

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b120f2048gq64-ar
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b120f2048gq64-ar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Note:						
1. The minimum voltage req other loads can be calcula	uired in bypass mo ated as V _{DVDD_min}	ode is calculated using R_{BYP} from the +I _{LOAD} * R_{BYP_max} .	e DCDC spec	ification table	. Requiremen	its for
2. VREGVDD must be tied t	o AVDD. Both VR	EGVDD and AVDD minimum voltage	es must be sa	tisfied for the	part to operat	e.
 The system designer sho ue stays within the specifi 	uld consult the cha ed bounds across	racteristic specs of the capacitor use temperature and DC bias.	ed on DECOL	JPLE to ensur	e its capacita	nce val-
4. VSCALE0 to VSCALE2 ve tion, peak currents will be mA (with a 2.7 μF capacit	oltage change tran dependent on the or).	sitions occur at a rate of 10 mV / use value of the DECOUPLE output cap	ec for approxi bacitor, from 3	mately 20 use 5 mA (with a	ec. During this 1 μF capacito	s transi- or) to 70
5. When the CSEN peripher	al is used with cho	pping enabled (CSEN_CTRL_CHOF	PEN = ENABL	E), IOVDD m	ust be equal	to AVDD.
6. The maximum limit on T_A cation. T_A (max) = T_J (ma Characteristics table for T	may be lower due x) - (THETA _{JA} x P _J and THETA _{JA} .	to device self-heating, which depend owerDissipation). Refer to the Absolution	ds on the pow ute Maximum	ver dissipation Ratings table	of the specifies and the The	ic appli- rmal

4.1.3 Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Thermal resistance, QFN64	THETAJA_QFN64	4-Layer PCB, Air velocity = 0 m/s		17.8		°C/W
Package		4-Layer PCB, Air velocity = 1 m/s		15.4		°C/W
		4-Layer PCB, Air velocity = 2 m/s		13.8		°C/W
Thermal resistance, TQFP64	THE-	4-Layer PCB, Air velocity = 0 m/s	_	33.9		°C/W
Package	IA _{JA_TQFP64}	4-Layer PCB, Air velocity = 1 m/s		32.1		°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	30.1		°C/W
Thermal resistance,	THE-	4-Layer PCB, Air velocity = 0 m/s	—	44.1	_	°C/W
TQFP100 Package	TA _{JA_TQFP100}	4-Layer PCB, Air velocity = 1 m/s	_	37.7		°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	35.5	_	°C/W
Thermal resistance, BGA112	THE- TA _{JA_BGA112}	4-Layer PCB, Air velocity = 0 m/s	—	42.0	_	°C/W
Раскаде		4-Layer PCB, Air velocity = 1 m/s	—	37.0	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	35.3	_	°C/W
Thermal resistance, BGA120	THE-	4-Layer PCB, Air velocity = 0 m/s	—	47.9	_	°C/W
Раскаде	TAJA_BGA120	4-Layer PCB, Air velocity = 1 m/s	—	41.8	—	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	39.6	_	°C/W
Thermal resistance, BGA152	THE-	4-Layer PCB, Air velocity = 0 m/s	—	35.7	—	°C/W
Раскаде	TA _{JA_BGA152}	4-Layer PCB, Air velocity = 1 m/s	—	31.0	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	29.5	_	°C/W
Thermal resistance, BGA192	THE-	4-Layer PCB, Air velocity = 0 m/s	—	47.9	_	°C/W
Раскаде	IAJA_BGA192	4-Layer PCB, Air velocity = 1 m/s	—	41.8	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	39.6	_	°C/W

Table 4.3. Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM4H mode, with voltage	I _{EM4H_VS}	128 byte RAM retention, RTCC running from LFXO	_	0.94	—	μA
scaling enabled		128 byte RAM retention, CRYO- TIMER running from ULFRCO	—	0.62	—	μA
		128 byte RAM retention, no RTCC	_	0.62	_	μA
Current consumption in EM4S mode	I _{EM4S}	No RAM retention, no RTCC	—	0.13	—	μA
Current consumption of pe- ripheral power domain 1, with voltage scaling enabled, DCDC in LP mode ³	IPD1_VS	Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled ⁴		0.68		μA
Current consumption of pe- ripheral power domain 2, with voltage scaling enabled, DCDC in LP mode ³	I _{PD2_VS}	Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled ⁴		0.28	_	μA

Note:

1. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD.

2. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD.

3. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIM-SEL=1, ANASW=DVDD.

4. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.4 EM2 and EM3 Power Domains for a list of the peripherals in each power domain.

5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Signal to noise and distortion ratio (1 kHz sine wave),	SNDR _{DAC}	500 ksps, single-ended, internal 1.25V reference	—	60.4	_	dB
kHz		500 ksps, single-ended, internal 2.5V reference	—	61.6		dB
		500 ksps, single-ended, 3.3V VDD reference	—	64.0	_	dB
		500 ksps, differential, internal 1.25V reference		63.3		dB
		500 ksps, differential, internal 2.5V reference	_	64.4	_	dB
		500 ksps, differential, 3.3V VDD reference	_	65.8		dB
Signal to noise and distortion ratio (1 kHz sine wave),	SNDR _{DAC_BAND}	500 ksps, single-ended, internal 1.25V reference	—	65.3	_	dB
Noise band limited to 22 kHz		500 ksps, single-ended, internal 2.5V reference	—	66.7	_	dB
		500 ksps, differential, 3.3V VDD reference	—	68.5	_	dB
		500 ksps, differential, internal 1.25V reference	—	67.8	_	dB
		500 ksps, differential, internal 2.5V reference	—	69.0	_	dB
		500 ksps, single-ended, 3.3V VDD reference	—	70.0		dB
Total harmonic distortion	THD		—	70.2	_	dB
Differential non-linearity ³	DNL _{DAC}		TBD	_	TBD	LSB
Intergral non-linearity	INL _{DAC}		TBD	_	TBD	LSB
Offset error ⁵	V _{OFFSET}	T = 25 °C	TBD	_	TBD	mV
		Across operating temperature range	TBD	—	TBD	mV
Gain error ⁵	V _{GAIN}	T = 25 °C, Low-noise internal ref- erence (REFSEL = 1V25LN or 2V5LN)	TBD	_	TBD	%
		Across operating temperature range, Low-noise internal refer- ence (REFSEL = 1V25LN or 2V5LN)	TBD		TBD	%
External load capactiance, OUTSCALE=0	C _{LOAD}		—	_	75	pF

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Open-loop gain	G _{OL}	DRIVESTRENGTH = 3		135		dB
		DRIVESTRENGTH = 2	_	137	_	dB
		DRIVESTRENGTH = 1		121		dB
		DRIVESTRENGTH = 0		109		dB
Loop unit-gain frequency ⁷	UGF	DRIVESTRENGTH = 3, Buffer connection		3.38	_	MHz
		DRIVESTRENGTH = 2, Buffer connection		0.9	_	MHz
		DRIVESTRENGTH = 1, Buffer connection		132	_	kHz
		DRIVESTRENGTH = 0, Buffer connection		34	_	kHz
		DRIVESTRENGTH = 3, 3x Gain connection		2.57		MHz
		DRIVESTRENGTH = 2, 3x Gain connection	_	0.71	_	MHz
		DRIVESTRENGTH = 1, 3x Gain connection		113	_	kHz
		DRIVESTRENGTH = 0, 3x Gain connection		28	_	kHz
Phase margin	РМ	DRIVESTRENGTH = 3, Buffer connection	_	67	_	0
		DRIVESTRENGTH = 2, Buffer connection	_	69	_	o
		DRIVESTRENGTH = 1, Buffer connection	_	63	_	o
		DRIVESTRENGTH = 0, Buffer connection	_	68	_	o
Output voltage noise	N _{OUT}	DRIVESTRENGTH = 3, Buffer connection, 10 Hz - 10 MHz	—	146	_	µVrms
		DRIVESTRENGTH = 2, Buffer connection, 10 Hz - 10 MHz	—	163	_	µVrms
		DRIVESTRENGTH = 1, Buffer connection, 10 Hz - 1 MHz	—	170	—	µVrms
		DRIVESTRENGTH = 0, Buffer connection, 10 Hz - 1 MHz	_	176		µVrms
		DRIVESTRENGTH = 3, 3x Gain connection, 10 Hz - 10 MHz	—	313	_	µVrms
		DRIVESTRENGTH = 2, 3x Gain connection, 10 Hz - 10 MHz	—	271	—	µVrms
		DRIVESTRENGTH = 1, 3x Gain connection, 10 Hz - 1 MHz	_	247	_	µVrms
		DRIVESTRENGTH = 0, 3x Gain connection, 10 Hz - 1 MHz		245		µVrms

