

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Obsolete                                                                    |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 40MHz                                                                       |
| Connectivity               | EBI/EMI, I <sup>2</sup> C, SPI, UART/USART                                  |
| Peripherals                | Brown-out Detect/Reset, LVD, POR, PWM, WDT                                  |
| Number of I/O              | 69                                                                          |
| Program Memory Size        | 64KB (32K x 16)                                                             |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | 1K x 8                                                                      |
| RAM Size                   | 3.8K x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 5.5V                                                                   |
| Data Converters            | A/D 16x10b                                                                  |
| Oscillator Type            | External                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 80-TQFP                                                                     |
| Supplier Device Package    | 80-TQFP (12x12)                                                             |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18lf8621t-i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Din Nome            | Pin N                  | umber      | Pin   | Buffer | Description                                        |
|---------------------|------------------------|------------|-------|--------|----------------------------------------------------|
| Pin Name            | PIC18F6X2X             | PIC18F8X2X | Туре  | Туре   | Description                                        |
|                     |                        |            |       |        | PORTJ is a bidirectional I/O port <sup>(6)</sup> . |
| RJ0/ALE             | —                      | 62         |       |        |                                                    |
| RJ0                 |                        |            | I/O   | ST     | Digital I/O.                                       |
| ALE                 |                        |            | 0     | TTL    | External memory address latch enable.              |
| RJ1/OE              | —                      | 61         |       |        |                                                    |
|                     |                        |            | 1/0   |        | Digital I/O.                                       |
|                     |                        |            | 0     | 116    | External memory output enable.                     |
| RJ2/WRL             | _                      | 60         | 1/0   | ет     |                                                    |
| WRI                 |                        |            | 0     | TTI    | External memory write low control.                 |
| R I3/WRH            |                        | 59         | Ū     | =      |                                                    |
| RJ3                 |                        |            | I/O   | ST     | Digital I/O.                                       |
| WRH                 |                        |            | 0     | TTL    | External memory write high control.                |
| RJ4/BA0             | _                      | 39         |       |        |                                                    |
| RJ4                 |                        |            | I/O   | ST     | Digital I/O.                                       |
| BA0                 |                        |            | 0     | TTL    | System bus byte address 0 control.                 |
| RJ5/CE              | —                      | 40         |       |        |                                                    |
| RJ5                 |                        |            | 1/0   | ST     | Digital I/O                                        |
|                     |                        |            | 0     | 116    | External memory access indicator.                  |
| RJ6/LB              | _                      | 41         | 1/0   | ет     |                                                    |
|                     |                        |            | 0     | TTI    | External memory low byte select.                   |
| R 17/11B            |                        | 42         | -     |        |                                                    |
| RJ7                 |                        | 72         | I/O   | ST     | Digital I/O.                                       |
| UB                  |                        |            | 0     | TTL    | External memory high byte select.                  |
| Vss                 | 9, 25,                 | 11, 31,    | Р     | —      | Ground reference for logic and I/O pins.           |
|                     | 41, 56                 | 51, 70     |       |        |                                                    |
| Vdd                 | 10, 26,                | 12, 32,    | Р     | —      | Positive supply for logic and I/O pins.            |
|                     | 38, 57                 | 48, 71     |       |        |                                                    |
| AVss <sup>(8)</sup> | 20                     | 26         | Р     | —      | Ground reference for analog modules.               |
| AVdd <sup>(8)</sup> | 19                     | 25         | Р     | —      | Positive supply for analog modules.                |
| Lawards TTI TTI saw | and the last increased |            | 01400 |        | a sum atticle instant an autout                    |

### TABLE 1-2: PIC18F6525/6621/8525/8621 PINOUT I/O DESCRIPTIONS (CONTINUED)

**Legend:** TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input

I = Input P = Power = Output

r

OD = Open-Drain (no P diode to VDD)

Note 1: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX (CONFIG3H<0>) is not set (all Program Memory modes except Microcontroller).

0

2: Default assignment for ECCP2/P2A when CCP2MX is set (all devices).

3: External memory interface functions are only available on PIC18F8525/8621 devices.

4: Default assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is set and for all PIC18F6525/6621 devices.

5: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX is not set (Microcontroller mode).

6: PORTH and PORTJ (and their multiplexed functions) are only available on PIC18F8525/8621 devices.

7: Alternate assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is not set.

8: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for proper operation of the part in user or ICSP<sup>™</sup> modes. See parameter D001 for details.

**9:** RG5 is multiplexed with  $\overline{\text{MCLR}}$  and is only available when the  $\overline{\text{MCLR}}$  Resets are disabled.

