

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b120f2048iq64-br

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. System Overview

3.1 Introduction

The Giant Gecko Series 1 product family is well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the MCU system. The detailed functional description can be found in the Giant Gecko Series 1 Reference Manual.

A block diagram of the Giant Gecko Series 1 family is shown in Figure 3.1 Detailed EFM32GG11 Block Diagram on page 11. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.

Figure 3.1. Detailed EFM32GG11 Block Diagram

3.2 Power

The EFM32GG11 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. A 5 V regulator is available on some OPNs, allowing the device to be powered directly from 5 V power sources, such as USB. An optional integrated DC-DC buck regulator can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor.

The EFM32GG11 device family includes support for internal supply voltage scaling, as well as two different power domain groups for peripherals. These enhancements allow for further supply current reductions and lower overall power consumption.

AVDD and VREGVDD need to be 1.8 V or higher for the MCU to operate across all conditions; however the rest of the system will operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components. Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA.

3.2.1 Energy Management Unit (EMU)

The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold.

3.2.2 DC-DC Converter

The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.

3.2.3 5 V Regulator

A 5 V input regulator is available, allowing the device to be powered directly from 5 V power sources such as the USB VBUS line. The regulator is available in all energy modes, and outputs 3.3 V to be used to power the USB PHY and other 3.3 V systems. Two inputs to the regulator allow for seamless switching between local and external power sources.

	ETU ETU	Λ				1 DDC	
0x40024000	EIH	1		8%40100008		PRS	0x400e6000
0x40022400	LICD	1	CM4 Peripherals	8xe8866666	1 /	BMU	0x400e5400
0x40022000	USB			Q×dfffffff	1 .		0x400e5000
0x40020400	CMU			Oxd0000000		СМИ	0x400e4400
0x40020000	5M0	1	QSPIO	8559999999	l i		0x400e4000
0x4001d400	TENCO	4 、		8×8222222	1 /	EMU	0x400e3000
0x4001d000	TRNGO	· ·	EBI Region 3	0×8ffffffff	1 /	coverture.	0x4008f400
0x4001c800	OSPIO	1	5010	Av8hffffff	ł /		0x4008f000
0x4001c400	GPCBC	4 \	EBI Region 2	0288000000	i i	CSEN	0x4008e400
0x4001c000	Grence	· ·	EBI Region 1	8x84555555	/	GGEN	0x4008e000
0x4001b000	WTIMER3	1	EBI Region 0	8×83ffffff	1 /	12C2	0x40089c00
0x4001ac00	WTIMER2	4 、		0x80000000 0x7fffffff	ł j	12C1	0x40089800
0x4001a800	WTIMER1	· ·		0246010400		12C0	0x40089400
0x4001a400	WTIMERO	1	Bit Set	0x460f03ff		GPIO	0x40088000
0x4001a000	WHITEHO	1 \	(Peripherals / CRTP100)	0×46000000	,	VDACO	0x40086400
0x40019c00	TIMEB6	· ·		8×455‡5555	/	VDACU	0x40086000
0x40019800	TIMERS	1	Bit Clear	0x440f03ff	1 /	IDAC0	0x40084400
0x40019400	TIMER4	1	(Peripherals / CRYPTO0)	0×44000000			0x40084000
0x40019000	TIMEB3	([\]		8×43ffffff	1 /	ADC1	0x40082800
0x40018c00	TIMER3	1	Pit Pand	0x43e3ffff		ADC0	0x40082400
0x40018800	TIMEB1	1	(Peripherals / CRYPTO0 / SI	00) 0×42000000	l i		0x40082000
0x40018400	TIMEBO	(`	· ·	0x41ffffff	/	АСМРЗ	0x40080c00
0x40018000		1		0x40140000		ACMP2	0x40080800
0x40014800	UABT1	1 ,	USB	8%48199999	l (ACMPI	0x40080400
0x40014400	UABTO	· ·		8×488f5fff	1 /	ACMIPO	0×40080000
0x40014000		1	SDIO	0x400f1fff	1 /	PCNT2	0x4006ec00
0x40011800	USART5	1 ,	3510	0x40011000	l.	PCNT1	0x4006e800
0x40011400	USART4	۱ ۱		8\$488+8466	/	PCNT0	0x4006e400
0x40011000	USART3	1 \	CRYPTO0	8×488‡8355	/		0x4006a800
0x40010c00	USART2		Peripherals 1	0×400effff	1	LEUART1	0x4006a400
0x40010800	USART1			0x40040000	4	LEUARTO	0x4006a000
0x40010400	USART0	1	Peripherals 0	024000000	\mathbf{A}	L ETIMEB1	0×40066800
0x40010000			1	8x3f99999		LETIMERO	0x40066400
0x4000b400	EB	1 /	SRAM (bit-band)	8x25fffffff	1 \		0×40066000
0x40006000		1 /		0x22000000	Λ.	RTCC	0x40062400
0x40004800	CAN1			0220080000	\ \		0x40062000
0x40004400	CANO	1 .	RAM2 (data space)	8×28845555	N.	RTC	0×40060000
0x40004000		1 /	RAM1 (data space)	8×2883ffff	1 \	LECENCE	0x40055400
0x40003000	LDMA		DAMO (data array)	0x2001ffff	۱ <i>۱</i>	LESENSE	0x40055000
0x40002000			RAMU (data space)	020000000		ICD	0x40054400
0x40001400	FPUEH			⊎x1tttttt			0x40054000
0×40001000			Code		\ \	WDOG1	UX40052800
0x400000000	MSC	/		0×00000000		WDOG0	0x40052400
0.0000000000000000000000000000000000000		-			-		- 0140002000