EBI Read Enable Output Timing

Timing applies to both EBI_REn and EBI_NANDREn for all addressing modes and both polarities. Output timing for EBI_AD applies only to multiplexed addressing modes D8A24ALE and D16A16ALE. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output hold time, from trail- ing EBI_REn / EBI_NAN- DREn edge to EBI_AD, EBI_A, EBI_CSn, EBI_BLn invalid	^t OH_REn	IOVDD ≥ 1.62 V	-23 + (RDHOLD * t _{HFCOR-} ECLK)		_	ns
		IOVDD ≥ 3.0 V	-13 + (RDHOLD * t _{HFCOR-} ECLK)	_	—	ns
Output setup time, from EBI_AD, EBI_A, EBI_CSn, EBI_BLn valid to leading EBI_REn / EBI_NANDREn	tosu_ren	IOVDD ≥ 1.62 V	-12 + (RDSETUP * t _{HFCOR-} ECLK)	_		ns
euge .		IOVDD ≥ 3.0 V	-11 + (RDSETUP * t _{HFCOR- ECLK})	_		ns
EBI_REn pulse width ^{1 2}	^t WIDTH_REn	IOVDD ≥ 1.62 V	-6 + (MAX(1, RDSTRB) * t _{HFCOR-} ECLK)		_	ns
		IOVDD ≥ 3.0 V	-4 + (MAX(1, RDSTRB) * t _{HFCOR} - _{ECLK})	_	_	ns

Table 4.38. EBI Read Enable Output Timing

Note:

1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFRE=0. The leading edge of EBI_REn can be moved to the right by setting HALFRE=1. This decreases the length of t_{WIDTH_REn} and increases the length of t_{OSU_REn} by 1/2 * t_{HFCLKNODIV}.

2. When page mode is used, RDSTRB is replaced by RDPA for page hits.

EBI Read Enable Timing Requirements

Timing applies to both EBI_REn and EBI_NANDREn for all addressing modes and both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.

Table 4.40. EBI Read Enable Timing Requirements

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Setup time, from EBI_AD	t _{SU_REn}	IOVDD ≥ 1.62 V	55	—	—	ns
edge		IOVDD ≥ 3.0 V	36	—	—	ns
Hold time, from trailing EBI_REn edge to EBI_AD in- valid	t _{H_REn}	IOVDD ≥ 1.62 V	-9	_	_	ns

