read as '0'										
bit 4	RI: RESET	RI: RESET Instruction Flag bit										
	For details	of bit opera	tion, see Re	gister 4-4.								
bit 3	TO: Watch	TO: Watchdog Time-out Flag bit										
	For details	of bit opera	tion, see Re	gister 4-4.								
bit 2	PD: Power	-down Dete	ction Flag b	it								
	For details	of bit opera	tion, see Re	gister 4-4.								
bit 1	POR: Pow	er-on Reset	Status bit									
	For details	of bit opera	tion, see Re	gister 4-4.								
bit 0	BOR: Brov	BOR: Brown-out Reset Status bit										
	For details	For details of bit operation, see Register 4-4.										
	Legend:											

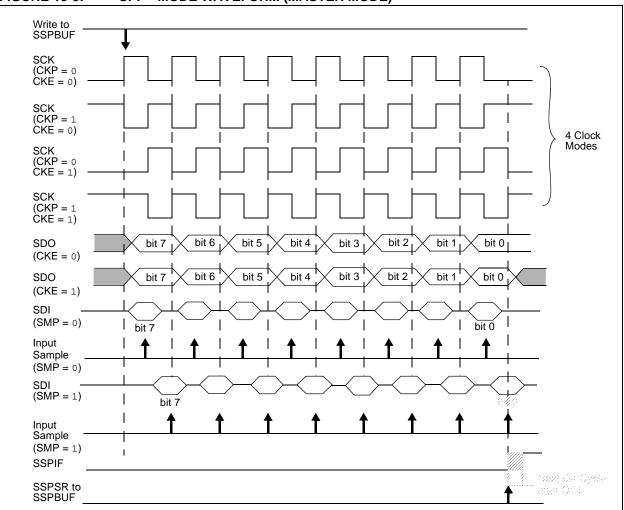
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 10-1:	PSPCON:	PARALLE	EL SLAVE		ITROL RE	GISTER ⁽¹⁾				
	R-0	R-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
	IBF	OBF	IBOV	PSPMODE	_	_		—		
	bit 7							bit 0		
bit 7	IBF: Input Buffer Full Status bit 1 = A word has been received and is waiting to be read by the CPU 0 = No word has been received									
bit 6	 OBF: Output Buffer Full Status bit 1 = The output buffer still holds a previously written word 									
bit 5	 0 = The output buffer has been read IBOV: Input Buffer Overflow Detect bit 1 = A write occurred when a previously input word has not been read (must be cleared in software) 0 = No overflow occurred 									
bit 4	 PSPMODE: Parallel Slave Port Mode Select bit 1 = Parallel Slave Port mode 0 = General Purpose I/O mode 									
bit 3-0	·									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 10-25: PARALLEL SLAVE PORT WRITE WAVEFORMS

18.3.5 MASTER MODE


The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 18-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode. The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This then, would give waveforms for SPI communication as shown in Figure 18-3, Figure 18-5 and Figure 18-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

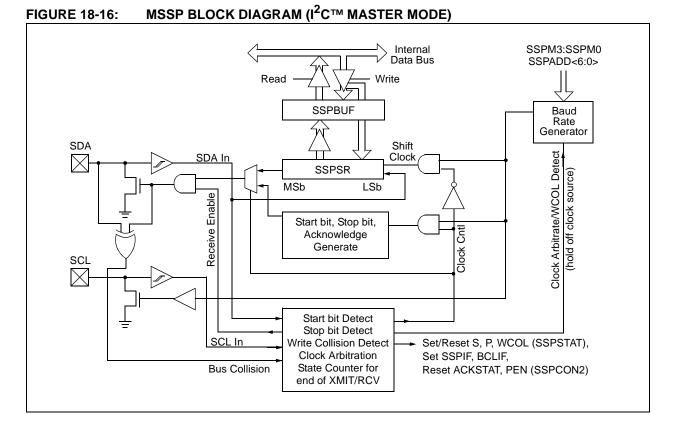
Figure 18-3 shows the waveforms for Master mode.

18.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all ${\rm I}^2{\rm C}$ bus operations based on Start and Stop bit conditions.