| TADLE 5-5.             |                    |          |                                                  |                      |                                 |  |  |  |  |
|------------------------|--------------------|----------|--------------------------------------------------|----------------------|---------------------------------|--|--|--|--|
| Register               | Applicable Devices |          | cable Devices Power-on Reset,<br>Brown-out Reset |                      | Wake-up via WDT<br>or Interrupt |  |  |  |  |
| PORTG <sup>(7)</sup>   | Feature1           | Feature2 | xx xxxx                                          | uu uuuu              | uu uuuu                         |  |  |  |  |
| PORTF                  | Feature1           | Feature2 | x000 0000                                        | u000 0000            | uuuu uuuu                       |  |  |  |  |
| PORTE                  | Feature1           | Feature2 | xxxx xxxx                                        | uuuu uuuu            | uuuu uuuu                       |  |  |  |  |
| PORTD                  | Feature1           | Feature2 | xxxx xxxx                                        | uuuu uuuu            | սսսս սսսս                       |  |  |  |  |
| PORTC                  | Feature1           | Feature2 | xxxx xxxx                                        | uuuu uuuu            | uuuu uuuu                       |  |  |  |  |
| PORTB                  | Feature1           | Feature2 | xxxx xxxx                                        | uuuu uuuu            | uuuu uuuu                       |  |  |  |  |
| PORTA <sup>(5,6)</sup> | Feature1           | Feature2 | -x0x 0000 <b>(5)</b>                             | -u0u 0000 <b>(5)</b> | -uuu uuuu <b>(5)</b>            |  |  |  |  |
| SPBRGH1                | Feature1           | Feature2 | 0000 0000                                        | 0000 0000            | սսսս սսսս                       |  |  |  |  |
| BAUDCON1               | Feature1           | Feature2 | -1-0 0-00                                        | -1-0 0-00            | -u-u u-uu                       |  |  |  |  |
| SPBRGH2                | Feature1           | Feature2 | 0000 0000                                        | 0000 0000            | սսսս սսսս                       |  |  |  |  |
| BAUDCON2               | Feature1           | Feature2 | -1-0 0-00                                        | -1-0 0-00            | -u-1 u-uu                       |  |  |  |  |
| ECCP1DEL               | Feature1           | Feature2 | 0000 0000                                        | 0000 0000            | uuuu uuuu                       |  |  |  |  |
| TMR4                   | Feature1           | Feature2 | 0000 0000                                        | 0000 0000            | uuuu uuuu                       |  |  |  |  |
| PR4                    | Feature1           | Feature2 | 1111 1111                                        | 1111 1111            | uuuu uuuu                       |  |  |  |  |
| T4CON                  | Feature1           | Feature2 | -000 0000                                        | -000 0000            | -uuu uuuu                       |  |  |  |  |
| CCPR4H                 | Feature1           | Feature2 | xxxx xxxx                                        | xxxx xxxx            | uuuu uuuu                       |  |  |  |  |
| CCPR4L                 | Feature1           | Feature2 | xxxx xxxx                                        | XXXX XXXX            | uuuu uuuu                       |  |  |  |  |
| CCP4CON                | Feature1           | Feature2 | 00 0000                                          | 00 0000              | uu uuuu                         |  |  |  |  |
| CCPR5H                 | Feature1           | Feature2 | xxxx xxxx                                        | xxxx xxxx            | uuuu uuuu                       |  |  |  |  |
| CCPR5L                 | Feature1           | Feature2 | xxxx xxxx                                        | xxxx xxxx            | uuuu uuuu                       |  |  |  |  |
| CCP5CON                | Feature1           | Feature2 | 00 0000                                          | 00 0000              | uu uuuu                         |  |  |  |  |
| SPBRG2                 | Feature1           | Feature2 | 0000 0000                                        | 0000 0000            | uuuu uuuu                       |  |  |  |  |
| RCREG2                 | Feature1           | Feature2 | 0000 0000                                        | 0000 0000            | uuuu uuuu                       |  |  |  |  |
| TXREG2                 | Feature1           | Feature2 | 0000 0000                                        | 0000 0000            | uuuu uuuu                       |  |  |  |  |
| TXSTA2                 | Feature1           | Feature2 | 0000 0010                                        | 0000 0010            | uuuu uuuu                       |  |  |  |  |
| RCSTA2                 | Feature1           | Feature2 | 0000 000x                                        | 0000 000x            | uuuu uuuu                       |  |  |  |  |
| ECCP3AS                | Feature1           | Feature2 | 0000 0000                                        | 0000 0000            | uuuu uuuu                       |  |  |  |  |
| ECCP3DEL               | Feature1           | Feature2 | 0000 0000                                        | 0000 0000            | uuuu uuuu                       |  |  |  |  |
| ECCP2AS                | Feature1           | Feature2 | 0000 0000                                        | 0000 0000            | uuuu uuuu                       |  |  |  |  |
| ECCP2DEL               | Feature1           | Feature2 | 0000 0000                                        | 0000 0000            | uuuu uuuu                       |  |  |  |  |

### TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

**Legend:** u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

- **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.
- 4: See Table 3-2 for Reset value for specific condition.
- 5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other oscillator modes, they are disabled and read '0'.

6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read '0'.

- 7: If MCLR function is disabled, PORTG<5> is a read-only bit.
- 8: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.
- 9: The MEMCON register is unimplemented and reads all '0's when the device is in Microcontroller mode.

## 4.12 Indirect Addressing, INDF and FSR Registers

Indirect addressing is a mode of addressing data memory, where the data memory address in the instruction is not fixed. An FSR register is used as a pointer to the data memory location that is to be read or written. Since this pointer is in RAM, the contents can be modified by the program. This can be useful for data tables in the data memory and for software stacks. Figure 4-9 shows the operation of indirect addressing. This shows the moving of the value to the data memory address specified by the value of the FSR register.

Indirect addressing is possible by using one of the INDF registers. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = 0), will read 00h. Writing to the INDF register indirectly, results in a no operation (NOP). The FSR register contains a 12-bit address which is shown in Figure 4-10.

The INDFn register is not a physical register. Addressing INDFn actually addresses the register whose address is contained in the FSRn register (FSRn is a pointer). This is indirect addressing.

Example 4-5 shows a simple use of indirect addressing to clear the RAM in Bank 1 (locations 100h-1FFh) in a minimum number of instructions.

#### EXAMPLE 4-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

| DF     |
|--------|
| and    |
| ter    |
| with   |
|        |
| r next |
| tinue  |
|        |

There are three indirect addressing registers. To address the entire data memory space (4096 bytes), these registers are 12 bits wide. To store the 12 bits of addressing information, two 8-bit registers are required. These indirect addressing registers are:

- 1. FSR0: composed of FSR0H:FSR0L
- 2. FSR1: composed of FSR1H:FSR1L
- 3. FSR2: composed of FSR2H:FSR2L

In addition, there are registers INDF0, INDF1 and INDF2, which are not physically implemented. Reading or writing to these registers activates indirect addressing, with the value in the corresponding FSR register being the address of the data. If an instruction writes a value to INDF0, the value will be written to the address pointed to by FSR0H:FSR0L. A read from INDF1 reads

the data from the address pointed to by FSR1H:FSR1L. INDFn can be used in code anywhere an operand can be used.

If INDF0, INDF1 or INDF2 are read indirectly via an FSR, all '0's are read (zero bit is set). Similarly, if INDF0, INDF1 or INDF2 are written to indirectly, the operation will be equivalent to a NOP instruction and the Status bits are not affected.