Figure 4.7. EBI Read Enable Timing Requirements

SDIO MMC SDR Mode Timing at 3.0 V

Timing is specified for route location 0 at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 20 pF on all pins.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Clock frequency during data transfer	F _{SD_CLK}	Using HFRCO, AUXHFRCO, or USHFRCO	—	_	48	MHz
		Using HFXO	—	—	TBD	MHz
Clock low time	t _{WL}	Using HFRCO, AUXHFRCO, or USHFRCO	9.4	_		ns
		Using HFXO	TBD	—	_	ns
Clock high time	t _{WH}	Using HFRCO, AUXHFRCO, or USHFRCO	9.4	_	_	ns
		Using HFXO	TBD	—	_	ns
Clock rise time	t _R		1.96	3.87	_	ns
Clock fall time	t _F		1.67	3.31	_	ns
Input setup time, CMD, DAT[0:7] valid to SD_CLK	t _{ISU}		5.3	_	_	ns
Input hold time, SD_CLK to CMD, DAT[0:7] change	t _{IH}		2.5	_		ns
Output delay time, SD_CLK to CMD, DAT[0:7] valid	todly		0	_	16	ns
Output hold time, SD_CLK to CMD, DAT[0:7] change	t _{OH}		3	—	_	ns

Table 4.51. SDIO MMC SDR Mode Timing (Location 0, 3V I/O)

4.2.1 Supply Current

Figure 4.23. EM0 Full Speed Active Mode Typical Supply Current vs. Temperature

Figure 4.25. EM1 Sleep Mode Typical Supply Current vs. Temperature

Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
IOVDD1	F7 G7	Digital IO power supply 1.	VSS	F8 G9 H6 H7 H8 H9 H10 H11 J6 J7 J8 J9 J10 J11 K8 K9 L8 L9	Ground
NC	F9	No Connect.	IOVDD0	F10 F11 G10 G11 K6 K7 K10 K11 L6 L7 L10 L11	Digital IO power supply 0.
PI5	F14	GPIO (5V)	PI4	F15	GPIO (5V)
PI3	F16	GPIO (5V)	PA5	G1	GPIO
PG6	G2	GPIO (5V)	PG5	G3	GPIO (5V)
PI2	G14	GPIO (5V)	PI1	G15	GPIO (5V)
PI0	G16	GPIO (5V)	PA6	H1	GPIO
PG8	H2	GPIO (5V)	PG7	H3	GPIO (5V)
PE5	H14	GPIO	PE6	H15	GPIO
PE7	H16	GPIO	PG11	J1	GPIO (5V)
PG10	J2	GPIO (5V)	PG9	J3	GPIO (5V)
PE3	J14	GPIO	PE4	J15	GPIO
DECOUPLE	J16	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PG14	K1	GPIO
PG13	K2	GPIO	PG12	K3	GPIO
PE1	K14	GPIO (5V)	PE2	K15	GPIO
DVDD	K16	Digital power supply.	PG15	L1	GPIO (5V)
PB15	L2	GPIO (5V)	PB0	L3	GPIO
PE0	L14	GPIO (5V)	PC7	L15	GPIO
VREGVDD	L16	Voltage regulator VDD input	PB1	M1	GPIO

