

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b110f2048gq64-b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Timers/Counters

- 7× 16-bit Timer/Counter
 - 3 + 4 Compare/Capture/PWM channels (4 + 4 on one timer instance)
 - Dead-Time Insertion on several timer instances
- 4× 32-bit Timer/Counter
- 32-bit Real Time Counter and Calendar (RTCC)
- 24-bit Real Time Counter (RTC)
- 32-bit Ultra Low Energy CRYOTIMER for periodic wakeup from any Energy Mode
- 2× 16-bit Low Energy Timer for waveform generation
- 3× 16-bit Pulse Counter with asynchronous operation
- 2× Watchdog Timer with dedicated RC oscillator

Low Energy Sensor Interface (LESENSE)

- Autonomous sensor monitoring in Deep Sleep Mode
- Wide range of sensors supported, including LC sensors and capacitive buttons
- Up to 16 inputs
- Ultra efficient Power-on Reset and Brown-Out Detector
- Debug Interface
 - 2-pin Serial Wire Debug interface
 - 1-pin Serial Wire Viewer
 - 4-pin JTAG interface
 - Embedded Trace Macrocell (ETM)

Pre-Programmed USB/UART Bootloader

Wide Operating Range

- 1.8 V to 3.8 V single power supply
- Integrated DC-DC, down to 1.8 V output with up to 200 mA load current for system
- Standard (-40 $^\circ C$ to 85 $^\circ C$ $T_{AMB})$ and Extended (-40 $^\circ C$ to 125 $^\circ C$ $T_J)$ temperature grades available
- Packages
 - QFN64 (9x9 mm)
 - TQFP64 (10x10 mm)
 - TQFP100 (14x14 mm)
 - BGA112 (10x10 mm)
 - BGA120 (7x7 mm)
 - BGA152 (8x8 mm)
 - BGA192 (7x7mm)

3.8.4 Capacitive Sense (CSEN)

The CSEN module is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a switches and sliders. The CSEN module uses a charge ramping measurement technique, which provides robust sensing even in adverse conditions including radiated noise and moisture. The module can be configured to take measurements on a single port pin or scan through multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter, as well as digital threshold comparators to reduce software overhead.

3.8.5 Digital to Analog Current Converter (IDAC)

The Digital to Analog Current Converter can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 μ A and 64 μ A with several ranges consisting of various step sizes.

3.8.6 Digital to Analog Converter (VDAC)

The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500 ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any CPU intervention. The VDAC is available in all energy modes down to and including EM3.

3.8.7 Operational Amplifiers

The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to rail output. They can be used in conjunction with the VDAC module or in stand-alone configurations. The opamps save energy, PCB space, and cost as compared with standalone opamps because they are integrated on-chip.

3.8.8 Liquid Crystal Display Driver (LCD)

The LCD driver is capable of driving a segmented LCD display with up to 8x36 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. A patented charge redistribution driver can reduce the LCD module supply current by up to 40%. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data.

3.9 Reset Management Unit (RMU)

The RMU is responsible for handling reset of the EFM32GG11. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.

3.10 Core and Memory

3.10.1 Processor Core

The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:

- ARM Cortex-M4 RISC processor with FPU achieving 1.25 Dhrystone MIPS/MHz
- Memory Protection Unit (MPU) supporting up to 8 memory segments
- Embedded Trace Macrocell (ETM) for real-time trace and debug
- Up to 2048 kB flash program memory
 - · Dual-bank memory with read-while-write support
- Up to 512 kB RAM data memory
- · Configuration and event handling of all modules
- · 2-pin Serial-Wire or 4-pin JTAG debug interface

4.1.7.2 Current Consumption 3.3 V using DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V DC-DC output. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.