#### 4.12.1 INDIRECT ADDRESSING OPERATION

Each FSR register has an INDF register associated with it, plus four additional register addresses. Performing an operation on one of these five registers determines how the FSR will be modified during indirect addressing.

When data access is done to one of the five INDFn locations, the address selected will configure the FSRn register to:

- Do nothing to FSRn after an indirect access (no change) INDFn.
- Auto-decrement FSRn after an indirect access (post-decrement) POSTDECn.
- Auto-increment FSRn after an indirect access (post-increment) POSTINCn.
- Auto-increment FSRn before an indirect access (pre-increment) PREINCn.
- Use the value in the WREG register as an offset to FSRn. Do not modify the value of the WREG or the FSRn register after an indirect access (no change) – PLUSWn.

When using the auto-increment or auto-decrement features, the effect on the FSR is not reflected in the STATUS register. For example, if the indirect address causes the FSR to equal '0', the Z bit will not be set.

Incrementing or decrementing an FSR affects all 12 bits. That is, when FSRnL overflows from an increment, FSRnH will be incremented automatically.

Adding these features allows the FSRn to be used as a Stack Pointer in addition to its uses for table operations in data memory.

Each FSR has an address associated with it that performs an indexed indirect access. When a data access to this INDFn location (PLUSWn) occurs, the FSRn is configured to add the signed value in the WREG register and the value in FSR to form the address before an indirect access. The FSR value is not changed.

If an FSR register contains a value that points to one of the INDFn, an indirect read will read 00h (zero bit is set), while an indirect write will be equivalent to a NOP (Status bits are not affected).

If an indirect addressing operation is done where the target address is an FSRnH or FSRnL register, the write operation will dominate over the pre- or post-increment/decrement functions.

| REGISTER 7-1: | EECON1 REGISTER (ADDRESS FA6h)                                                                                                                                                                                                                                                                                             |                                               |                                           |                                          |                               |              |              |             |  |  |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------|--------------|--------------|-------------|--|--|--|
|               | R/W-x                                                                                                                                                                                                                                                                                                                      | R/W-x                                         | U-0                                       | R/W-0                                    | R/W-x                         | R/W-0        | R/S-0        | R/S-0       |  |  |  |
|               | EEPGD                                                                                                                                                                                                                                                                                                                      | CFGS                                          | _                                         | FREE                                     | WRERR                         | WREN         | WR           | RD          |  |  |  |
|               | bit 7                                                                                                                                                                                                                                                                                                                      |                                               |                                           |                                          |                               |              |              | bit 0       |  |  |  |
| bit 7         | EEPGD: FI                                                                                                                                                                                                                                                                                                                  | ash Prograr                                   | n/Data EEP                                | ROM Memo                                 | ory Select bit                |              |              |             |  |  |  |
|               | 1 = Access0 = Access                                                                                                                                                                                                                                                                                                       | s Flash prog<br>s data EEPF                   | ram memor<br>ROM memor                    | ry<br>ry                                 |                               |              |              |             |  |  |  |
| bit 6         | CFGS: Flas                                                                                                                                                                                                                                                                                                                 | sh Program/                                   | Data EEPR                                 | OM or Conf                               | iguration Se                  | lect bit     |              |             |  |  |  |
|               | 1 = Access0 = Access                                                                                                                                                                                                                                                                                                       | s Configurat<br>s Flash prog                  | ion or Calib<br>ram or data               | EEPROM r                                 | ers<br>nemory                 |              |              |             |  |  |  |
| bit 5         | Unimplem                                                                                                                                                                                                                                                                                                                   | ented: Read                                   | <b>d as</b> '0'                           |                                          |                               |              |              |             |  |  |  |
| bit 4         | FREE: Flas                                                                                                                                                                                                                                                                                                                 | sh Row Eras                                   | e Enable bi                               | t                                        |                               |              |              |             |  |  |  |
|               | 1 = Erase<br>(cleare<br>0 = Perfor                                                                                                                                                                                                                                                                                         | the program<br>ed by comple<br>m write only   | memory ro<br>etion of eras                | w addresse<br>e operation)               | d by TBLPTI<br>)              | R on the ne  | xt WR comm   | hand        |  |  |  |
| bit 3         | WRERR: Flash Program/Data EEPROM Error Flag bit                                                                                                                                                                                                                                                                            |                                               |                                           |                                          |                               |              |              |             |  |  |  |
|               | 1 = A write<br>(any M<br>0 = The wr                                                                                                                                                                                                                                                                                        | operation is<br>ICLR or any<br>rite operation | s premature<br>WDT Rese<br>n completec    | ly terminate<br>t during self<br>I       | d<br>-timed progr             | amming in r  | normal opera | ition)      |  |  |  |
|               | Note:                                                                                                                                                                                                                                                                                                                      | When a W tracing of th                        | RERR occu<br>ne error con                 | ırs, the EEP<br>dition.                  | GD or FRE                     | E bits are n | ot cleared.  | This allows |  |  |  |
| bit 2         | WREN: Fla<br>1 = Allows<br>0 = Inhibits                                                                                                                                                                                                                                                                                    | ish Program<br>write cycles<br>write cycle    | /Data EEPF<br>to Flash pr<br>s to Flash p | ROM Write E<br>ogram/data<br>rogram/data | nable bit<br>EEPROM<br>EEPROM |              |              |             |  |  |  |
| bit 1         | WR: Write                                                                                                                                                                                                                                                                                                                  | Control bit                                   |                                           |                                          |                               |              |              |             |  |  |  |
|               | <ul> <li>1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle<br/>(The operation is self-timed and the bit is cleared by hardware once write is complete. The<br/>WR bit can only be set (not cleared) in software.)</li> <li>0 = Write cycle to the EEPROM is complete</li> </ul> |                                               |                                           |                                          |                               |              |              |             |  |  |  |
| bit 0         | RD: Read                                                                                                                                                                                                                                                                                                                   | Control bit                                   |                                           |                                          |                               |              |              |             |  |  |  |
|               | <ul> <li>1 = Initiates an EEPROM read         <ul> <li>(Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software. RD bit cannot be set when EEPGD = 1.)</li> <li>0 = Does not initiate an EEPROM read</li> </ul> </li> </ul>                                                  |                                               |                                           |                                          |                               |              |              |             |  |  |  |
|               |                                                                                                                                                                                                                                                                                                                            |                                               |                                           |                                          |                               |              |              |             |  |  |  |

| Legend:           |                  |                      |                    |
|-------------------|------------------|----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented I  | bit, read as '0'   |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

