

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	56
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b120f2048im64-b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Code	Flash (kB)	RAM (kB)	DC-DC Converter	USB	Ethernet	QSPI	SDIO	LCD	GPIO	Package	Temp Range
EFM32GG11B520F2048GQ64-A	2048	512	Yes	No	No	No	No	Yes	50	QFP64	-40 to +85°C
EFM32GG11B510F2048GQ64-A	2048	384	Yes	No	No	No	No	Yes	50	QFP64	-40 to +85°C
EFM32GG11B520F2048GM64-A	2048	512	Yes	No	No	No	No	Yes	53	QFN64	-40 to +85°C
EFM32GG11B510F2048GM64-A	2048	384	Yes	No	No	No	No	Yes	53	QFN64	-40 to +85°C
EFM32GG11B520F2048IQ64-A	2048	512	Yes	No	No	No	No	Yes	50	QFP64	-40 to +125°C
EFM32GG11B510F2048IQ64-A	2048	384	Yes	No	No	No	No	Yes	50	QFP64	-40 to +125°C
EFM32GG11B520F2048IM64-A	2048	512	Yes	No	No	No	No	Yes	53	QFN64	-40 to +125°C
EFM32GG11B510F2048IM64-A	2048	384	Yes	No	No	No	No	Yes	53	QFN64	-40 to +125°C
EFM32GG11B420F2048GL120-A	2048	512	No	Yes	Yes	Yes	Yes	Yes	93	BGA120	-40 to +85°C
EFM32GG11B420F2048IL120-A	2048	512	No	Yes	Yes	Yes	Yes	Yes	93	BGA120	-40 to +125°C
EFM32GG11B420F2048GL112-A	2048	512	No	Yes	Yes	Yes	Yes	Yes	87	BGA112	-40 to +85°C
EFM32GG11B420F2048IL112-A	2048	512	No	Yes	Yes	Yes	Yes	Yes	87	BGA112	-40 to +125°C
EFM32GG11B420F2048GQ100-A	2048	512	No	Yes	Yes	Yes	Yes	Yes	83	QFP100	-40 to +85°C
EFM32GG11B420F2048IQ100-A	2048	512	No	Yes	Yes	Yes	Yes	Yes	83	QFP100	-40 to +125°C
EFM32GG11B420F2048GQ64-A	2048	512	No	Yes	Yes	Yes	Yes	Yes	50	QFP64	-40 to +85°C
EFM32GG11B420F2048GM64-A	2048	512	No	Yes	Yes	Yes	Yes	Yes	53	QFN64	-40 to +85°C
EFM32GG11B420F2048IQ64-A	2048	512	No	Yes	Yes	Yes	Yes	Yes	50	QFP64	-40 to +125°C
EFM32GG11B420F2048IM64-A	2048	512	No	Yes	Yes	Yes	Yes	Yes	53	QFN64	-40 to +125°C
EFM32GG11B320F2048GL112-A	2048	512	No	No	No	No	No	Yes	90	BGA112	-40 to +85°C
EFM32GG11B310F2048GL112-A	2048	384	No	No	No	No	No	Yes	90	BGA112	-40 to +85°C
EFM32GG11B320F2048GQ100-A	2048	512	No	No	No	No	No	Yes	86	QFP100	-40 to +85°C
EFM32GG11B310F2048GQ100-A	2048	384	No	No	No	No	No	Yes	86	QFP100	-40 to +85°C
EFM32GG11B120F2048GQ64-A	2048	512	No	No	No	No	No	No	53	QFP64	-40 to +85°C
EFM32GG11B110F2048GQ64-A	2048	384	No	No	No	No	No	No	53	QFP64	-40 to +85°C
EFM32GG11B120F2048GM64-A	2048	512	No	No	No	No	No	No	56	QFN64	-40 to +85°C
EFM32GG11B110F2048GM64-A	2048	384	No	No	No	No	No	No	56	QFN64	-40 to +85°C
EFM32GG11B120F2048IQ64-A	2048	512	No	No	No	No	No	No	53	QFP64	-40 to +125°C
EFM32GG11B110F2048IQ64-A	2048	384	No	No	No	No	No	No	53	QFP64	-40 to +125°C
EFM32GG11B120F2048IM64-A	2048	512	No	No	No	No	No	No	56	QFN64	-40 to +125°C
EFM32GG11B110F2048IM64-A	2048	384	No	No	No	No	No	No	56	QFN64	-40 to +125°C