Table 4.8.	Current Co	nsumption 3.3	V using	DC-DC	Converter
------------	-------------------	---------------	---------	-------	-----------

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_DCM	72 MHz HFRCO, CPU running Prime from flash	_	80	—	µA/MHz
DCM mode ²		72 MHz HFRCO, CPU running while loop from flash	—	80	_	µA/MHz
		72 MHz HFRCO, CPU running CoreMark loop from flash	—	92		µA/MHz
		50 MHz crystal, CPU running while loop from flash	_	84		µA/MHz
		48 MHz HFRCO, CPU running while loop from flash	—	84		µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	—	90		µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	_	94		µA/MHz
		16 MHz HFRCO, CPU running while loop from flash	_	109		µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	_	698		µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_CCM	72 MHz HFRCO, CPU running Prime from flash	_	84		µA/MHz
CCM mode ¹		72 MHz HFRCO, CPU running while loop from flash	—	84		µA/MHz
		72 MHz HFRCO, CPU running CoreMark loop from flash	_	95		µA/MHz
		50 MHz crystal, CPU running while loop from flash	_	91		µA/MHz
		48 MHz HFRCO, CPU running while loop from flash	—	92		µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	_	104		µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	—	113	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash	_	142	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	—	1264	—	µA/MHz

4.1.14 Analog to Digital Converter (ADC)

Specified at 1 Msps, ADCCLK = 16 MHz, BIASPROG = 0, GPBIASACC = 0, unless otherwise indicated.

Table 4.22. Analog to Digital Converter (ADC)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	VRESOLUTION		6	—	12	Bits
Input voltage range ⁵	V _{ADCIN}	Single ended	—	—	V _{FS}	V
		Differential	-V _{FS} /2	_	V _{FS} /2	V
Input range of external refer- ence voltage, single ended and differential	VADCREFIN_P		1	_	V _{AVDD}	V
Power supply rejection ²	PSRR _{ADC}	At DC	—	80	_	dB
Analog input common mode rejection ratio	CMRR _{ADC}	At DC	_	80	_	dB
Current from all supplies, us- ing internal reference buffer.	I _{ADC_CONTI-} NOUS_LP	1 Msps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ³	_	270	TBD	μA
MUPMODE ⁴ = KEEPADC- WARM		250 ksps / 4 MHz ADCCLK, BIA- SPROG = 6, GPBIASACC = 1 ³	—	125	_	μA
		62.5 ksps / 1 MHz ADCCLK, BIA- SPROG = 15, GPBIASACC = 1 ³	_	80	_	μA
Current from all supplies, us- ing internal reference buffer.	IADC_NORMAL_LP	35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ³	_	45	_	μA
MUPMODE ⁴ = NORMAL		5 ksps / 16 MHz ADCCLK BIA- SPROG = 0, GPBIASACC = 1 ³	—	8	_	μA
Current from all supplies, us- ing internal reference buffer.	IADC_STAND- BY_LP	125 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ³	_	105	_	μA
AWARMUPMODE ⁴ = KEEP- INSTANDBY or KEEPIN- SLOWACC		35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ³	_	70	_	μA
Current from all supplies, us- ing internal reference buffer.	I _{ADC_CONTI-} NOUS_HP	1 Msps / 16 MHz ADCCLK, BIA-SPROG = 0, GPBIASACC = 0 3	_	325	_	μA
MUPMODE ⁴ = KEEPADC- WARM		250 ksps / 4 MHz ADCCLK, BIA-SPROG = 6, GPBIASACC = 0 3	_	175	_	μA
		62.5 ksps / 1 MHz ADCCLK, BIA- SPROG = 15, GPBIASACC = 0 ³	_	125	_	μA
Current from all supplies, us- ing internal reference buffer.	IADC_NORMAL_HP	35 ksps / 16 MHz ADCCLK, BIA-SPROG = 0, GPBIASACC = 0 3	—	85	_	μA
MUPMODE ⁴ = NORMAL		5 ksps / 16 MHz ADCCLK BIA- SPROG = 0, GPBIASACC = 0 3	—	16	_	μA
Current from all supplies, us- ing internal reference buffer.	I _{ADC_STAND-} BY_HP	125 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 0 3	—	160	_	μA
AWARMUPMODE ⁴ = KEEP- INSTANDBY or KEEPIN- SLOWACC		35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 0 ³	—	125	_	μA
Current from HFPERCLK	IADC_CLK	HFPERCLK = 16 MHz	—	180	_	μA