# 8.0 8 x 8 HARDWARE MULTIPLIER

### 8.1 Introduction

An 8 x 8 hardware multiplier is included in the ALU of the PIC18F6525/6621/8525/8621 devices. By making the multiply a hardware operation, it completes in a single instruction cycle. This is an unsigned multiply that gives a 16-bit result. The result is stored in the 16-bit product register pair (PRODH:PRODL). The multiplier does not affect any flags in the ALUSTA register.

Making the 8 x 8 multiplier execute in a single cycle gives the following advantages:

- Higher computational throughput
- Reduces code size requirements for multiply algorithms

The performance increase allows the device to be used in applications previously reserved for Digital Signal Processors.

Table 8-1 shows a performance comparison between Enhanced devices using the single-cycle hardware multiply and performing the same function without the hardware multiply.

## 8.2 Operation

Example 8-1 shows the sequence to do an  $8 \times 8$  unsigned multiply. Only one instruction is required when one argument of the multiply is already loaded in the WREG register.

Example 8-2 shows the sequence to do an 8 x 8 signed multiply. To account for the signed bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

# EXAMPLE 8-1: 8 x 8 UNSIGNED MULTIPLY ROUTINE

| MOVF  | ARG1, | W | ; |      |     |        |    |
|-------|-------|---|---|------|-----|--------|----|
| MULWF | ARG2  |   | ; | ARG1 | *   | ARG2   | -> |
|       |       |   | ; | PRO  | DDI | H:PROI | ЪГ |

### EXAMPLE 8-2: 8 x 8 SIGNED MULTIPLY ROUTINE

| MOVF  | ARG1, W  | ;                |
|-------|----------|------------------|
| MULWF | ARG2     | ; ARG1 * ARG2 -> |
|       |          | ; PRODH:PRODL    |
| BTFSC | ARG2, SB | ; Test Sign Bit  |
| SUBWF | PRODH, F | ; PRODH = PRODH  |
|       |          | ; – ARG1         |
| MOVF  | ARG2, W  | ;                |
| BTFSC | ARG1, SB | ; Test Sign Bit  |
| SUBWF | PRODH, F | ; PRODH = PRODH  |
|       |          | ; - ARG2         |

|                                 |                           | Program | Cycles | Time     |          |         |  |
|---------------------------------|---------------------------|---------|--------|----------|----------|---------|--|
| Routine                         | Multiply Method           | (Words) | (Max)  | @ 40 MHz | @ 10 MHz | @ 4 MHz |  |
| 0 v 0 uppigpod                  | Without hardware multiply | 13      | 69     | 6.9 μs   | 27.6 μs  | 69 μs   |  |
| o x o unsigned                  | Hardware multiply         | 1       | 1      | 100 ns   | 400 ns   | 1 μs    |  |
| 0 0 airmad                      | Without hardware multiply | 33      | 91     | 9.1 μs   | 36.4 μs  | 91 μs   |  |
| o x o signed                    | Hardware multiply         | 6       | 6      | 600 ns   | 2.4 μs   | 6 μs    |  |
| 16 x 16 uppigpod                | Without hardware multiply | 21      | 242    | 24.2 μs  | 96.8 μs  | 242 μs  |  |
| To x To unsigned                | Hardware multiply         | 24      | 24     | 2.4 μs   | 9.6 μs   | 24 μs   |  |
| 10 · · · 10 · · · · · · · · · · | Without hardware multiply | 52      | 254    | 25.4 μs  | 102.6 μs | 254 μs  |  |
| To x To signed                  | Hardware multiply         | 36      | 36     | 3.6 μs   | 14.4 μs  | 36 μs   |  |

## TABLE 8-1: PERFORMANCE COMPARISON

### FIGURE 11-1: TIMER0 BLOCK DIAGRAM IN 8-BIT MODE



### FIGURE 11-2: TIMER0 BLOCK DIAGRAM IN 16-BIT MODE



NOTES:

### 13.2 Timer2 Interrupt

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon Reset.



13.3

**Output of TMR2** 

to generate the shift clock.

The output of TMR2 (before the postscaler) is fed to the

synchronous serial port module which optionally uses it

#### FIGURE 13-1: TIMER2 BLOCK DIAGRAM

### TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

| Name   | Bit 7                    | Bit 6                                                        | Bit 5  | Bit 4         | Bit 3 | Bit 2  | Bit 1         | Bit 0  | Value<br>POR, I | e on<br>BOR | Valu<br>all c<br>Res | e on<br>other<br>sets |
|--------|--------------------------|--------------------------------------------------------------|--------|---------------|-------|--------|---------------|--------|-----------------|-------------|----------------------|-----------------------|
| INTCON | GIE/GIEH                 | PEIE/GIEL                                                    | TMR0IE | <b>INTOIE</b> | RBIE  | TMR0IF | <b>INT0IF</b> | RBIF   | 0000 (          | 000x        | 0000                 | 000u                  |
| PIR1   | PSPIF <sup>(1)</sup>     | ADIF                                                         | RC1IF  | TX1IF         | SSPIF | CCP1IF | TMR2IF        | TMR1IF | 0000            | 0000        | 0000                 | 0000                  |
| PIE1   | PSPIE <sup>(1)</sup>     | ADIE                                                         | RC1IE  | TX1IE         | SSPIE | CCP1IE | TMR2IE        | TMR1IE | 0000            | 0000        | 0000                 | 0000                  |
| IPR1   | PSPIP <sup>(1)</sup>     | ADIP                                                         | RC1IP  | TX1IP         | SSPIP | CCP1IP | TMR2IP        | TMR1IP | 1111 :          | 1111        | 1111                 | 1111                  |
| TMR2   | 2 Timer2 Module Register |                                                              |        |               |       |        |               |        |                 | 0000        | 0000                 | 0000                  |
| T2CON  | —                        | T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0 - |        |               |       |        |               | -000 ( | 0000            | -000        | 0000                 |                       |
| PR2    | Timer2 Per               | iod Register                                                 |        |               |       |        |               |        | 1111 3          | 1111        | 1111                 | 1111                  |