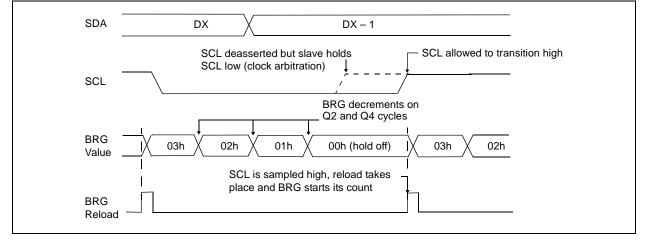

Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I²C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause MSSP Interrupt Flag bit, SSPIF, to be set (MSSP interrupt, if enabled):

- Start condition
- Stop condition
- Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated Start


© 2003-2013 Microchip Technology Inc.

18.4.7.1 Clock Arbitration

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the

SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 18-18).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0
CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7							bit
CSRC: Clo	ock Source S	elect bit					
Asynchron Don't care.							
	<u>us mode:</u> mode (clock mode (clock			om BRG)			
TX9: 9-bit	Transmit Ena	able bit					
	s 9-bit transı s 8-bit transı						
TXEN: Tra	nsmit Enable	e bit					
	mit enabled mit disabled						
Note:	SREN/CRE	N overrides	STXEN in S	ync mode.			
SYNC: EU	SART Mode	Select bit					
-	ronous mode hronous mod						
•	end Break C						
Asynchron 1 = Send s		n next trans	mission (cle	ared by hard	lware upon	completion)	
Synchrono Don't care.							
BRGH: Hig	gh Baud Rate	e Select bit					
$\begin{array}{l} \underline{Asynchron}\\ 1 = High s\\ 0 = Low s \end{array}$	peed						
Synchrono Unused in	us mode:						
TRMT: Tra	nsmit Shift R	egister Stat	tus bit				
1 = TSR e 0 = TSR fr							
TX9D: 9th	bit of Transn	nit Data					
Can be ad	dress/data bi	t or a parity	bit.				
Legend:							
R = Reada	ble bit	W = V	Vritable bit	U = Unim	nplemented	hit read as '	O'

'1' = Bit is set

REGISTER 19-1: TXSTAX: TRANSMIT STATUS AND CONTROL REGISTER

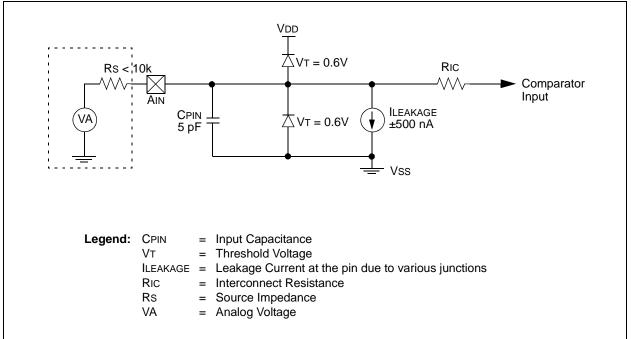
-n = Value at POR

x = Bit is unknown

'0' = Bit is cleared

21.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from Sleep mode when enabled. While the comparator is powered up, higher Sleep currents than shown in the power-down current specification will occur. Each operational comparator will consume additional current, as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators, CM<2:0> = 111, before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.


21.8 Effects of a Reset

A device Reset forces the CMCON register to its Reset state, causing the comparator module to be in the comparator Reset mode, CM<2:0> = 000. This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at Reset time. The comparators will be powered down during the Reset interval.

21.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 21-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 21-4: COMPARATOR ANALOG INPUT MODEL

REGISTER 24-12:	CONFIG7	H: CONFIG		I REGISTE	R 7 HIGH	(BYTE AD	DRESS 30	000Dh)	
	U-0	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0	
		EBTRB	_	_	_	_	—	—	
	bit 7							bit 0	
bit 7	Unimplem	ented: Read	d as '0'						
bit 6	EBTRB: B	oot Block Ta	ble Read Pr	otection bit					
					d from table				
	0 = Boot b	ock (000000)-0007FFh)	protected fro	om table rea	ds executed	l in other blo	ocks	
bit 5-0	Unimplem	ented: Read	d as '0'						
	<u> </u>								
	Legend:								
	R = Reada	ble bit	C = Clear	able bit	U = Unir	U = Unimplemented bit, read as '0'			
	-n = Value	when device	e is unprogra	ammed	u = Uncł	u = Unchanged from programmed state			
REGISTER 24-13:	(ADDRES	DEVICE ID S 3FFFFEI		R 1 FOR P	IC18F6525	5/6621/852	5/8621 DE		
	R	R	R	R	R	R	R	R	
	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	
	bit 7							bit 0	
bit 7-5	DEV2:DEV 100 = PIC 101 = PIC 110 = PIC 111 = PIC	18F6621 18F8525) bits						