4.1.17 Current Digital to Analog Converter (IDAC)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Number of ranges	N _{IDAC_RANGES}		—	4	_	ranges
Output current	IIDAC_OUT	RANGSEL ¹ = RANGE0	0.05	_	1.6	μA
		RANGSEL ¹ = RANGE1	1.6	_	4.7	μA
		RANGSEL ¹ = RANGE2	0.5	_	16	μA
		RANGSEL ¹ = RANGE3	2	_	64	μA
Linear steps within each range	NIDAC_STEPS		—	32	_	steps
Step size	SS _{IDAC}	RANGSEL ¹ = RANGE0	_	50	_	nA
		RANGSEL ¹ = RANGE1	—	100	_	nA
		RANGSEL ¹ = RANGE2	_	500	_	nA
		RANGSEL ¹ = RANGE3	—	2	—	μA
Total accuracy, STEPSEL ¹ = 0x10	ACCIDAC	EM0 or EM1, AVDD=3.3 V, T = 25 °C	TBD	_	TBD	%
		EM0 or EM1, Across operating temperature range	TBD	—	TBD	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE0, AVDD=3.3 V, T = 25 °C	_	-2.7	_	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE1, AVDD=3.3 V, T = 25 °C	_	-2.5	_	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE2, AVDD=3.3 V, T = 25 °C	_	-1.5	_	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE3, AVDD=3.3 V, T = 25 °C	_	-1.0	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE0, AVDD=3.3 V, T = 25 °C	_	-1.1	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE1, AVDD=3.3 V, T = 25 °C	_	-1.1	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE2, AVDD=3.3 V, T = 25 °C	_	-0.9	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE3, AVDD=3.3 V, T = 25 °C	_	-0.9	_	%

Table 4.25. Current Digital to Analog Converter (IDAC)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Open-loop gain	G _{OL}	DRIVESTRENGTH = 3		135		dB
		DRIVESTRENGTH = 2	_	137	_	dB
		DRIVESTRENGTH = 1		121		dB
		DRIVESTRENGTH = 0		109		dB
Loop unit-gain frequency ⁷	UGF	DRIVESTRENGTH = 3, Buffer connection		3.38	_	MHz
		DRIVESTRENGTH = 2, Buffer connection		0.9	_	MHz
		DRIVESTRENGTH = 1, Buffer connection		132	_	kHz
		DRIVESTRENGTH = 0, Buffer connection		34	_	kHz
		DRIVESTRENGTH = 3, 3x Gain connection		2.57		MHz
		DRIVESTRENGTH = 2, 3x Gain connection	_	0.71	_	MHz
		DRIVESTRENGTH = 1, 3x Gain connection		113	_	kHz
		DRIVESTRENGTH = 0, 3x Gain connection		28	_	kHz
Phase margin	PM	DRIVESTRENGTH = 3, Buffer connection	_	67	_	0
		DRIVESTRENGTH = 2, Buffer connection	_	69	_	o
		DRIVESTRENGTH = 1, Buffer connection	_	63	_	o
		DRIVESTRENGTH = 0, Buffer connection	_	68	_	o
Output voltage noise	N _{OUT}	DRIVESTRENGTH = 3, Buffer connection, 10 Hz - 10 MHz	—	146	_	µVrms
		DRIVESTRENGTH = 2, Buffer connection, 10 Hz - 10 MHz	—	163	_	µVrms
		DRIVESTRENGTH = 1, Buffer connection, 10 Hz - 1 MHz	—	170	_	µVrms
		DRIVESTRENGTH = 0, Buffer connection, 10 Hz - 1 MHz	_	176		µVrms
		DRIVESTRENGTH = 3, 3x Gain connection, 10 Hz - 10 MHz	—	313	_	µVrms
		DRIVESTRENGTH = 2, 3x Gain connection, 10 Hz - 10 MHz	—	271	—	µVrms
		DRIVESTRENGTH = 1, 3x Gain connection, 10 Hz - 1 MHz	_	247	_	µVrms
		DRIVESTRENGTH = 0, 3x Gain connection, 10 Hz - 1 MHz		245		µVrms

4.1.23 I2C

4.1.23.1 I2C Standard-mode (Sm)¹

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCL clock frequency ²	f _{SCL}		0	_	100	kHz
SCL clock low time	t _{LOW}		4.7		_	μs
SCL clock high time	t _{HIGH}		4	_	_	μs
SDA set-up time	t _{SU_DAT}		250	_	_	ns
SDA hold time ³	t _{HD_DAT}		100	_	3450	ns
Repeated START condition set-up time	t _{SU_STA}		4.7		_	μs
(Repeated) START condition hold time	t _{HD_STA}		4	—		μs
STOP condition set-up time	t _{SU_STO}		4	_	_	μs
Bus free time between a STOP and START condition	t _{BUF}		4.7		—	μs

Table 4.31. I2C Standard-mode (Sm)¹

Note:

1. For CLHR set to 0 in the I2Cn_CTRL register.

2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual.