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

**Note 1:** Enabled only in Microcontroller mode for PIC18F8525/8621 devices.

| ECCP Mode                                                            | CCP2CON<br>Configuration | RB3            | RC1          | RE7            | RE2      | RE1    | RE0    |  |  |
|----------------------------------------------------------------------|--------------------------|----------------|--------------|----------------|----------|--------|--------|--|--|
|                                                                      | A                        | All devices, C | CP2MX = 1, N | licrocontrolle | er mode: |        |        |  |  |
| Compatible CCP                                                       | 00xx 11xx                | RB3/INT3       | ECCP2        | RE7            | RE2      | RE1    | RE0    |  |  |
| Dual PWM                                                             | 10xx 11xx                | RB3/INT3       | P2A          | RE7            | P2B      | RE1    | RE0    |  |  |
| Quad PWM                                                             | x1xx 11xx                | RB3/INT3       | P2A          | RE7            | P2B      | P2C    | P2D    |  |  |
|                                                                      | A                        | All devices, C | CP2MX = 0, N | licrocontrolle | er mode: |        |        |  |  |
| Compatible CCP                                                       | 00xx 11xx                | RB3/INT3       | RC1/T1OS1    | ECCP2          | RE2      | RE1    | RE0    |  |  |
| Dual PWM                                                             | 10xx 11xx                | RB3/INT3       | RC1/T1OS1    | P2A            | P2B      | RE1    | RE0    |  |  |
| Quad PWM                                                             | x1xx 11xx                | RB3/INT3       | RC1/T1OS1    | P2A            | P2B      | P2C    | P2D    |  |  |
| PIC18F8525/8621 devices, CCP2MX = 0, all other Program Memory modes: |                          |                |              |                |          |        |        |  |  |
| Compatible CCP                                                       | 00xx 11xx                | ECCP2          | RC1/T1OS1    | RE7/AD15       | RE2/CS   | RE1/WR | RE0/RD |  |  |
| Dual PWM                                                             | 10xx 11xx                | P2A            | RC1/T1OS1    | RE7/AD15       | P2B      | RE1/WR | RE0/RD |  |  |
| Quad PWM                                                             | x1xx 11xx                | P2A            | RC1/T1OS1    | RE7/AD15       | P2B      | P2C    | P2D    |  |  |

### TABLE 17-2: PIN CONFIGURATIONS FOR ECCP2

Legend: x = Don't care. Shaded cells indicate pin assignments not used by ECCP2 in a given mode.

#### TABLE 17-3: PIN CONFIGURATIONS FOR ECCP3

| ECCP Mode      | CCP3CON<br>Configuration     | RG0          | RE4          | RE3            | RG3           | RH5      | RH4      |  |  |  |  |  |  |
|----------------|------------------------------|--------------|--------------|----------------|---------------|----------|----------|--|--|--|--|--|--|
|                | All PIC18F6525/6621 devices: |              |              |                |               |          |          |  |  |  |  |  |  |
| Compatible CCP | 00xx 11xx                    | ECCP3        | RE4          | RE3            | RG3/CCP4      | N/A      | N/A      |  |  |  |  |  |  |
| Dual PWM       | 10xx 11xx                    | P3A          | P3B          | RE3            | RG3/CCP4      | N/A      | N/A      |  |  |  |  |  |  |
| Quad PWM       | x1xx 11xx                    | P3A          | P3B          | P3C            | P3D           | N/A      | N/A      |  |  |  |  |  |  |
|                | PIC18F8                      | 525/8621 dev | vices, ECCPM | X = 1, Microc  | ontroller mod | le:      |          |  |  |  |  |  |  |
| Compatible CCP | 00xx 11xx                    | ECCP3        | RE4/AD12     | RE3/AD11       | RG3/CCP4      | RH5/AN13 | RH4/AN12 |  |  |  |  |  |  |
| Dual PWM       | 10xx 11xx                    | P3A          | P3B          | RE3/AD11       | RG3/CCP4      | RH5/AN13 | RH4/AN12 |  |  |  |  |  |  |
| Quad PWM       | x1xx 11xx                    | P3A          | P3B          | P3C            | P3D           | RH5/AN13 | RH4/AN12 |  |  |  |  |  |  |
|                | PIC18F8                      | 525/8621 dev | vices, ECCPM | X = 0, Microc  | ontroller mod | le:      |          |  |  |  |  |  |  |
| Compatible CCP | 00xx 11xx                    | ECCP3        | RE6/AD14     | RE5/AD13       | RG3/CCP4      | RH7/AN15 | RH6/AN14 |  |  |  |  |  |  |
| Dual PWM       | 10xx 11xx                    | P3A          | RE6/AD14     | RE5/AD13       | RG3/CCP4      | P3B      | RH6/AN14 |  |  |  |  |  |  |
| Quad PWM       | x1xx 11xx                    | P3A          | RE6/AD14     | RE5/AD13       | P3D           | P3B      | P3C      |  |  |  |  |  |  |
|                | PIC18F8525/86                | 621 devices, | ECCPMX = 1,  | all other Prog | gram Memory   | modes:   |          |  |  |  |  |  |  |
| Compatible CCP | 00xx 11xx                    | ECCP3        | RE6/AD14     | RE5/AD13       | RG3/CCP4      | RH7/AN15 | RH6/AN14 |  |  |  |  |  |  |

Legend: x = Don't care, N/A = Not available. Shaded cells indicate pin assignments not used by ECCP3 in a given mode.
 Note 1: With ECCP3 in Quad PWM mode, CCP4's output is overridden by P1D; otherwise CCP4 is fully operational.