Figure 3.3. EFM32GG11 Memory Map — Peripherals

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit	
Note:							
1. The minimum voltage req other loads can be calcula	uired in bypass mo ated as V _{DVDD_min}	ode is calculated using R_{BYP} from the +I _{LOAD} * R_{BYP_max} .	e DCDC spec	ification table	. Requiremen	its for	
2. VREGVDD must be tied t	o AVDD. Both VR	EGVDD and AVDD minimum voltage	es must be sa	tisfied for the	part to operat	e.	
 The system designer sho ue stays within the specifi 	3. The system designer should consult the characteristic specs of the capacitor used on DECOUPLE to ensure its capacitance val- ue stays within the specified bounds across temperature and DC bias.						
4. VSCALE0 to VSCALE2 ve tion, peak currents will be mA (with a 2.7 μF capacit	oltage change tran dependent on the or).	sitions occur at a rate of 10 mV / use value of the DECOUPLE output cap	ec for approxi bacitor, from 3	mately 20 use 5 mA (with a	ec. During this 1 μF capacito	s transi- or) to 70	
5. When the CSEN peripher	al is used with cho	pping enabled (CSEN_CTRL_CHOF	PEN = ENABL	E), IOVDD m	ust be equal	to AVDD.	
6. The maximum limit on T_A cation. T_A (max) = T_J (ma Characteristics table for T	may be lower due x) - (THETA _{JA} x P _J and THETA _{JA} .	to device self-heating, which depend owerDissipation). Refer to the Absolution	ds on the pow ute Maximum	ver dissipation Ratings table	of the specifies and the The	ic appli- rmal	

4.1.3 Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Thermal resistance, QFN64	THETA _{JA_QFN64}	4-Layer PCB, Air velocity = 0 m/s		17.8		°C/W
Package		4-Layer PCB, Air velocity = 1 m/s		15.4		°C/W
		4-Layer PCB, Air velocity = 2 m/s		13.8		°C/W
Thermal resistance, TQFP64	THE-	4-Layer PCB, Air velocity = 0 m/s	_	33.9		°C/W
Package	IA _{JA_TQFP64}	4-Layer PCB, Air velocity = 1 m/s		32.1		°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	30.1		°C/W
Thermal resistance,	THE-	4-Layer PCB, Air velocity = 0 m/s	—	44.1	_	°C/W
TQFP100 Package	IAJA_TQFP100	4-Layer PCB, Air velocity = 1 m/s	_	37.7		°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	35.5	_	°C/W
Thermal resistance, BGA112	THE- TA _{JA_BGA112}	4-Layer PCB, Air velocity = 0 m/s	—	42.0	_	°C/W
Раскаде		4-Layer PCB, Air velocity = 1 m/s	—	37.0	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	35.3	_	°C/W
Thermal resistance, BGA120	THE-	4-Layer PCB, Air velocity = 0 m/s	—	47.9	_	°C/W
Раскаде	TAJA_BGA120	4-Layer PCB, Air velocity = 1 m/s	—	41.8	—	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	39.6	_	°C/W
Thermal resistance, BGA152	THE-	4-Layer PCB, Air velocity = 0 m/s	—	35.7	—	°C/W
Раскаде	TA _{JA_BGA152}	4-Layer PCB, Air velocity = 1 m/s	—	31.0	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	29.5	_	°C/W
Thermal resistance, BGA192	THE-	4-Layer PCB, Air velocity = 0 m/s	—	47.9	_	°C/W
Раскаде	IAJA_BGA192	4-Layer PCB, Air velocity = 1 m/s	—	41.8	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	39.6	_	°C/W