3. The maximum SDA hold time (t_{HD DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW}).

SDIO HS Mode Timing

Timing is specified for route location 0 at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 0. Loading between 5 and 10 pF on all pins or between 10 and 20 pF on all pins.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Clock frequency during data transfer	F _{SD_CLK}	Using HFRCO, AUXHFRCO, or USHFRCO	_	—	45	MHz
		Using HFXO	_	_	TBD	MHz
Clock low time	t _{WL}	Using HFRCO, AUXHFRCO, or USHFRCO	10.0	_		ns
		Using HFXO	TBD	—	_	ns
Clock high time	t _{WH}	Using HFRCO, AUXHFRCO, or USHFRCO	10.0	—	_	ns
		Using HFXO	TBD	_	_	ns
Clock rise time	t _R		1.69	3.23	_	ns
Clock fall time	t _F		1.42	2.79	_	ns
Input setup time, CMD, DAT[0:3] valid to SD_CLK	t _{ISU}		6	_		ns
Input hold time, SD_CLK to CMD, DAT[0:3] change	t _{IH}		2.5	_		ns
Output delay time, SD_CLK to CMD, DAT[0:3] valid	todly		0	—	13	ns
Output hold time, SD_CLK to CMD, DAT[0:3] change	t _{OH}		2	—	—	ns

Table 4.47. SDIO HS Mode Timing (Location 0)

Figure 4.25. EM1 Sleep Mode Typical Supply Current vs. Temperature

Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PF2	78	GPIO	NC	79	No Connect.
PF12	80	GPIO	PF5	81	GPIO
PF6	84	GPIO	PF7	85	GPIO
PF8	86	GPIO	PF9	87	GPIO
PD9	88	GPIO	PD10	89	GPIO
PD11	90	GPIO	PD12	91	GPIO
PE8	92	GPIO	PE9	93	GPIO
PE10	94	GPIO	PE11	95	GPIO
PE12	96	GPIO	PE13	97	GPIO
PE14	98	GPIO	PE15	99	GPIO
PA15	100	GPIO			
Note:	•				•

1. GPIO with 5V tolerance are indicated by (5V).

Figure 5.18. EFM32GG11B4xx in QFN64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Table 5.18. EFM3	2GG11B4xx in	QFN64 Device	Pinout
------------------	--------------	--------------	--------

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VSS	0	Ground	PA0	1	GPIO
PA1	2	GPIO	PA2	3	GPIO
PA3	4	GPIO	PA4	5	GPIO
PA5	6	GPIO	PA6	7	GPIO
IOVDD0	8 26 55	Digital IO power supply 0.	PB3	9	GPIO
PB4	10	GPIO	PB5	11	GPIO

Figure 5.19. EFM32GG11B1xx in QFN64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VSS	0	Ground	PA0	1	GPIO
PA1	2	GPIO	PA2	3	GPIO
PA3	4	GPIO	PA4	5	GPIO
PA5	6	GPIO	PA6	7	GPIO
IOVDD0	8 26 55	Digital IO power supply 0.	PC0	9	GPIO (5V)
PC1	10	GPIO (5V)	PC2	11	GPIO (5V)