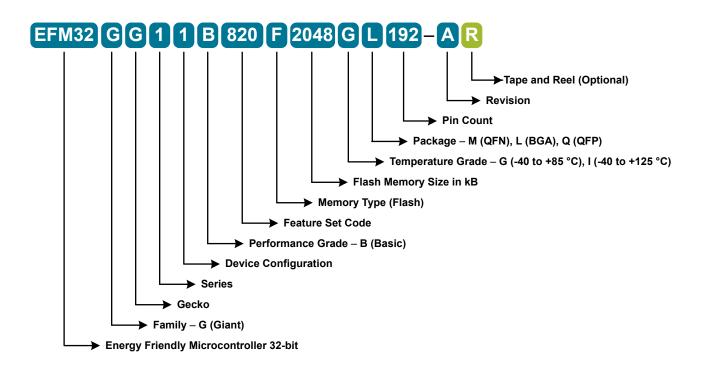


Figure 2.1. Ordering Code Key

3.11 Memory Map

The EFM32GG11 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.

	8x£6166668]		
CM4 Peripherals	8xe88fffff			
	8×99999999			
QSPI0	8xcfffffff			
	8%888888888			
EBI Region 3	8x8t6666666			
EBI Region 2	8x886666666			
EBI Region 1	8x84666666	\		0xe0100000
EBI Region 0	8x83ffffff	\	CM4 ROM Table	0xe00ff000
Ebinegionio	8×7fffffff			0xe0042000
Bit Set	0x460f0400 0x460f03ff	,	ETM	0xe0041000
(Peripherals / CRYPTO0)	0×46000000		TPIU	0xe0040000
	8×45555555		Custom Control Concer	0xe000f000
Bit Clear	0x440f03ff		System Control Space	0xe000e000
(Peripherals / CRYPTO0)	0×44000000	\	FPB	0xe0003000
	8x43£46666	\	DWT	0xe0002000
Bit-Band (Peripherals / CRYPTO0 / SDIO)	0x43e3ffff 0x42000000	Λ.	ITM	0xe0001000
(relipitedas) extri roci (spio)	8×41ffffff	1	119	0xe0000000
USB	8×40135555			
038	0×40100000 8×488f2fff			0x10080000
SDIQ			RAM2 (code space)	0,10000000
SDIO	8×48811666		RAM1	0×10040000
	8×48818455		(code space)	010020000
CRYPTO0	8×488f8355	/	RAMO	0x10020000
Peripherals 1	8×48845555	/	(code space)	0×10000000
Peripherals 0	8×48835555	/	Chip config	0x0fe09000
	8x3fffffff	/		0x0fe08000 0x0fe05000
SRAM (bit-band)	8×33222222		Lock bits	0x0fe04000
	8×21ffffff		User Data	0x0fe01000
RAM2 (data space)	8×28846666			0x0fe00000
RAM1 (data space)	8×28835555		QSPI0	0x0c000000 0x04000000
RAM0 (data space)	8×2881ffff	1		0x00200000
	0x1fffffff	1		
Code			Flash (2048 KB)	
	0×00000000			0x00000000

Figure 3.2. EFM32GG11 Memory Map — Core Peripherals and Code Space

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Note:						
1. The minimum voltage req other loads can be calcula		node is calculated using R_{BYP} from the $h^+I_{LOAD} * R_{BYP_max}$.	e DCDC spec	cification table	e. Requiremer	nts for
2. VREGVDD must be tied t	o AVDD. Both VR	EGVDD and AVDD minimum voltage	es must be sa	tisfied for the	part to operat	te.
, ,		aracteristic specs of the capacitor use s temperature and DC bias.	ed on DECOL	JPLE to ensu	re its capacita	ince val-
	dependent on the	nsitions occur at a rate of 10 mV / use e value of the DECOUPLE output cap				
5. When the CSEN peripher	al is used with ch	opping enabled (CSEN_CTRL_CHO	PEN = ENABI	LE), IOVDD m	nust be equal	to AVDD.
	ix) - (THETA _{JA} x F	e to device self-heating, which depen PowerDissipation). Refer to the Absol		•	•	