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA15	B1	GPIO	PE14	B2	GPIO
PE12	B3	GPIO	PE8	B4	GPIO
PD11	B5	GPIO	PD9	B6	GPIO
PF8	B7	GPIO	PF6	B8	GPIO
PF14	B9	GPIO (5V)	PF12	B10	GPIO
PF2	B11	GPIO	PF0	B12	GPIO (5V)
PC14	B13	GPIO (5V)	VREGO	B14	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs
PA1	C1	GPIO	PA0	C2	GPIO
PD13	C3	GPIO (5V)	PE10	C4	GPIO
PI8	C5	GPIO (5V)	PI7	C6	GPIO (5V)
Pl6	C7	GPIO (5V)	PF5	C8	GPIO
PF15	C9	GPIO (5V)	PF4	C10	GPIO
PF3	C11	GPIO	PC13	C12	GPIO (5V)
PC12	C13	GPIO (5V)	VREGI	C14	Input to 5 V regulator.
PA3	D1	GPIO	PA2	D2	GPIO
PD14	D3	GPIO (5V)	PC11	D12	GPIO (5V)
PC10	D13	GPIO (5V)	PC9	D14	GPIO (5V)
PA5	E1	GPIO	PA4	E2	GPIO
PD15	E3	GPIO (5V)	IOVDD1	E6	Digital IO power supply 1.
VSS	E7 E8 G5 G7 G8 G10 H5 H7 H8 H10 K7 K8	Ground	IOVDD0	E9 F10 J5 J10 K6 K9	Digital IO power supply 0.
PC8	E12	GPIO (5V)	PI5	E13	GPIO (5V)
Pl4	E14	GPIO (5V)	PG0	F1	GPIO (5V)
PA6	F2	GPIO	PG1	F3	GPIO (5V)
IOVDD2	F5	Digital IO power supply 2.	PI3	F12	GPIO (5V)
PI2	F13	GPIO (5V)	PI1	F14	GPIO (5V)
PG3	G1	GPIO (5V)	PG4	G2	GPIO (5V)
PG2	G3	GPIO (5V)	PE7	G12	GPIO
P10	G13	GPIO (5V)	DECOUPLE	G14	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PF2	78	GPIO	VBUS	79	USB VBUS signal and auxiliary input to 5 V regulator.
PF12	80	GPIO	PF5	81	GPIO
PF6	84	GPIO	PF7	85	GPIO
PF8	86	GPIO	PF9	87	GPIO
PD9	88	GPIO	PD10	89	GPIO
PD11	90	GPIO	PD12	91	GPIO
PE8	92	GPIO	PE9	93	GPIO
PE10	94	GPIO	PE11	95	GPIO
PE12	96	GPIO	PE13	97	GPIO
PE14	98	GPIO	PE15	99	GPIO
PA15	100	GPIO			
Note:			-		
1. GPIO with	5V tolera	nce are indicated by (5V).			

Figure 5.9. EFM32GG11B5xx in QFP100 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Table 5.9. EFM32GG11B5xx in QFP100 Device Pinor

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	PA3	4	GPIO
PA4	5	GPIO	PA5	6	GPIO
PA6	7	GPIO	IOVDD0	8 17 31 44 82	Digital IO power supply 0.
PB0	9	GPIO	PB1	10	GPIO