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PC3	12	GPIO (5V)	PC4	13	GPIO
PC5	14	GPIO	PB7	15	GPIO
PB8	16	GPIO	PA8	17	GPIO
PA9	18	GPIO	PA10	19	GPIO
RESETn	20	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB11	21	GPIO
PB12	22	GPIO	AVDD	23 27	Analog power supply.
PB13	24	GPIO	PB14	25	GPIO
PD0	28	GPIO (5V)	PD1	29	GPIO
PD2	30	GPIO (5V)	PD3	31	GPIO
PD4	32	GPIO	PD5	33	GPIO
PD6	34	GPIO	PD7	35	GPIO
PD8	36	GPIO	PC6	37	GPIO
PC7	38	GPIO	DVDD	39	Digital power supply.
DECOUPLE	40	Decouple output for on-chip voltage regulator. An external decoupling ca- pacitor is required at this pin.	PC8	41	GPIO (5V)
PC9	42	GPIO (5V)	PC10	43	GPIO (5V)
PC11	44	GPIO (5V)	PC12	45	GPIO (5V)
PC13	46	GPIO (5V)	PC14	47	GPIO (5V)
PC15	48	GPIO (5V)	PF0	49	GPIO (5V)
PF1	50	GPIO (5V)	PF2	51	GPIO
PF3	52	GPIO	PF4	53	GPIO
PF5	54	GPIO	PE8	56	GPIO
PE9	57	GPIO	PE10	58	GPIO
PE11	59	GPIO	PE12	60	GPIO
PE13	61	GPIO	PE14	62	GPIO
PE15	63	GPIO	PA15	64	GPIO
Note:		·]			·

1. GPIO with 5V tolerance are indicated by (5V).

Alternate LOCA		ATION	
Functionality	0 - 3	4 - 7	Description
EBI_CS1	0: PD10 1: PA11 2: PC1 3: PB1	4: PE9	External Bus Interface (EBI) Chip Select output 1.
EBI_CS2	0: PD11 1: PA12 2: PC2 3: PB2	4: PE10	External Bus Interface (EBI) Chip Select output 2.
EBI_CS3	0: PD12 1: PB15 2: PC3 3: PB3	4: PE11	External Bus Interface (EBI) Chip Select output 3.
EBI_CSTFT	0: PA7 1: PF6 2: PB12 3: PA0		External Bus Interface (EBI) Chip Select output TFT.
EBI_DCLK	0: PA8 1: PF7 2: PH0 3: PA1		External Bus Interface (EBI) TFT Dot Clock pin.
EBI_DTEN	0: PA9 1: PD9 2: PH1 3: PA2		External Bus Interface (EBI) TFT Data Enable pin.
EBI_HSNC	0: PA11 1: PD11 2: PH3 3: PA4		External Bus Interface (EBI) TFT Horizontal Synchronization pin.
EBI_NANDREn	0: PC3 1: PD15 2: PB9 3: PC4	4: PC15 5: PF12	External Bus Interface (EBI) NAND Read Enable output.
EBI_NANDWEn	0: PC5 1: PD14 2: PA13 3: PC2	4: PC14 5: PF11	External Bus Interface (EBI) NAND Write Enable output.
EBI_REn	0: PF5 1: PA14 2: PA12 3: PC0	4: PF9 5: PF5	External Bus Interface (EBI) Read Enable output.
EBI_VSNC	0: PA10 1: PD10 2: PH2 3: PA3		External Bus Interface (EBI) TFT Vertical Synchronization pin.
EBI_WEn	0: PF4 1: PA13 2: PC5 3: PB6	4: PF8 5: PF4	External Bus Interface (EBI) Write Enable output.
ETH_MDC	0: PB4 1: PD14 2: PC1 3: PA6		Ethernet Management Data Clock.

Alternate	LOCATION		
Functionality	0 - 3	4 - 7	Description
GPIO_EM4WU7	0: PB11		Pin can be used to wake the system up from EM4
GPIO_EM4WU8	0: PF8		Pin can be used to wake the system up from EM4
GPIO_EM4WU9	0: PE10		Pin can be used to wake the system up from EM4
HFXTAL_N	0: PB14		High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	0: PB13		High Frequency Crystal positive pin.
I2C0_SCL	0: PA1 1: PD7 2: PC7 3: PD15	4: PC1 5: PF1 6: PE13 7: PE5	I2C0 Serial Clock Line input / output.
I2C0_SDA	0: PA0 1: PD6 2: PC6 3: PD14	4: PC0 5: PF0 6: PE12 7: PE4	I2C0 Serial Data input / output.
I2C1_SCL	0: PC5 1: PB12 2: PE1 3: PD5	4: PF2 5: PH12 6: PH14 7: PI3	I2C1 Serial Clock Line input / output.
I2C1_SDA	0: PC4 1: PB11 2: PE0 3: PD4	4: PC11 5: PH11 6: PH13 7: PI2	I2C1 Serial Data input / output.
I2C2_SCL	0: PF5 1: PC15 2: PF11 3: PF12	4: PF14 5: PF3 6: PC13 7: PI5	I2C2 Serial Clock Line input / output.
I2C2_SDA	0: PE8 1: PC14 2: PF10 3: PF4	4: PF13 5: PF15 6: PC12 7: PI4	I2C2 Serial Data input / output.
IDAC0_OUT	0: PB11		IDAC0 output.