Table 4.3. Thermal Characteristics

4.1.8 Wake Up Times

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Wake up time from EM1	t _{EM1_WU}		—	3	—	AHB Clocks
Wake up from EM2	t _{EM2_WU}	Code execution from flash	—	11.8	_	μs
		Code execution from RAM	_	4.1	_	μs
Wake up from EM3	t _{EM3_WU}	Code execution from flash	—	11.8	—	μs
		Code execution from RAM	—	4.1	—	μs
Wake up from EM4H ¹	t _{EM4H_WU}	Executing from flash	_	94		μs
Wake up from EM4S ¹	t _{EM4S_WU}	Executing from flash	_	294	—	μs
Time from release of reset	t _{RESET}	Soft Pin Reset released	—	55	—	μs
ecution		Any other reset released		359	—	μs
Power mode scaling time	tSCALE	VSCALE0 to VSCALE2, HFCLK = 19 MHz ^{4 2}	—	31.8	_	μs
		VSCALE2 to VSCALE0, HFCLK = 19 MHz ³	_	4.3	_	μs

Table 4.10. Wake Up Times

Note:

1. Time from wake up request until first instruction is executed. Wakeup results in device reset.

2. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV/μs for approximately 20 μs. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 μF capacitor) to 70 mA (with a 2.7 μF capacitor).

3. Scaling down from VSCALE2 to VSCALE0 requires approximately 2.8 µs + 29 HFCLKs.

4. Scaling up from VSCALE0 to VSCALE2 requires approximately 30.3 µs + 28 HFCLKs.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Output fall time, From 70%	t _{IOOF}	C _L = 50 pF,	_	1.8	_	ns
10 30% 01 V _{IO}		DRIVESTRENGTH ¹ = STRONG,				
		SLEWRATE ¹ = 0x6				
		C _L = 50 pF,	—	4.5	_	ns
		DRIVESTRENGTH ¹ = WEAK,				
		SLEWRATE ¹ = 0x6				
Output rise time, From 30%	t _{IOOR}	C _L = 50 pF,	_	2.2		ns
to 70% of V _{IO}		DRIVESTRENGTH ¹ = STRONG,				
		SLEWRATE = 0x6 ¹				
		C _L = 50 pF,	_	7.4		ns
		DRIVESTRENGTH ¹ = WEAK,				
		SLEWRATE ¹ = 0x6				
Note:	1		1	1		
1. In GPIO_Pn_CTRL regis	ter.					

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Signal to noise and distortion ratio (1 kHz sine wave),	SNDR _{DAC}	500 ksps, single-ended, internal 1.25V reference	—	60.4	_	dB
kHz		500 ksps, single-ended, internal 2.5V reference	—	61.6		dB
		500 ksps, single-ended, 3.3V VDD reference	—	64.0	_	dB
		500 ksps, differential, internal 1.25V reference		63.3		dB
		500 ksps, differential, internal 2.5V reference	_	64.4	_	dB
		500 ksps, differential, 3.3V VDD reference	_	65.8		dB
Signal to noise and distortion ratio (1 kHz sine wave),	SNDR _{DAC_BAND}	500 ksps, single-ended, internal 1.25V reference	—	65.3	_	dB
Noise band limited to 22 kHz		500 ksps, single-ended, internal 2.5V reference	—	66.7	_	dB
		500 ksps, differential, 3.3V VDD reference	—	68.5	_	dB
		500 ksps, differential, internal 1.25V reference	—	67.8	_	dB
		500 ksps, differential, internal 2.5V reference	—	69.0	_	dB
		500 ksps, single-ended, 3.3V VDD reference	—	70.0		dB
Total harmonic distortion	THD		—	70.2	_	dB
Differential non-linearity ³	DNL _{DAC}		TBD	_	TBD	LSB
Intergral non-linearity	INL _{DAC}		TBD	_	TBD	LSB
Offset error ⁵	V _{OFFSET}	T = 25 °C	TBD	_	TBD	mV
		Across operating temperature range	TBD	—	TBD	mV
Gain error ⁵	V _{GAIN}	T = 25 °C, Low-noise internal ref- erence (REFSEL = 1V25LN or 2V5LN)	TBD	_	TBD	%
		Across operating temperature range, Low-noise internal refer- ence (REFSEL = 1V25LN or 2V5LN)	TBD		TBD	%
External load capactiance, OUTSCALE=0	C _{LOAD}		—	_	75	pF