bit 4-0 **REV4:REV0:** Revision ID bits

These bits are used to indicate the device revision.

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when devic	e is unprogrammed	u = Unchanged from programmed state

REGISTER 24-14: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F6525/6621/8525/8621 DEVICES (ADDRESS 3FFFFh)

R-0	R-0	R-0	R-0	R-1	R-0	R-1	R-0
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

bit 7-0 DEV10:DEV3: Device ID bits

These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the part number.

0000 1010 = PIC18F6525/6621/8525/8621

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed		u = Unchanged from programmed state

24.2 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKI pin. That means that the WDT will run even if the clock on the OSC1/CLKI and OSC2/CLKO/RA6 pins of the device has been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device Reset (Watchdog Timer Reset). If the device is in Sleep mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer wake-up). The \overline{TO} bit in the RCON register will be cleared upon a WDT time-out.

The Watchdog Timer is enabled or disabled by a device configuration bit, WDTEN (CONFIG2H<0>). If WDTEN is set, software execution may not disable this function. When WDTEN is cleared, the SWDTEN bit enables or disables the operation of the WDT.

The WDT time-out period values may be found in the Electrical Specifications section under parameter 31. Values for the WDT postscaler may be assigned using the configuration bits.

Note 1:	The CLRWDT and SLEEP instructions
	clear the WDT and the postscaler if
	assigned to the WDT and prevent it from
	timing out and generating a device Reset
	condition.

2: When a CLRWDT instruction is executed and the postscaler is assigned to the WDT, the postscaler count will be cleared but the postscaler assignment is not changed.

24.2.1 CONTROL REGISTER

Register 24-15 shows the WDTCON register. This is a readable and writable register which contains a control bit that allows software to override the WDT enable configuration bit only when the configuration bit has disabled the WDT.

REGISTER 24-15: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	—	—	—		SWDTEN
bit 7							bit 0

bit 7-1 Unimplemented: Read as '0'

bit 0 SWDTEN: Software Controlled Watchdog Timer Enable bit

- 1 = Watchdog Timer is on
- 0 = Watchdog Timer is turned off (if CONFIG2H<0> = 0)

Legend:				
R = Readable bit	ble bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

BCF	Bit Clear	f		
Syntax:	[label] BC	;F f,b[,a	a]	
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$			
Operation:	$0 \rightarrow f < b >$			
Status Affected:	None			
Encoding:	1001	bbba	ffff	ffff
Description:	Bit 'b' in reg the Access overriding the the bank wi BSR value	Bank will he BSR va II be seled	be select alue. If 'a'	ted, = 1, then
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Proces Data		Write gister 'f'
Example:	BCF F	LAG_REG	B, 7, 0)
Before Instruc FLAG_R After Instructic FLAG_R	EG = 0x	(C7 (47		

BN		Branch if	Branch if Negative					
Synta	ax:	[label] BN	[<i>label</i>] BN n					
Oper	ands:	-128 ≤ n ≤	127					
Oper	ation:	0	if Negative bit is '1' (PC) + 2 + 2n \rightarrow PC					
Statu	s Affected:	None						
Enco	ding:	1110	0110	nnnn	nnnn			
Desc	ription:	If the Nega program wi The 2's cor added to th incremente instruction, PC + 2 + 2 two-cycle in	ill branch mplemen le PC. Sir ed to fetch the new n. This in	t number nce the F n the nex address	r '2n' is PC will have tt will be			
Word	ls:	1						
Cycle	es:	1(2)						
Q C If Ju	ycle Activity: mp:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read literal 'n'	Proce Data		/rite to PC			
	No operation	No operation	No operat		No operation			
lf No	o Jump:			•				
	Q1	Q2	Q3	3	Q4			
	Decode	Read literal 'n'	Proce Data		No operation			
Example:		HERE	BN	Jump				