Alternate	LOCATION				
Functionality	0 - 3	4 - 7	Description		
LCD_SEG20 / LCD_COM4	0: PB3		LCD segment line 20. This pin may also be used as LCD COM line 4		
LCD_SEG21 / LCD_COM5	0: PB4		LCD segment line 21. This pin may also be used as LCD COM line 5		
LCD_SEG22 / LCD_COM6	0: PB5		LCD segment line 22. This pin may also be used as LCD COM line 6		
LCD_SEG23 / LCD_COM7	0: PB6		LCD segment line 23. This pin may also be used as LCD COM line 7		
LCD_SEG24	0: PF6		LCD segment line 24.		
LCD_SEG25	0: PF7		LCD segment line 25.		
LCD_SEG26	0: PF8		LCD segment line 26.		
LCD_SEG27	0: PF9		LCD segment line 27.		
LCD_SEG28	0: PD9		LCD segment line 28.		
LCD_SEG29	0: PD10		LCD segment line 29.		
LCD_SEG30	0: PD11		LCD segment line 30.		
LCD_SEG31	0: PD12		LCD segment line 31.		
LCD_SEG32	0: PB0		LCD segment line 32.		

Alternate	LOCA	ATION	
Functionality	0 - 3	4 - 7	Description
LCD_SEG33	0: PB1		LCD segment line 33.
LCD_SEG34	0: PB2		LCD segment line 34.
LCD_SEG35	0: PA7		LCD segment line 35.
LCD_SEG36	0: PA8		LCD segment line 36.
LCD_SEG37	0: PA9		LCD segment line 37.
LCD_SEG38	0: PA10		LCD segment line 38.
LCD_SEG39	0: PA11		LCD segment line 39.
LES_ALTEX0	0: PD6		LESENSE alternate excite output 0.
LES_ALTEX1	0: PD7		LESENSE alternate excite output 1.
LES_ALTEX2	0: PA3		LESENSE alternate excite output 2.
LES_ALTEX3	0: PA4		LESENSE alternate excite output 3.
LES_ALTEX4	0: PA5		LESENSE alternate excite output 4.
LES_ALTEX5	0: PE11		LESENSE alternate excite output 5.

Alternate Functionality	Location	Priority
US2_CLK	4: PF8 5: PF2	High Speed High Speed
US2_CS	4: PF9 5: PF5	High Speed High Speed
US2_RX	4: PF7 5: PF1	High Speed High Speed
US2_TX	4: PF6 5: PF0	High Speed High Speed

Dimension	Min	Тур	Мах	
A	-	-	1.30	
A1	0.55	0.60	0.65	
A2		0.21 BSC		
A3	0.30	0.35	0.40	
d	0.43	0.48	0.53	
D		10.00 BSC		
D1	8.00 BSC			
E				
E1		8.00 BSC		
e1		0.80 BSC		
e2		0.80 BSC		
L1		1.00 REF		
L2		1.00 REF		

Table 9.1. BGA112 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Dimension	Min	Тур	Мах	
A	_	1.15	1.20	
A1	0.05	_	0.15	
A2	0.95	1.00	1.05	
b	0.17	0.22	0.27	
b1	0.17	0.20	0.23	
С	0.09	_	0.20	
c1	0.09	—	0.16	
D	12.00 BSC			
D1	10.00 BSC			
е	0.50 BSC			
E	12.00 BSC			
E1	10.00 BSC			
L	0.45	0.60	0.75	
L1	1.00 REF			
R1	0.08	_	_	
R2	0.08	—	0.20	
S	0.20	_	—	
θ	0 3.5 7			
θ1	0	_	0.10	
θ2	11	12	13	
θ3	11	12	13	

Table 11.1. TQFP64 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.