4.1.3 Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Thermal resistance, QFN64	THETAJA_QFN64	4-Layer PCB, Air velocity = 0 m/s	_	17.8	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	15.4		°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	13.8		°C/W
Thermal resistance, TQFP64	THE-	4-Layer PCB, Air velocity = 0 m/s	_	33.9	_	°C/W
Package	TA _{JA_TQFP64}	4-Layer PCB, Air velocity = 1 m/s	_	32.1	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	30.1	_	°C/W
Thermal resistance,	THE- TA _{JA_TQFP100}	4-Layer PCB, Air velocity = 0 m/s	_	44.1	_	°C/W
TQFP100 Package		4-Layer PCB, Air velocity = 1 m/s	_	37.7	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	35.5	_	°C/W
Thermal resistance, BGA112	THE- TA _{JA_BGA112}	4-Layer PCB, Air velocity = 0 m/s	_	42.0	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	37.0	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	35.3	_	°C/W
Thermal resistance, BGA120	THE-	4-Layer PCB, Air velocity = 0 m/s	_	47.9	_	°C/W
Package	TA _{JA_BGA120}	4-Layer PCB, Air velocity = 1 m/s	_	41.8	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	39.6	_	°C/W
Thermal resistance, BGA152	THE-	4-Layer PCB, Air velocity = 0 m/s	_	35.7	_	°C/W
Package	TA _{JA_BGA152}	4-Layer PCB, Air velocity = 1 m/s	_	31.0	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	29.5	_	°C/W
Thermal resistance, BGA192	THE-	4-Layer PCB, Air velocity = 0 m/s	_	47.9	_	°C/W
Package	TA _{JA_BGA192}	4-Layer PCB, Air velocity = 1 m/s	_	41.8	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	39.6	_	°C/W

Table 4.3. Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current consumption in EM2 mode, with voltage scaling	I _{EM2_VS}	Full 512 kB RAM retention and RTCC running from LFXO	_	3.9	_	μA
enabled		Full 512 kB RAM retention and RTCC running from LFRCO	—	4.3	_	μA
		16 kB (1 bank) RAM retention and RTCC running from LFRCO ²	_	2.8	TBD	μA
Current consumption in EM3 mode, with voltage scaling enabled	I _{EM3_VS}	Full 512 kB RAM retention and CRYOTIMER running from ULFR- CO	_	3.6	TBD	μA
Current consumption in EM4H mode, with voltage	Iem4h_vs	128 byte RAM retention, RTCC running from LFXO	_	1.08	_	μA
scaling enabled		128 byte RAM retention, CRYO- TIMER running from ULFRCO	—	0.69	_	μA
		128 byte RAM retention, no RTCC	_	0.69	TBD	μA
Current consumption in EM4S mode	I _{EM4S}	No RAM retention, no RTCC	_	0.16	TBD	μA
Current consumption of pe- ripheral power domain 1, with voltage scaling enabled	I _{PD1_VS}	Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled ¹	_	0.68	_	μA
Current consumption of pe- ripheral power domain 2, with voltage scaling enabled	I _{PD2_VS}	Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled ¹	_	0.28	_	μA

1. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.4 EM2 and EM3 Power Domains for a list of the peripherals in each power domain.

2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1

4.1.7.3 Current Consumption 1.8 V without DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 1.8 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.