GPIO Name	Pin Alternate Functionality / Description						
	Analog	EBI	Timers	Communication	Other		
PG3	BUSACMP2Y BU- SACMP2X	EBI_AD03 #2	TIM6_CDTI0 #0 WTIM0_CC1 #2 LE- TIM1_OUT1 #7	ETH_MIITXD1 #1 US3_CS #4 QSPI0_DQ2 #2			
PI5		EBI_A07 #2	WTIM3_CC2 #4	US4_RTS #2 I2C2_SCL #7	ACMP3_O #5		
PI4		EBI_A06 #2	WTIM3_CC1 #4	US4_CTS #2 I2C2_SDA #7	ACMP3_O #4		
PI3		EBI_A05 #2	WTIM3_CC0 #4	US4_CS #2 I2C1_SCL #7			
PA5	BUSAY BUSBX LCD_SEG18	EBI_AD14 #0	TIM0_CDTI2 #0 TIM3_CC2 #5 PCNT1_S0IN #0	ETH_RMIIRXER #0 ETH_MIITXEN #0 SDIO_DAT5 #1 US3_RTS #0 U0_CTS #2 QSPI0_DQ3 #1 LEU1_TX #1	LES_ALTEX4 PRS_CH17 #0 ACMP1_O #7 ETM_TD3 #3		
PG6	BUSACMP2Y BU- SACMP2X	EBI_AD06 #2	TIM2_CC1 #7 TIM6_CC0 #1	ETH_MIITXER #1 US3_TX #3 QSPI0_DQ5 #2			
PG5	BUSACMP2Y BU- SACMP2X	EBI_AD05 #2	TIM6_CDTI2 #0 TIM2_CC0 #7	ETH_MIITXEN #1 US3_RTS #4 QSPI0_DQ4 #2			
PI2		EBI_A04 #2	TIM5_CC2 #3 WTIM1_CC3 #5 PCNT2_S0IN #5	US4_CLK #2 I2C1_SDA #7	ACMP2_O #5		
PI1		EBI_A03 #2	TIM5_CC1 #3 WTIM1_CC2 #5 PCNT2_S1IN #5	US4_RX #2	ACMP2_0 #4		
PIO		EBI_A02 #2	TIM5_CC0 #3 WTIM1_CC1 #5 PCNT2_S0IN #6	US4_TX #2	ACMP2_O #3		
PA6	BUSBY BUSAX LCD_SEG19	EBI_AD15 #0	TIM3_CC0 #6 WTIM0_CC0 #1 LE- TIM1_OUT1 #0 PCNT1_S1IN #0	ETH_MIITXER #0 ETH_MDC #3 SDIO_CD #2 US5_TX #1 U0_RTS #2 LEU1_RX #1	PRS_CH6 #0 ACMP0_O #4 ETM_TCLK #3 GPIO_EM4WU1		
PG8		EBI_AD08 #2	TIM2_CC0 #6 TIM6_CC2 #1 WTIM0_CC0 #3	ETH_MIIRXD3 #1 CAN0_RX #4 US3_CLK #3 QSPI0_DQ7 #2			
PG7	BUSACMP2Y BU- SACMP2X	EBI_AD07 #2	TIM2_CC2 #7 TIM6_CC1 #1	ETH_MIIRXCLK #1 US3_RX #3 QSPI0_DQ6 #2			
PE5	BUSCY BUSDX LCD_COM1	EBI_A12 #0 EBI_A17 #1 EBI_A23 #3	TIM3_CC0 #3 TIM3_CC2 #2 TIM5_CC1 #0 TIM6_CDTI1 #2 WTIM0_CC1 #0 WTIM1_CC2 #4	US0_CLK #1 US1_CLK #6 US3_CTS #1 U1_RTS #3 I2C0_SCL #7	PRS_CH17 #2		

GPIO Name	Pin Alternate Functionality / Description						
	Analog	EBI	Timers	Communication	Other		
PB13	BUSAY BUSBX HFXTAL_P		TIM6_CC0 #5 WTIM1_CC0 #0 PCNT2_S0IN #2	US0_CLK #4 US1_CTS #5 US5_CS #0 LEU0_TX #1	CMU_CLKI0 #3 PRS_CH7 #0		
PB14	BUSBY BUSAX HFXTAL_N		TIM6_CC1 #5 WTIM1_CC1 #0 PCNT2_S1IN #2	US0_CS #4 US1_RTS #5 US5_CTS #0 LEU0_RX #1	PRS_CH6 #1		
PD1	VDAC0_OUT1ALT / OPA1_OUTALT #4 BUSADC0Y BU- SADC0X OPA3_OUT	EBI_A05 #1 EBI_A14 #3	TIM4_CDTI1 TIM0_CC0 #2 TIM6_CC0 #6 WTIM1_CC3 #0 PCNT2_S1IN #0	CAN0_TX #2 US1_RX #1	DBG_SWO #2		
PD6	BUSADCOY BU- SADCOX ADC0_EXTP VDAC0_EXT ADC1_EXTP OPA1_P	EBI_A10 #1 EBI_A19 #3	TIM1_CC0 #4 TIM6_CC2 #7 WTIM0_CDTI2 #4 WTIM1_CC0 #2 LE- TIM0_OUT0 #0 PCNT0_S0IN #3	US0_RTS #5 US1_RX #2 US2_CTS #5 US3_CTS #2 U0_RTS #5 I2C0_SDA #1	CMU_CLK2 #2 LES_ALTEX0 PRS_CH5 #2 ACMP0_O #2 ETM_TD0 #0		