4.1.18 Capacitive Sense (CSEN)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Single conversion time (1x	t _{CNV}	12-bit SAR Conversions	_	20.2	—	μs
accumulation)		16-bit SAR Conversions	—	26.4	_	μs
		Delta Modulation Conversion (sin- gle comparison)		1.55		μs
Maximum external capacitive load	C _{EXTMAX}	CS0CG=7 (Gain = 1x), including routing parasitics	—	68	—	pF
		CS0CG=0 (Gain = 10x), including routing parasitics	_	680	_	pF
Maximum external series impedance	R _{EXTMAX}			1		kΩ
Supply current, EM2 bonded conversions, WARMUP- MODE=NORMAL, WAR- MUPCNT=0	I _{CSEN_BOND}	12-bit SAR conversions, 20 ms conversion rate, CS0CG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF) ¹	_	326	_	nA
		Delta Modulation conversions, 20 ms conversion rate, CS0CG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF) ¹	_	226	_	nA
		12-bit SAR conversions, 200 ms conversion rate, CS0CG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF) ¹		33	_	nA
		Delta Modulation conversions, 200 ms conversion rate, CS0CG=7 (Gain = 1x), 10 chan- nels bonded (total capacitance of 330 pF) ¹	_	25	_	nA
Supply current, EM2 scan conversions, WARMUP- MODE=NORMAL, WAR-	ICSEN_EM2	12-bit SAR conversions, 20 ms scan rate, CS0CG=0 (Gain = 10x), 8 samples per scan ¹	_	690	_	nA
MUPCNT=0		Delta Modulation conversions, 20 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), CS0CG=0 (Gain = 10x), 8 sam- ples per scan ¹		515		nA
		12-bit SAR conversions, 200 ms scan rate, CS0CG=0 (Gain = 10x), 8 samples per scan ¹	_	79	_	nA
		Delta Modulation conversions, 200 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), CS0CG=0 (Gain = 10x), 8 samples per scan ¹		57	_	nA

Table 4.26. Capacitive Sense (CSEN)

4.1.25 External Bus Interface (EBI)

EBI Write Enable Output Timing

Timing applies to both EBI_WEn and EBI_NANDWEn for all addressing modes and both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.

Table 4.36. EBI Write Enable Timing

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output hold time, from trail- ing EBI_WEn / EBI_NAND- WEn edge to EBI_AD, EBI_A, EBI_CSn, EBI_BLn	t _{OH_WEn}	IOVDD ≥ 1.62 V	-22 + (WRHOLD * t{ _{}HFCOR-} _{ECLK{} })	_	_	ns
		IOVDD ≥ 3.0 V	-13 + (WRHOLD ^{* t} HFCOR- ECLK)	_	_	ns
Output setup time, from EBI_AD, EBI_A, EBI_CSn, EBI_BLn valid to leading EBI_WEn / EBI_NANDWEn edge ¹	tosu_wen	IOVDD ≥ 1.62 V	-12 + (WRSET- UP * ^t HFCOR- ECLK)	_	_	ns
		IOVDD ≥ 3.0 V	-10 + (WRSET- UP * t _{HFCOR-} ECLK)	_	_	ns
EBI_WEn / EBI_NANDWEn pulse width ¹	^t WIDTH_WEn	IOVDD ≥ 1.62 V	-6 + (MAX(1, WRSTRB) * t _{HFCOR-} ECLK)	_	_	ns
		IOVDD ≥ 3.0 V	-5 + (MAX(1, WRSTRB) ^{* t} HFCOR- ECLK)	—	_	ns

Note:

1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFWE=0. The leading edge of EBI_WEn can be moved to the right by setting HALFWE=1. This decreases the length of t_{WIDTH_WEn} and increases the length of t_{OSU_WEn} by 1/2 * t_{HFCLKNODIV}.