Table 4.9. Current Consumption 1.8 V without DC-DC Converter

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM0 mode with all peripherals dis-	I _{ACTIVE}	72 MHz HFRCO, CPU running Prime from flash	_	120	_	µA/MHz
abled		72 MHz HFRCO, CPU running while loop from flash	_	120	_	µA/MHz
		72 MHz HFRCO, CPU running CoreMark loop from flash	_	140	_	µA/MHz
		50 MHz crystal, CPU running while loop from flash	—	122	_	µA/MHz
		48 MHz HFRCO, CPU running while loop from flash	_	122	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	_	124	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	_	126	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash	_	131	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	—	315	_	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_VS	19 MHz HFRCO, CPU running while loop from flash	—	107	_	µA/MHz
abled and voltage scaling enabled		1 MHz HFRCO, CPU running while loop from flash	_	259	_	µA/MHz
Current consumption in EM1	I _{EM1}	72 MHz HFRCO	_	57		µA/MHz
mode with all peripherals disabled		50 MHz crystal	_	59		µA/MHz
		48 MHz HFRCO	_	59		µA/MHz
		32 MHz HFRCO	_	61		µA/MHz
		26 MHz HFRCO	_	63		µA/MHz
		16 MHz HFRCO	_	68	_	µA/MHz
		1 MHz HFRCO	_	252		µA/MHz
Current consumption in EM1	I _{EM1_VS}	19 MHz HFRCO	_	55		µA/MHz
mode with all peripherals dis- abled and voltage scaling enabled		1 MHz HFRCO	_	207	_	µA/MHz
Current consumption in EM2 mode, with voltage scaling	I _{EM2_VS}	Full 512 kB RAM retention and RTCC running from LFXO	_	3.7	_	μΑ
enabled		Full 512 kB RAM retention and RTCC running from LFRCO	_	4.0	_	μΑ
		16 kB (1 bank) RAM retention and RTCC running from LFRCO ²	—	2.5	_	μΑ

4.1.8 Wake Up Times

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Wake up time from EM1	t _{EM1_WU}		—	3	_	AHB Clocks
Wake up from EM2	t _{EM2_WU}	Code execution from flash	_	11.8	_	μs
		Code execution from RAM	_	4.1	_	μs
Wake up from EM3	t _{EM3_WU}	Code execution from flash		11.8	_	μs
		Code execution from RAM	_	4.1	_	μs
Wake up from EM4H ¹	t _{EM4H_WU}	Executing from flash	_	94	—	μs
Wake up from EM4S ¹	t _{EM4S_WU}	Executing from flash		294	_	μs
Time from release of reset	t _{RESET}	Soft Pin Reset released		55	_	μs
source to first instruction ex- ecution		Any other reset released	_	359	_	μs
Power mode scaling time	t _{SCALE}	VSCALE0 to VSCALE2, HFCLK = 19 MHz ^{4 2}	_	31.8	_	μs
		VSCALE2 to VSCALE0, HFCLK = 19 MHz ³	_	4.3	_	μs

Table 4.10. Wake Up Times

Note:

1. Time from wake up request until first instruction is executed. Wakeup results in device reset.

2. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV/μs for approximately 20 μs. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 μF capacitor) to 70 mA (with a 2.7 μF capacitor).

3. Scaling down from VSCALE2 to VSCALE0 requires approximately 2.8 µs + 29 HFCLKs.

4. Scaling up from VSCALE0 to VSCALE2 requires approximately 30.3 µs + 28 HFCLKs.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Note:			l			
1. Supply current s the load.	specifications are for VD	AC circuitry operating with static o	output only and do n	not include cur	rent required	to drive
	ode, the output is define ngle-ended range.	d as the difference between two s	ingle-ended outputs	s. Absolute vol	tage on each	output is
3. Entire range is r	monotonic and has no m	issing codes.				
	PERCLK is dependent DAC module is enabled	on HFPERCLK frequency. This cuint in the CMU.	urrent contributes to	the total supp	ly current use	ed when
	, U I	be from 10% to 90% of full scale. It 10% of full scale with the measu		by comparing	actual VDAC	output a
		ΔV _{OUT}), VDAC output at 90% of f				

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
MISO hold time ^{1 3}	t _{H_MI}	USART2, location 4, IOVDD = 1.8 V	-11.6	_	—	ns
		USART2, location 4, IOVDD = 3.0 V	-11.6	_	—	ns
		USART2, location 5, IOVDD = 1.8 V	-9.1	_	_	ns
		USART2, location 5, IOVDD = 3.0 V	-9.1	_	_	ns
		All other USARTs and locations, IOVDD = 1.8 V	-8		_	ns
		All other USARTs and locations, IOVDD = 3.0 V	-8		_	ns

1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).