## 18.3.2 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPBUF register. Then the buffer full detect bit, BF (SSPSTAT<0>) and the interrupt flag bit, SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before

reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored and the write collision detect bit, WCOL (SSPCON1<7>), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer full bit, BF (SSPSTAT<0>), indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 18-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the MSSP Status register (SSPSTAT) indicates the various status conditions.

#### EXAMPLE 18-1: LOADING THE SSPBUF (SSPSR) REGISTER

| LOOP | BTFSS | SSPSTAT, BF | ;Has data been received (transmit complete)? |
|------|-------|-------------|----------------------------------------------|
|      | BRA   | LOOP        | ;No                                          |
|      | MOVF  | SSPBUF, W   | ;WREG reg = contents of SSPBUF               |
|      | MOVWF | RXDATA      | ;Save in user RAM, if data is meaningful     |
|      | MOVF  | TXDATA, W   | ;W reg = contents of TXDATA                  |
|      | MOVWF | SSPBUF      | ;New data to xmit                            |





|   | R/W-0                                           | R/W-0                                           | R/W-0                          | R/W-0                       | R/W-0        | R/W-0      | R-1         | R/W-0 |
|---|-------------------------------------------------|-------------------------------------------------|--------------------------------|-----------------------------|--------------|------------|-------------|-------|
|   | CSRC                                            | TX9                                             | TXEN                           | SYNC                        | SENDB        | BRGH       | TRMT        | TX9D  |
| ł | oit 7                                           |                                                 |                                |                             |              |            |             | bi    |
|   | CSRC: Clo                                       | ock Source S                                    | Select bit                     |                             |              |            |             |       |
|   | <u>Asynchron</u><br>Don't care.                 | <u>ous mode:</u>                                |                                |                             |              |            |             |       |
|   | <u>Synchrono</u><br>1 = Master<br>0 = Slave r   | <u>us mode:</u><br>mode (clocl<br>mode (clock   | k generated<br>from extern     | internally froad al source) | om BRG)      |            |             |       |
|   | <b>TX9:</b> 9-bit 1<br>1 = Select<br>0 = Select | Transmit En<br>s 9-bit trans<br>s 8-bit trans   | able bit<br>mission<br>mission |                             |              |            |             |       |
|   | TXEN: Tra                                       | nsmit Enable                                    | e bit                          |                             |              |            |             |       |
|   | 1 = Transr<br>0 = Transr                        | mit enabled<br>mit disabled                     |                                |                             |              |            |             |       |
|   | Note:                                           | SREN/CRE                                        | EN overrides                   | S TXEN in S                 | ync mode.    |            |             |       |
|   | SYNC: EU                                        | SART Mode                                       | Select bit                     |                             |              |            |             |       |
|   | 1 = Synch<br>0 = Async                          | ronous mod<br>hronous mo                        | e<br>de                        |                             |              |            |             |       |
|   | SENDB: S                                        | end Break C                                     | Character bit                  | t                           |              |            |             |       |
|   | Asynchron<br>1 = Send s<br>0 = Sync b           | <u>ous mode:</u><br>sync break o<br>reak transm | n next trans                   | mission (cle                | ared by harc | lware upon | completion) |       |
|   | <u>Synchrono</u><br>Don't care.                 | ous mode:                                       |                                |                             |              |            |             |       |
|   | BRGH: Hig                                       | gh Baud Rat                                     | e Select bit                   |                             |              |            |             |       |
|   | $\frac{\text{Asynchron}}{1 = \text{High s}}$    | <u>ous mode:</u><br>peed<br>peed                |                                |                             |              |            |             |       |
|   | <u>Synchrono</u><br>Unused in                   | <u>us mode:</u><br>this mode.                   |                                |                             |              |            |             |       |
|   | TRMT: Tra                                       | nsmit Shift F                                   | Register Stat                  | tus bit                     |              |            |             |       |
|   | 1 = TSR e<br>0 = TSR fu                         | empty<br>ull                                    |                                |                             |              |            |             |       |
|   | <b>TX9D:</b> 9th                                | bit of Transr                                   | nit Data                       |                             |              |            |             |       |
|   | <u> </u>                                        |                                                 | •. •.                          |                             |              |            |             |       |

'1' = Bit is set

'0' = Bit is cleared

# REGISTER 19-1: TXSTAX: TRANSMIT STATUS AND CONTROL REGISTER

-n = Value at POR

x = Bit is unknown

NOTES:

#### **REGISTER 24-6:** CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)

| R/P-1 | U-0 | U-0 | U-0 | U-0 | R/P-1 | U-0 | R/P-1  |
|-------|-----|-----|-----|-----|-------|-----|--------|
| DEBUG | —   | —   | —   | —   | LVP   | —   | STVREN |
| bit 7 |     |     |     |     |       |     | bit 0  |

bit 7 DEBUG: Background Debugger Enable bit

> 1 = Background debugger disabled. RB6 and RB7 configured as general purpose I/O pins. 0 = Background debugger enabled. RB6 and RB7 are dedicated to in-circuit debug.