Before Instruction PC	=	address (HERE)
After Instruction		
If Negative	=	1;
PC	=	address (Jump)
If Negative	=	0;
PC	=	address (HERE + 2)

Syntax:		[label] N	/ULLW	k	
Operan		0 ≤ k ≤ 255			
Operati		(W) x k \rightarrow	PRODH:P	RODL	
Status /	Affected:	None			
Encodir	ng:	0000	1101	kkkk	kkkk
Description:		An unsigne out betwee the 8-bit lite placed in F pair. PROD W is uncha None of the Note that n is possible result is po	n the cont eral 'k'. The 'RODH:PR DH contain anged. e Status fla weither ove in this ope	ents of W e 16-bit re RODL reg s the high ags are af rflow nor eration. A	Y and esult is ister h byte. fected. carry zero
Words:		1			
Cycles:		1			
Q Cycl	le Activity:				
-	Q1	Q2	Q3		Q4
	Decode	Read literal 'k'	Proces Data	re	Write gisters RODH: RODL
<u>Exampl</u>	<u>e:</u>	MULLW	0xC4		
	efore Instruct W PRODH PRODL ter Instructio W	= 0x = ? = ? n	E2		

Syntax:	[label] N	IULWF	f [,a]	
Operands:	 0 ≤ f ≤ 255			
	a ∈ [0,1]			
Operation:	(W) x (f) \rightarrow	PRODH	I:PRODL	
Status Affected:	None			
Encoding:	0000	001a	ffff	ffff
	is stored in register pai byte. Both W and None of the Note that n possible in is possible the Access overriding t 'a' = 1, ther	r. PROD Status either ov this ope but not o Bank wi he BSR	H contain inchange flags are a rerflow no ration. A z detected. ill be sele value. If	d. affected. r carry is zero resu If 'a' is '0 cted,
	as per the l	3SR valu	ue (defaul	
Words:	as per the I 1	BSR valı	ue (defaul	
Words: Cycles:	•	3SR valı	ue (defaul	
Cycles:	1	3SR valı	ue (defaul	
	1	3SR valı Q3	,	
Cycles: Q Cycle Activity:	1 1		3 ess a r F	lt).
Cycles: Q Cycle Activity: Q1	1 1 Q2 Read register 'f'	Q	3 ess a r F	Q4 Write egisters PRODH:
Cycles: Q Cycle Activity: Q1 Decode	1 1 Q2 Read register 'f'	Q3 Proce Dat	3 ess a r F	Q4 Write egisters PRODH:

0xC4

0xB5

0x8A

0x94

? ? =

=

=

= = =

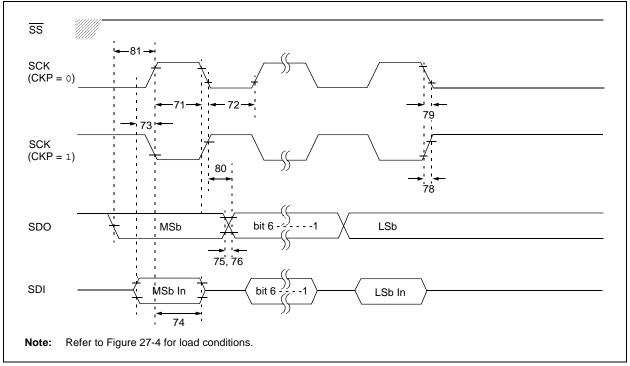
PRODH

PRODL

After Instruction W

REG

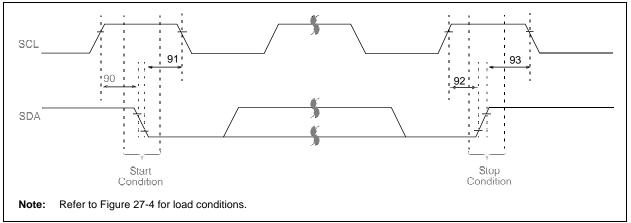
PRODH


PRODL

Param. No.	Symbol	Characteris	Min	Max	Units	Conditions	
73	TdiV2scH, TdiV2scL	Setup Time of SDI Data Input	100		ns		
73A	Тв2в	Last Clock Edge of Byte 1 to t Byte 2	1.5 Tcy + 40	_	ns	(Note 2)	
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edge		100	_	ns	
75	TdoR	SDO Data Output Rise Time	PIC18F6525/6621/ 8525/8621	—	25	ns	
			PIC18LF6X2X/8X2X	_	45	ns	
76	TdoF	SDO Data Output Fall Time		_	25	ns	
78	TscR	SCK Output Rise Time (Master mode)	PIC18F6525/6621/ 8525/8621	—	25	ns	
			PIC18LF6X2X/8X2X	_	45	ns	
79	TscF	SCK Output Fall Time (Master	mode)	—	25	ns	
80	TscH2doV, TscL2doV	SDO Data Output Valid after SCK Edge	PIC18F6525/6621/ 8525/8621	—	50	ns	
			PIC18LF6X2X/8X2X		100	ns]

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.


FIGURE 27-15: EXAMPLE SPI™ MASTER MODE TIMING (CKE = 1)

Param No.	Symbol	Characteris	Min	Max	Units	Conditions	
82	TssL2doV	$\frac{\text{SDO}}{\text{SS}} \downarrow \text{Edge}$	PIC18F6525/6621/ 8525/8621		50	ns	
			PIC18LF6X2X/8X2X	_	100	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge		1.5 Tcy + 40	—	ns	

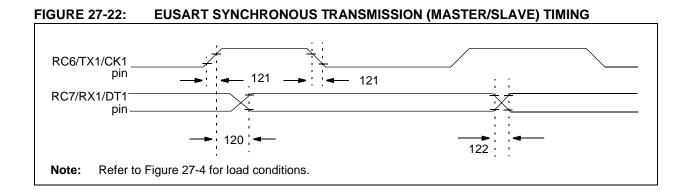

Note 1: Requires the use of Parameter #73A.2: Only if Parameter #71A and #72A are used.

FIGURE 27-18: I²C[™] BUS START/STOP BITS TIMING

TABLE 27-19:	I ² C [™] BUS START/STOP	BITS REQUIREMENTS	(SLAVE MODE)
--------------	--	-------------------	--------------

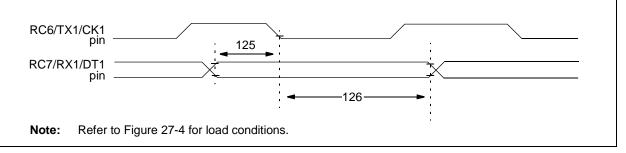

Param. No.	Symbol	Characte	ristic	Min	Max	Units	Conditions	
90	TSU:STA	Start Condition	100 kHz mode	4700	_	ns	Only relevant for Repeated	
		Setup Time	400 kHz mode	600	_		Start condition	
91	THD:STA	Start Condition	100 kHz mode	4000		ns	After this period, the first	
		Hold Time	400 kHz mode	600	_		clock pulse is generated	
92	TSU:STO	Stop Condition	100 kHz mode	4700	_	ns		
		Setup Time	400 kHz mode	600	_			
93	THD:STO	Stop Condition	100 kHz mode	4000	_	ns		
		Hold Time	400 kHz mode	600				

TABLE 27-23: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
120	TckH2dtV	<u>SYNC XMIT (Master and Slave)</u> Clock High to Data Out Valid	PIC18F6525/6621/ 8525/8621	_	40	ns	
			PIC18LF6X2X/8X2X	Ι	100	ns	
121	Tckrf	Clock Out Rise Time and Fall Time (Master mode)	PIC18F6525/6621/ 8525/8621	_	20	ns	
			PIC18LF6X2X/8X2X	_	50	ns	
122	Tdtrf	Data Out Rise Time and Fall Time	PIC18F6525/6621/ 8525/8621	—	20	ns	
			PIC18LF6X2X/8X2X	_	50	ns	