2. $t_{\mbox{\scriptsize HFPERCLK}}$ is one period of the selected $\mbox{\scriptsize HFPERCLK}.$

3. Measurement done with 8 pF output loading at 10% and 90% of V_{DD} (figure shows 50% of V_{DD}).

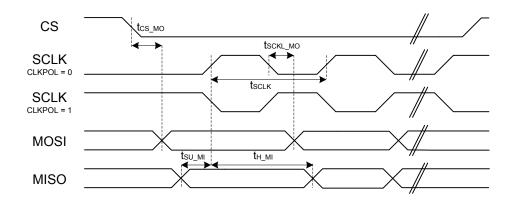


Figure 4.1. SPI Master Timing Diagram

4.1.25 External Bus Interface (EBI)

EBI Write Enable Output Timing

Timing applies to both EBI_WEn and EBI_NANDWEn for all addressing modes and both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.

Table 4.36. EBI Write Enable Timing

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Output hold time, from trail- ing EBI_WEn / EBI_NAND- WEn edge to EBI_AD, EBI_A, EBI_CSn, EBI_BLn invalid	t _{OH_WEn}	IOVDD ≥ 1.62 V	-22 + (WRHOLD * t{ _{}HFCOR- ECLK{})	-	_	ns
		IOVDD ≥ 3.0 V	-13 + (WRHOLD ^{* t} HFCOR- ECLK)	_		ns
Output setup time, from EBI_AD, EBI_A, EBI_CSn, EBI_BLn valid to leading EBI_WEn / EBI_NANDWEn edge ¹	tosu_wen	IOVDD ≥ 1.62 V	-12 + (WRSET- UP * t _{HFCOR-} ECLK)	_		ns
		IOVDD ≥ 3.0 V	-10 + (WRSET- UP * t _{HFCOR-} ЕСLК)			ns
EBI_WEn / EBI_NANDWEn pulse width ¹	twidth_wen	IOVDD ≥ 1.62 V	-6 + (MAX(1, WRSTRB) ^{* t} HFCOR- ECLK)			ns
		IOVDD ≥ 3.0 V	-5 + (MAX(1, WRSTRB) ^{* t} HFCOR- ECLK)	_	-	ns

Note:

1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFWE=0. The leading edge of EBI_WEn can be moved to the right by setting HALFWE=1. This decreases the length of t_{WIDTH_WEn} and increases the length of t_{OSU_WEn} by 1/2 * t_{HFCLKNODIV}.

SDIO HS Mode Timing

Timing is specified for route location 0 at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 0. Loading between 5 and 10 pF on all pins or between 10 and 20 pF on all pins.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Clock frequency during data transfer	F _{SD_CLK}	Using HFRCO, AUXHFRCO, or USHFRCO	_	_	45	MHz
		Using HFXO	_	_	TBD	MHz
Clock low time	t _{WL}	Using HFRCO, AUXHFRCO, or USHFRCO	10.0		_	ns
		Using HFXO	TBD	_	_	ns
Clock high time	t _{WH}	Using HFRCO, AUXHFRCO, or USHFRCO	10.0		_	ns
		Using HFXO	TBD	—	_	ns
Clock rise time	t _R		1.69	3.23	_	ns
Clock fall time	t _F		1.42	2.79	_	ns
Input setup time, CMD, DAT[0:3] valid to SD_CLK	t _{ISU}		6	_	_	ns
Input hold time, SD_CLK to CMD, DAT[0:3] change	t _{IH}		2.5	_	_	ns
Output delay time, SD_CLK to CMD, DAT[0:3] valid	t _{ODLY}		0	_	13	ns
Output hold time, SD_CLK to CMD, DAT[0:3] change	t _{OH}		2	_	_	ns

Table 4.47. SDIO HS Mode Timing (Location 0)