MII Receive Timing

Timing is specified with 3.0 V ≤ IOVDD ≤ 3.8 V, 25 pF external loading, and slew rate for all GPIO set to 6 unless otherwise indicated.

Table 4.43.	Ethernet	MII Receive	Timing
-------------	----------	--------------------	--------

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
RX_CLK frequency	F _{RX_CLK}		—	25	_	MHz
RX_CLK duty cycle	DC _{RX_CLK}		35	_	65	%
Setup time, RXD[3:0], RX_DV, RX_ER valid to RX_CLK	t _{SU}		6	_	_	ns
Hold time, RX_CLK to RXD[3:0], RX_DV, RX_ER change	t _{HD}		5	_	_	ns

Figure 4.10. Ethernet MII Receive Timing

RMII Transmit Timing

Timing is specified with 3.0 V ≤ IOVDD ≤ 3.8 V, 25 pF external loading, and slew rate for all GPIO set to 6 unless otherwise indicated.

Table 4.44. Ethernet RMII Transmit Timing

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
REF_CLK frequency	F _{REF_CLK}	Output slew rate set to 7	_	50	_	MHz
REF_CLK duty cycle	DC _{REF_CLK}		35		65	%
Output delay, REF_CLK to TXD[1:0], TX_EN	tout		2.3	—	14.1	ns

SDIO DDR Mode Timing

Timing is specified for route location 0 at 1.8 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 6, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 30 pF on all pins.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Clock frequency during data transfer	F _{SD_CLK}	Using HFRCO, AUXHFRCO, or USHFRCO	-	_	20	MHz
		Using HFXO			TBD	MHz
Clock low time	t _{WL}	Using HFRCO, AUXHFRCO, or USHFRCO	22.6	_	_	ns
		Using HFXO	TBD	_	_	ns
Clock high time	t _{WH}	Using HFRCO, AUXHFRCO, or USHFRCO	22.6	_	_	ns
		Using HFXO	TBD	_	_	ns
Clock rise time	t _R		1.69	6.52		ns
Clock fall time	t _F		1.42	4.96	_	ns
Input setup time, CMD valid to SD_CLK	t _{ISU}		6			ns
Input hold time, SD_CLK to CMD change	t _{IH}		1.8			ns
Output delay time, SD_CLK to CMD valid	t _{ODLY}		0	_	16	ns
Output hold time, SD_CLK to CMD change	t _{он}		0.8	_	_	ns
Input setup time, DAT[0:3] valid to SD_CLK	t _{ISU2X}		6			ns
Input hold time, SD_CLK to DAT[0:3] change	t _{IH2X}		1.5	_		ns
Output delay time, SD_CLK to DAT[0:3] valid	t _{ODLY2X}		0	_	16	ns
Output hold time, SD_CLK to DAT[0:3] change	t _{OH2X}		0.8	_	_	ns

Table 4.49. SDIO DS Mode Timing (Location 0)

QSPI DDR Mode Timing (Locations 1, 2)

Timing is specified with voltage scaling disabled, PHY-mode, route locations other than 0, TX DLL = 53, RX DLL = 88, 20-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG.

Table 4.57.	QSPI [DDR Mode	Timing	(Locations	1,	2)
-------------	--------	----------	--------	------------	----	----

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Half SCLK period	T/2	HFXO	_	_	ns	
		HFRCO, AUXHFRCO, USHFRCO	(1/F _{SCLK}) * 0.44	_		ns
Output valid	t _{OV}		_	_	T/2 - 6.6	ns
Output hold	t _{OH}		T/2 - 52.2	_		ns
Input setup	t _{SU}		44.8	_	_	ns
Input hold	t _H		-2.4		_	ns

Figure 4.22. QSPI DDR Timing Diagrams

QSPI DDR Flash Timing Example

This example uses timing values for location 0 (DDR mode) to demonstrate the calculation of allowable flash timing using the QSPI in DDR mode.