- bit 6-3 Unimplemented: Read as '0'
- bit 2 LVP: Low-Voltage ICSP Enable bit
  - 1 = Low-Voltage ICSP enabled
  - 0 = Low-Voltage ICSP disabled
- bit 1 Unimplemented: Read as '0'
- bit 0 STVREN: Stack Full/Underflow Reset Enable bit
  - 1 = Stack full/underflow will cause Reset
  - 0 = Stack full/underflow will not cause Reset

| Legend:               |                      |                                     |
|-----------------------|----------------------|-------------------------------------|
| R = Readable bit      | P = Programmable bit | U = Unimplemented bit, read as '0'  |
| -n = Value when devic | e is unprogrammed    | u = Unchanged from programmed state |

#### REGISTER 24-7: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)

| U-0   | U-0 | U-0 | U-0 | R/C-1              | R/C-1 | R/C-1 | R/C-1 |
|-------|-----|-----|-----|--------------------|-------|-------|-------|
| —     | —   | —   | —   | CP3 <sup>(1)</sup> | CP2   | CP1   | CP0   |
| bit 7 |     |     |     |                    |       |       | bit 0 |

- bit 7-4 Unimplemented: Read as '0'
- bit 3 **CP3:** Code Protection bit<sup>(1)</sup>
  - 1 = Block 3 (00C000-00FFFFh) not code-protected
  - 0 = Block 3 (00C000-00FFFFh) code-protected

Note 1: Unimplemented in PIC18FX525 devices; maintain this bit set.

- bit 2 CP2: Code Protection bit
  - 1 = Block 2 (008000-00BFFFh) not code-protected
  - 0 = Block 2 (008000-00BFFFh) code-protected
- bit 1 CP1: Code Protection bit
  - 1 = Block 1 (004000-007FFFh) not code-protected
  - 0 = Block 1 (004000-007FFFh) code-protected
- bit 0 CP0: Code Protection bit
  - 1 = Block 0 (000800-003FFFh) not code-protected
  - 0 = Block 0 (000800-003FFFh) code-protected

| Legend: |
|---------|
|---------|

| Logona.                |                   |                                     |
|------------------------|-------------------|-------------------------------------|
| R = Readable bit       | C = Clearable bit | U = Unimplemented bit, read as '0'  |
| -n = Value when device | e is unprogrammed | u = Unchanged from programmed state |

| Dh)                                 |  |  |  |  |  |  |  |
|-------------------------------------|--|--|--|--|--|--|--|
| <b>,</b><br>U-0                     |  |  |  |  |  |  |  |
|                                     |  |  |  |  |  |  |  |
| bit 0                               |  |  |  |  |  |  |  |
|                                     |  |  |  |  |  |  |  |
|                                     |  |  |  |  |  |  |  |
| ks                                  |  |  |  |  |  |  |  |
|                                     |  |  |  |  |  |  |  |
| Unimplemented: Read as '0'          |  |  |  |  |  |  |  |
|                                     |  |  |  |  |  |  |  |
|                                     |  |  |  |  |  |  |  |
| U = Unimplemented bit, read as '0'  |  |  |  |  |  |  |  |
| u = Unchanged from programmed state |  |  |  |  |  |  |  |
|                                     |  |  |  |  |  |  |  |
|                                     |  |  |  |  |  |  |  |
| ES                                  |  |  |  |  |  |  |  |
| _                                   |  |  |  |  |  |  |  |
| R                                   |  |  |  |  |  |  |  |
| EV0                                 |  |  |  |  |  |  |  |
| bit 0                               |  |  |  |  |  |  |  |
|                                     |  |  |  |  |  |  |  |
|                                     |  |  |  |  |  |  |  |
|                                     |  |  |  |  |  |  |  |
|                                     |  |  |  |  |  |  |  |
|                                     |  |  |  |  |  |  |  |
|                                     |  |  |  |  |  |  |  |

bit 4-0 **REV4:REV0:** Revision ID bits

These bits are used to indicate the device revision.

| Legend:                |                      |                                     |
|------------------------|----------------------|-------------------------------------|
| R = Readable bit       | P = Programmable bit | U = Unimplemented bit, read as '0'  |
| -n = Value when device | e is unprogrammed    | u = Unchanged from programmed state |

# REGISTER 24-14: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F6525/6621/8525/8621 DEVICES (ADDRESS 3FFFFh)

| R-0   | R-0  | R-0  | R-0  | R-1  | R-0  | R-1  | R-0   |
|-------|------|------|------|------|------|------|-------|
| DEV10 | DEV9 | DEV8 | DEV7 | DEV6 | DEV5 | DEV4 | DEV3  |
| bit 7 |      |      |      |      |      |      | bit 0 |

bit 7-0 DEV10:DEV3: Device ID bits

These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the part number.

0000 1010 = PIC18F6525/6621/8525/8621

| Legend:                |                      |                                     |
|------------------------|----------------------|-------------------------------------|
| R = Readable bit       | P = Programmable bit | U = Unimplemented bit, read as '0'  |
| -n = Value when device | is unprogrammed      | u = Unchanged from programmed state |