Alternate LOCATION			
Functionality	0 - 3	4 - 7	Description
	0: PA14		LCD external supply bypass in step down or charge pump mode. If using the LCD in step-down or charge pump mode, a 1 uF (minimum) capacitor between this pin and VSS is required.
LCD_BEXT			To reduce supply ripple, a larger capcitor of approximately 1000 times the total LCD segment capacitance may be used.
			If using the LCD with the internal supply source, this pin may be left unconnected or used as a GPIO.
LCD_COM0	0: PE4		LCD driver common line number 0.
LCD_COM1	0: PE5		LCD driver common line number 1.
LCD_COM2	0: PE6		LCD driver common line number 2.
LCD_COM3	0: PE7		LCD driver common line number 3.
LCD_SEG0	0: PF2		LCD segment line 0.
LCD_SEG1	0: PF3		LCD segment line 1.
LCD_SEG2	0: PF4		LCD segment line 2.
LCD_SEG3	0: PF5		LCD segment line 3.
LCD_SEG4	0: PE8		LCD segment line 4.
LCD_SEG5	0: PE9		LCD segment line 5.
LCD_SEG6	0: PE10		LCD segment line 6.

Alternate	LOCATION		
Functionality	0 - 3	4 - 7	Description
SDIO_DAT7	0: PD9 1: PB4		SDIO Data 7.
SDIO_WP	0: PF9 1: PC5 2: PB15 3: PB9		SDIO Write Protect.
TIM0_CC0	0: PA0 1: PF6 2: PD1 3: PB6	4: PF0 5: PC4 6: PA8 7: PA1	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	0: PA1 1: PF7 2: PD2 3: PC0	4: PF1 5: PC5 6: PA9 7: PA0	Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	0: PA2 1: PF8 2: PD3 3: PC1	4: PF2 5: PA7 6: PA10 7: PA13	Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0	0: PA3 1: PC13 2: PF3 3: PC2	4: PB7	Timer 0 Complimentary Dead Time Insertion channel 0.
TIM0_CDTI1	0: PA4 1: PC14 2: PF4 3: PC3	4: PB8	Timer 0 Complimentary Dead Time Insertion channel 1.
TIM0_CDTI2	0: PA5 1: PC15 2: PF5 3: PC4	4: PB11	Timer 0 Complimentary Dead Time Insertion channel 2.
TIM1_CC0	0: PC13 1: PE10 2: PB0 3: PB7	4: PD6 5: PF2 6: PF13 7: PI6	Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	0: PC14 1: PE11 2: PB1 3: PB8	4: PD7 5: PF3 6: PF14 7: PI7	Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	0: PC15 1: PE12 2: PB2 3: PB11	4: PC13 5: PF4 6: PF15 7: PI8	Timer 1 Capture Compare input / output channel 2.
TIM1_CC3	0: PC12 1: PE13 2: PB3 3: PB12	4: PC14 5: PF12 6: PF5 7: PI9	Timer 1 Capture Compare input / output channel 3.
TIM2_CC0	0: PA8 1: PA12 2: PC8 3: PF2	4: PB6 5: PC2 6: PG8 7: PG5	Timer 2 Capture Compare input / output channel 0.

5.22 Analog Port (APORT) Client Maps

The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 5.20 APORT Connection Diagram on page 211 shows the APORT routing for this device family (note that available features may vary by part number). A complete description of APORT functionality can be found in the Reference Manual.

Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.

In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column.

9. BGA112 Package Specifications

9.1 BGA112 Package Dimensions

Figure 9.1. BGA112 Package Drawing

SIDE VIEW

Table 10.2. TQFP100 PCB Land Pattern Dimensions

Dimension	Min	Nom	Мах			
C1	15.4					
C2	15.4					
E	0.50 BSC					
X	0.30					
Y	1.50					

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

10.3 TQFP100 Package Marking

Figure 10.3. TQFP100 Package Marking

The package marking consists of:

- PPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- · WW The 2-digit workweek when the device was assembled.