SDIO DDR Mode Timing

Timing is specified for route location 0 at 1.8 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 6, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 30 pF on all pins.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Clock frequency during data transfer	F _{SD_CLK}	Using HFRCO, AUXHFRCO, or USHFRCO	_	_	20	MHz
		Using HFXO	_	_	TBD	MHz
Clock low time	t _{WL}	Using HFRCO, AUXHFRCO, or USHFRCO	22.6	—		ns
		Using HFXO	TBD		_	ns
Clock high time	t _{WH}	Using HFRCO, AUXHFRCO, or USHFRCO	22.6			ns
		Using HFXO	TBD	_	_	ns
Clock rise time	t _R		1.69	6.52	_	ns
Clock fall time	t _F		1.42	4.96	_	ns
Input setup time, CMD valid to SD_CLK	t _{ISU}		6			ns
Input hold time, SD_CLK to CMD change	t _{IH}		1.8	_		ns
Output delay time, SD_CLK to CMD valid	t _{ODLY}		0		16	ns
Output hold time, SD_CLK to CMD change	t _{OH}		0.8			ns
Input setup time, DAT[0:3] valid to SD_CLK	t _{ISU2X}		6			ns
Input hold time, SD_CLK to DAT[0:3] change	t _{IH2X}		1.5		_	ns
Output delay time, SD_CLK to DAT[0:3] valid	t _{ODLY2X}		0	_	16	ns
Output hold time, SD_CLK to DAT[0:3] change	t _{OH2X}		0.8	—	—	ns

Table 4.49. SDIO DS Mode Timing (Location 0)

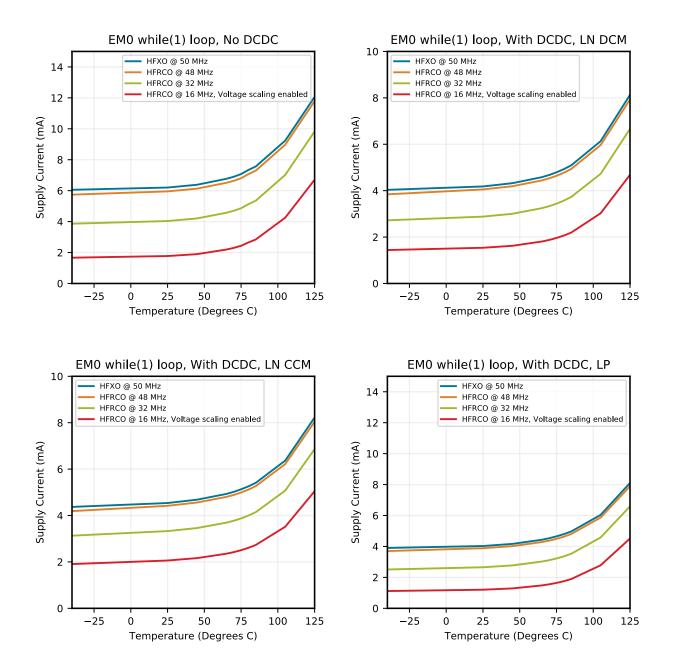
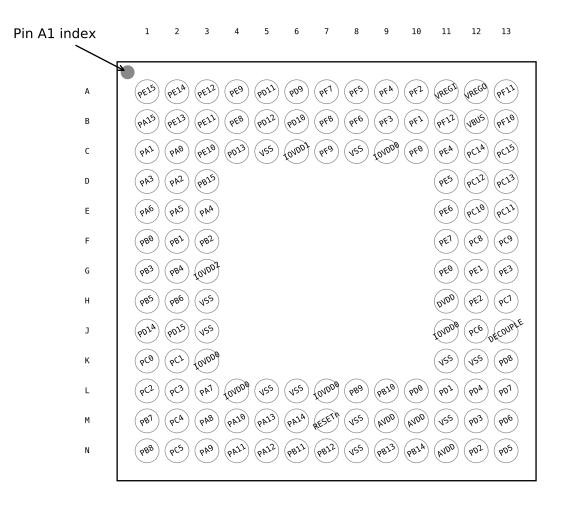
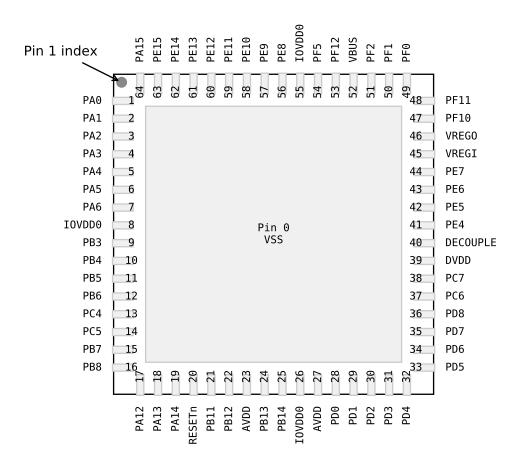