| DC Characteristics |       |                                                                     | Standard Operating Conditions (unless otherwise stated)<br>Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial<br>$-40^{\circ}C \le TA \le +125^{\circ}C$ for extended |             |       |            |                                                                  |  |
|--------------------|-------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|------------|------------------------------------------------------------------|--|
| Param<br>No.       | Sym   | Characteristic                                                      | Min                                                                                                                                                                                            | Тур†        | Max   | Units      | Conditions                                                       |  |
|                    |       | Internal Program Memory<br>Programming Specifications               |                                                                                                                                                                                                |             |       |            |                                                                  |  |
| D110               | Vpp   | Voltage on MCLR/VPP pin                                             | 9.00                                                                                                                                                                                           | —           | 13.25 | V          | (Note 2)                                                         |  |
| D112               | IPP   | Current into MCLR/VPP pin                                           | —                                                                                                                                                                                              | —           | 300   | μΑ         |                                                                  |  |
| D113               | IDDP  | Supply Current during<br>Programming                                | —                                                                                                                                                                                              | —           | 1.0   | mA         |                                                                  |  |
|                    |       | Data EEPROM Memory                                                  |                                                                                                                                                                                                |             |       |            |                                                                  |  |
| D120               | ED    | Byte Endurance                                                      | 100K<br>10K                                                                                                                                                                                    | 1M<br>100K  | —     | E/W<br>E/W | -40°C to +85°C<br>-40°C to +125°C                                |  |
| D121               | Vdrw  | VDD for Read/Write                                                  | Vmin                                                                                                                                                                                           | _           | 5.5   | V          | Using EECON to read/write<br>VMIN = Minimum operating<br>voltage |  |
| D122               | TDEW  | Erase/Write Cycle Time                                              | —                                                                                                                                                                                              | 4           | —     | ms         |                                                                  |  |
| D123               | TRETD | Characteristic Retention                                            | 40                                                                                                                                                                                             | —           | —     | Year       | Provided no other specifications are violated                    |  |
| D124               | Tref  | Number of Total Erase/Write<br>Cycles before Refresh <sup>(1)</sup> | 1M<br>100K                                                                                                                                                                                     | 10M<br>1M   | —     | E/W<br>E/W | -40°C to +85°C<br>-40°C to +125°C                                |  |
|                    |       | Program Flash Memory                                                |                                                                                                                                                                                                |             |       |            |                                                                  |  |
| D130               | Eр    | Cell Endurance                                                      | 10K<br>1K                                                                                                                                                                                      | 100K<br>10K | —     | E/W<br>E/W | -40°C to +85°C<br>-40°C to +125°C                                |  |
| D131               | Vpr   | VDD for Read                                                        | VMIN                                                                                                                                                                                           | —           | 5.5   | V          | VMIN = Minimum operating<br>voltage                              |  |
| D132               | VIE   | VDD for Block Erase                                                 | 4.5                                                                                                                                                                                            | —           | 5.5   | V          | Using ICSP™ port                                                 |  |
| D132A              | Viw   | VDD for Externally Timed Erase or Write                             | 4.5                                                                                                                                                                                            | —           | 5.5   | V          | Using ICSP port                                                  |  |
| D132B              | Vpew  | VDD for Self-Timed Write and Row Erase                              | VMIN                                                                                                                                                                                           | —           | 5.5   | V          | VMIN = Minimum operating<br>voltage                              |  |
| D133               | TIE   | ICSP Block Erase Cycle Time                                         |                                                                                                                                                                                                | 4           | _     | ms         | VDD > 4.5V                                                       |  |
| D133A              | Tiw   | ICSP Erase or Write Cycle Time (externally timed)                   | 1                                                                                                                                                                                              | —           | —     | ms         | VDD > 4.5V                                                       |  |
| D133A              | Tiw   | Self-Timed Write Cycle Time                                         | —                                                                                                                                                                                              | 2           | —     | ms         |                                                                  |  |
| D134               | TRETD | Characteristic Retention                                            | 40                                                                                                                                                                                             | —           | —     | Year       | Provided no other specifications are violated                    |  |

### TABLE 27-4: MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Refer to Section 7.8 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

2: Required only if Low-Voltage Programming is disabled.

# TABLE 27-25: A/D CONVERTER CHARACTERISTICS:PIC18F6525/6621/8525/8621 (INDUSTRIAL, EXTENDED)

| Param<br>No. | Symbol | Characteristic                                    |                               | Min                       | Тур        | Max         | Units                                                                                                              | Conditions                                                             |
|--------------|--------|---------------------------------------------------|-------------------------------|---------------------------|------------|-------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| A01          | NR     | Resolution                                        | _                             |                           | 10<br>TBD  | bit<br>bit  | $\begin{array}{l} \text{VREF} = \text{VDD} \geq 3.0\text{V} \\ \text{VREF} = \text{VDD} < 3.0\text{V} \end{array}$ |                                                                        |
| A03          | EIL    | Integral Linearity                                |                               |                           | <±1<br>TBD | LSb<br>LSb  | $\begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$                                           |                                                                        |
| A04          | Edl    | Differential Linea                                |                               |                           | <±1<br>TBD | LSb<br>LSb  | $\begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$                                           |                                                                        |
| A05          | Efs    | Full Scale Error                                  |                               |                           | <±1<br>TBD | LSb<br>LSb  | $\begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$                                           |                                                                        |
| A06          | EOFF   | Offset Error                                      |                               |                           | <±1<br>TBD | LSb<br>LSb  | $\begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$                                           |                                                                        |
| A10          | —      | Monotonicity                                      |                               | guaranteed <sup>(3)</sup> |            |             | _                                                                                                                  | $VSS \leq VAIN \leq VREF$                                              |
| A20<br>A20A  | Vref   | Reference Voltage<br>(VREFH – VREFL)              |                               | 0V<br>3V                  |            |             | V<br>V                                                                                                             | For 10-bit resolution                                                  |
| A21          | Vrefh  | Reference Voltage High                            |                               | AVss                      | _          | AVDD + 0.3V | V                                                                                                                  |                                                                        |
| A22          | Vrefl  | Reference Voltage Low                             |                               | AVss-0.3V                 |            | AVDD        | V                                                                                                                  |                                                                        |
| A25          | Vain   | Analog Input Voltage                              |                               | AVss-0.3V                 | _          | VREF + 0.3V | V                                                                                                                  |                                                                        |
| A30          | ZAIN   | Recommended Impedance of<br>Analog Voltage Source |                               |                           | _          | 10.0        | kΩ                                                                                                                 |                                                                        |
| A40          | Iad    | A/D Conversion<br>Current (VDD)                   | PIC18F6525/6621/<br>8525/8621 | _                         | 180        | —           | μΑ                                                                                                                 | μA Average current<br>consumption when<br>μA A/D is on <b>(Note 1)</b> |
|              |        |                                                   | PIC18LF6X2X/8X2X              |                           | 90         | —           | μΑ                                                                                                                 |                                                                        |
| A50          | IREF   | VREF Input Current (Note 2)                       |                               |                           | _          | 5<br>150    | μΑ<br>μΑ                                                                                                           | During VAIN acquisition.<br>During A/D conversion<br>cycle.            |

#### PIC18LF6X2X/8X2X (INDUSTRIAL)

**Legend:** TBD = To Be Determined

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module. VREF current is from RA2/AN2/VREF- and RA3/AN3/VREF+ pins or AVDD and AVss pins, whichever is selected as

3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

NOTES:



### FIGURE 28-29: A/D NONLINEARITY vs. VREFH (VDD = 5V, -40°C TO +125°C)