- Using a configured SCLK frequency ($\mathrm{F}_{\mathrm{SCLK}}$) of 8 MHz from the HFXO clock source:
- The resulting minimum half-period, T/2(min) = (1/F_{SCLK}) * 0.4 0.4 = 49.6 ns.
- Flash will see a minimum setup time of T/2 t_{OV} = T/2 (T/2 5.0) = 5.0 ns.
- Flash will see a minimum hold time of $t_{OH} = T/2 39.4 = 49.6 39.4 = 10.2 \text{ ns.}$
- Flash can have a maximum output valid time of T/2 t_{SU} = T/2 33.1 = 49.6 33.1 = 16.5 ns.
- Flash can have a minimum output hold time of $t_{\rm H}$ = 0.9 ns.

Figure 5.10. EFM32GG11B4xx in QFP100 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Table 5.10. EFM32GG11B4xx in QFP100 Device Pino	ut
---	----

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	PA3	4	GPIO
PA4	5	GPIO	PA5	6	GPIO
PA6	7	GPIO	IOVDD0	8 17 31 44 82	Digital IO power supply 0.
PB0	9	GPIO	PB1	10	GPIO

Alternate	LOCA		
Functionality	0 - 3	4 - 7	Description
	0: PF2		Debug-interface Serial Wire viewer Output.
DBG_SWO	1: PC15 2: PD1 3: PD2		Note that this function is not enabled after reset, and must be enabled by software to be used.
	0: PF5		Debug-interface JTAG Test Data In.
DBG_TDI			Note that this function becomes available after the first valid JTAG command is re- ceived, and has a built-in pull up when JTAG is active.
	0: PF2		Debug-interface JTAG Test Data Out.
DBG_TDO			Note that this function becomes available after the first valid JTAG command is received.
EBI_A00	0: PA12 1: PB9 2: PE0 3: PC5		External Bus Interface (EBI) address output pin 00.
EBI_A01	0: PA13 1: PB10 2: PE1 3: PA7		External Bus Interface (EBI) address output pin 01.
EBI_A02	0: PA14 1: PB11 2: PI0 3: PA8		External Bus Interface (EBI) address output pin 02.
EBI_A03	0: PB9 1: PB12 2: PI1 3: PA9		External Bus Interface (EBI) address output pin 03.
EBI_A04	0: PB10 1: PD0 2: PI2 3: PA10		External Bus Interface (EBI) address output pin 04.
EBI_A05	0: PC6 1: PD1 2: PI3 3: PA11		External Bus Interface (EBI) address output pin 05.
EBI_A06	0: PC7 1: PD2 2: Pl4 3: PA12		External Bus Interface (EBI) address output pin 06.
EBI_A07	0: PE0 1: PD3 2: PI5 3: PA13		External Bus Interface (EBI) address output pin 07.
EBI_A08	0: PE1 1: PD4 2: PC8 3: PA14		External Bus Interface (EBI) address output pin 08.
EBI_A09	0: PE2 1: PD5 2: PC9 3: PB9		External Bus Interface (EBI) address output pin 09.

Alternate	LOCA		
Functionality	0 - 3	4 - 7	Description
EBI_A10	0: PE3 1: PD6 2: PC10 3: PB10		External Bus Interface (EBI) address output pin 10.
EBI_A11	0: PE4 1: PD7 2: PI6 3: PB11		External Bus Interface (EBI) address output pin 11.
EBI_A12	0: PE5 1: PD8 2: PI7 3: PB12		External Bus Interface (EBI) address output pin 12.
EBI_A13	0: PE6 1: PC7 2: PI8 3: PD0		External Bus Interface (EBI) address output pin 13.
EBI_A14	0: PE7 1: PE2 2: PI9 3: PD1		External Bus Interface (EBI) address output pin 14.
EBI_A15	0: PC8 1: PE3 2: PI10 3: PD2		External Bus Interface (EBI) address output pin 15.
EBI_A16	0: PB0 1: PE4 2: PH4 3: PD3		External Bus Interface (EBI) address output pin 16.
EBI_A17	0: PB1 1: PE5 2: PH5 3: PD4		External Bus Interface (EBI) address output pin 17.
EBI_A18	0: PB2 1: PE6 2: PH6 3: PD5		External Bus Interface (EBI) address output pin 18.
EBI_A19	0: PB3 1: PE7 2: PH7 3: PD6		External Bus Interface (EBI) address output pin 19.
EBI_A20	0: PB4 1: PC8 2: PH8 3: PD7		External Bus Interface (EBI) address output pin 20.
EBI_A21	0: PB5 1: PC9 2: PH9 3: PC7		External Bus Interface (EBI) address output pin 21.
EBI_A22	0: PB6 1: PC10 2: PH10 3: PE4		External Bus Interface (EBI) address output pin 22.