Figure 4.24. EM0 Active Mode Typical Supply Current vs. Temperature

Figure 5.5. EFM32GG11B4xx in BGA120 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PE15	A1	GPIO	PE14	A2	GPIO
PE12	A3	GPIO	PE9	A4	GPIO
PD11	A5	GPIO	PD9	A6	GPIO
PF7	A7	GPIO	PF5	A8	GPIO
PF4	A9	GPIO	PF2	A10	GPIO
VREGI	A11	Input to 5 V regulator.	VREGO	A12	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs


Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PD8	H8	GPIO	PD5	H9	GPIO
PD6	H10	GPIO	PD7	H11	GPIO
PC1	J1	GPIO (5V)	PC3	J2	GPIO (5V)
PD15	J3	GPIO (5V)	PA12	J4	GPIO (5V)
PA9	J5	GPIO	PA10	J6	GPIO
PB9	J7	GPIO (5V)	PB10	J8	GPIO (5V)
PD2	J9	GPIO (5V)	PD3	J10	GPIO
PD4	J11	GPIO	PB7	K1	GPIO
PC4	K2	GPIO	PA13	K3	GPIO (5V)
PA11	К5	GPIO	RESETn	K6	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
AVDD	K8 K9 L10	Analog power supply.	PD1	K11	GPIO
PB8	L1	GPIO	PC5	L2	GPIO
PA14	L3	GPIO	PB11	L5	GPIO
PB12	L6	GPIO	PB13	L8	GPIO
PB14	L9	GPIO	PD0	L11	GPIO (5V)

1. GPIO with 5V tolerance are indicated by (5V).

2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PF3	79	GPIO	PF4	80	GPIO
PF5	81	GPIO	PF6	84	GPIO
PF7	85	GPIO	PF8	86	GPIO
PF9	87	GPIO	PD9	88	GPIO
PD10	89	GPIO	PD11	90	GPIO
PD12	91	GPIO	PE8	92	GPIO
PE9	93	GPIO	PE10	94	GPIO
PE11	95	GPIO	PE12	96	GPIO
PE13	97	GPIO	PE14	98	GPIO
PE15	99	GPIO	PA15	100	GPIO
Note:					

1. GPIO with 5V tolerance are indicated by (5V).

Figure 5.18. EFM32GG11B4xx in QFN64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VSS	0	Ground	PA0	1	GPIO
PA1	2	GPIO	PA2	3	GPIO
PA3	4	GPIO	PA4	5	GPIO
PA5	6	GPIO	PA6	7	GPIO
IOVDD0	8 26 55	Digital IO power supply 0.	PB3	9	GPIO
PB4	10	GPIO	PB5	11	GPIO

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
OP	PAO_N																																
APORT1Y	BUSAY	PB15		PB13		PB11		PB9				PB5		PB3		PB1		PA15		PA13		PA11		PA9		PA7		PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12		PB10				PB6		PB4		PB2		PB0		PA14		PA12		PA10		PA8		PA6		PA4		PA2		PA0
APORT3Y	BUSCY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5				PE1	
APORT4Y	BUSDY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				PE0
OP	A0_	P																															
APORT1X	BUSAX		PB14		PB12		PB10				PB6		PB4		PB2		PB0		PA14		PA12		PA10		PA8		PA6		PA4		PA2		PA0
APORT2X	BUSBX	PB15		PB13		PB11		PB9				PB5		PB3		PB1		PA15		PA13		PA11		PA9		PA7		PA5		PA3		PA1	
APORT3X	BUSCX		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				PEO
APORT4X	BUSDX	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5				PE1	

Table 5.31. VDAC0 / OPA Bus and Pin Mapping

Table 7.2. BGA152 PCB Land Pattern Dimensions

Min	Nom	Мах							
	0.20								
	6.50								
	6.50								
	0.5								
0.5									
	Min	0.20 6.50 6.50 0.5							

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.

3. This Land Pattern Design is based on the IPC-7351 guidelines.

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

6. The stencil thickness should be 0.125 mm (5 mils).

7. The ratio of stencil aperture to land pad size should be 1:1.

8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com