FIGURE 27-23: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 27-24: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TdtV2ckl	SYNC RCV (Master and Slave) Data Hold before $CKx \downarrow (DTx hold time)$	10	_	ns	
126	TckL2dtl	Data Hold after CKx \downarrow (DTx hold time)	15		ns	

Timer3	144
Timer3 (16-Bit Read/Write Mode)	144
Timer4	148
Watchdog Timer	268
BN	284
BNC	285
BNN	285
BNOV	
BNZ	
BOR. See Brown-out Reset.	
BOV	289
BRA	287
Break Character (12-Bit) Transmit and Receive	226
BRG. See Baud Rate Generator.	
Brown-out Reset (BOR)	. 30, 259
BSF	
BTFSC	
BTFSS	
BTG	289
BZ	290

С

C Compilers	
MPLAB C17	8
MPLAB C18	8
MPLAB C30	8
CALL	90
Capture (CCP Module)15	51
Associated Registers	
CCP Pin Configuration15	51
CCPR4H:CCPR4L Registers15	
Software Interrupt15	
Timer1/Timer3 Mode Selection	
Capture (ECCP Module)	
Capture/Compare/PWM (CCP)14	19
Capture Mode. See Capture.	-
CCP Mode and Timer Resources	50
CCPRxH Register	
CCPRxL Register	
Compare Mode. See Compare.	,0
Interconnect Configurations	50
Module Configuration	
PWM Mode. See PWM.	0
Clocking Scheme/Instruction Cycle	14
CLRF	
CLRWDT	
Code Examples	, 1
16 x 16 Signed Multiply Routine8	6
16 x 16 Unsigned Multiply Routine8 8 x 8 Signed Multiply Routine8	
8 x 8 Unsigned Multiply Routine	
Changing Between Capture Prescalers	
Data EEPROM Read	
Data EEPROM Refresh Routine	
Data EEPROM Write8 Erasing a Flash Program Memory Row6	
Fast Register Stack 4	
Fast Register Stack4 How to Clear RAM (Bank 1) Using	14
Fast Register Stack4 How to Clear RAM (Bank 1) Using Indirect Addressing5	14
Fast Register Stack4 How to Clear RAM (Bank 1) Using Indirect Addressing5 Implementing a Real-Time Clock Using a	14 56
Fast Register Stack4 How to Clear RAM (Bank 1) Using Indirect Addressing5 Implementing a Real-Time Clock Using a Timer1 Interrupt Service	14 56 38
Fast Register Stack	14 56 38 03
Fast Register Stack	14 56 38 03 06
Fast Register Stack	14 56 38 33 36 39

Initializing PORTE	114
Initializing PORTF	
Initializing PORTG	
5	
Initializing PORTH	
Initializing PORTJ	
Loading the SSPBUF (SSPSR) Register	176
Reading a Flash Program Memory Word	65
Saving STATUS, WREG and	
	400
BSR Registers in RAM	102
Writing to Flash Program Memory	
Code Protection 2	
Associated Registers	271
Configuration Register Protection	
Data EEPROM	
Program Memory	
COMF	292
Comparator	243
Analog Input Connection Considerations	247
Associated Registers	
Configuration	
Effects of a Reset	247
Interrupts	246
Operation	245
Operation During Sleep	
Outputs	
Reference	245
External Signal	245
Internal Signal	
Response Time	245
Comparator Specifications	
Comparator Voltage Reference	
Accuracy and Error	250
Associated Registers	251
Configuring	
Connection Considerations	
Effects of a Reset	
Operation During Sleep	
Compare (CCP Module)	152
Associated Registers	
CCP Pin Configuration	
CCPR1 Register	
Software Interrupt	
Special Event Trigger	152
Timer1/Timer3 Mode Selection	152
Compare (ECCP Module)	
Special Event Trigger 137, 1	
Configuration Bits	
Context Saving During Interrupts	102
Control Registers	
EECON1 and EECON2	62
TABLAT (Table Latch) Register	
TBLPTR (Table Pointer) Register	
Conversion Considerations	
CPFSEQ	292
CPFSGT	293
CPFSLT	
	200
D	
	70
Data EEPROM Memory	
Associated Registers	
EEADR Register	79
EEADRH Register	
EECON1 Register	
EECON2 Register	
	19