Alternate	LOCA	ATION	
Functionality	0 - 3	4 - 7	Description
US5 RX	0: PE9 1: PA7		USART5 Asynchronous Receive.
	2: PB1 3: PH11		USART5 Synchronous mode Master Input / Slave Output (MISO).
US5_TX	0: PE8 1: PA6		USART5 Asynchronous Transmit. Also used as receive input in half duplex communica- tion.
	2. PF 15 3: PH10		USART5 Synchronous mode Master Output / Slave Input (MOSI).
USB_DM	0: PF10		USB D- pin.
USB_DP	0: PF11		USB D+ pin.
USB_ID	0: PF12		USB ID pin.
USB_VBUSEN	0: PF5		USB 5 V VBUS enable.
VDAC0_EXT	0: PD6		Digital to analog converter VDAC0 external reference input pin.
VDAC0_OUT0 / OPA0_OUT	0: PB11		Digital to Analog Converter DAC0 output channel number 0.
VDAC0_OUT0ALT / OPA0_OUTALT	0: PC0 1: PC1 2: PC2 3: PC3	4: PD0	Digital to Analog Converter DAC0 alternative output for channel 0.
VDAC0_OUT1 / OPA1_OUT	0: PB12		Digital to Analog Converter DAC0 output channel number 1.
VDAC0_OUT1ALT / OPA1_OUTALT	0: PC12 1: PC13 2: PC14 3: PC15	4: PD1	Digital to Analog Converter DAC0 alternative output for channel 1.
WTIM0_CC0	0: PE4 1: PA6 2: PG2 3: PG8	4: PC15 5: PB0 6: PB3 7: PC1	Wide timer 0 Capture Compare input / output channel 0.
WTIM0_CC1	0: PE5 1: PD13 2: PG3 3: PG9	4: PF0 5: PB1 6: PB4 7: PC2	Wide timer 0 Capture Compare input / output channel 1.

EFM32GG11 Family Data Sheet Pin Definitions

		_	0	6	60	~	6	ю	4	6	N	_	0	6	60	~	6	ю	-	6	2	_	0										
Port	Bus	CH3	CH3(CH29	CH28	CH27	CH2(CH2!	CH24	CH23	CH2	CH2	CH2(CH1	CH18	CH17	CH1(CH1	CH1	CH13	CH1	CH1	CH1(CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
ОР	A1_	N																															
APORT1Y	BUSAY	PB15		PB13		PB11		PB9				PB5		PB3		PB1		PA15		PA13		PA11		PA9		PA7		PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12		PB10				PB6		PB4		PB2		PB0		PA14		PA12		PA10		PA8		PA6		PA4		PA2		PAO
APORT3Y	BUSCY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5				PE1	
APORT4Y	BUSDY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				PE0
OP	<u>></u>																																
APORT1X	BUSAX		PB14		PB12		PB10				PB6		PB4		PB2		PB0		PA14		PA12		PA10		PA8		PA6		PA4		PA2		PA0
APORT2X	BUSBX	PB15		PB13		PB11		PB9				PB5		PB3		PB1		PA15		PA13		PA11		PA9		PA7		PA5		PA3		PA1	
APORT3X	BUSCX		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				PEO
APORT4X	BUSDX	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5				PE1	
OP	A2_	N																												-			
APORT1Y	BUSAY	PB15		PB13		PB11		PB9				PB5		PB3		PB1		PA15		PA13		PA11		PA9		PA7		PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12		PB10				PB6		PB4		PB2		PB0		PA14		PA12		PA10		PA8		PA6		PA4		PA2		PAO
APORT3Y	BUSCY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5				PE1	
APORT4Y	BUSDY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				PEO

6.2 BGA192 PCB Land Pattern

Figure 6.2. BGA192 PCB Land Pattern Drawing

Table 8.2. BGA120 PCB Land Pattern Dimensions

Dimension	Min	Мах	
Х		0.20	
C1		6.00	
C2		6.00	
E1		0.5	
E2		0.5	

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.

3. This Land Pattern Design is based on the IPC-7351 guidelines.

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

6. The stencil thickness should be 0.125 mm (5 mils).

7. The ratio of stencil aperture to land pad size should be 1:1.

8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

10. TQFP100 Package Specifications

10.1 TQFP100 Package Dimensions

