

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	86
Program Memory Size	2MB (2M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b320f2048gq100-br

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

The EFM32GG11 highlighted features are listed below.

- ARM Cortex-M4 CPU platform
 - High performance 32-bit processor @ up to 72 MHz
 - DSP instruction support and Floating Point Unit
 - Memory Protection Unit
 - Wake-up Interrupt Controller
- Flexible Energy Management System
 - + 80 $\mu\text{A}/\text{MHz}$ in Active Mode (EM0)
 - 2.1 µA EM2 Deep Sleep current (16 kB RAM retention and RTCC running from LFRCO)
- Integrated DC-DC buck converter
- Up to 2048 kB flash program memory
 - · Dual-bank with read-while-write support
- Up to 512 kB RAM data memory
 - 256 kB with ECC (SEC-DED)
- Octal/Quad-SPI Flash Memory Interface
 - Supports 3 V and 1.8 V memories
 - 1/2/4/8-bit data bus
 - Quad-SPI Execute In Place (XIP)
- Communication Interfaces
 - Low-energy Universal Serial Bus (USB) with Device and Host support
 - Fully USB 2.0 compliant
 - On-chip PHY and embedded 5V to 3.3V regulator
 - Crystal-free Device mode operation
 - Patent-pending Low-Energy Mode (LEM)
 - SD/MMC/SDIO Host Controller
 - SD v3.01, SDIO v3.0 and MMC v4.51
 - 1/4/8-bit bus width
 - 10/100 Ethernet MAC with MII/RMII interface
 - IEEE1588-2008 precision time stamping
 - Energy Efficient Ethernet (802.3az)
 - Up to 2× CAN Bus Controller
 - Version 2.0A and 2.0B up to 1 Mbps
 - 6× Universal Synchronous/Asynchronous Receiver/ Transmitter
 - UART/SPI/SmartCard (ISO 7816)/IrDA/I2S/LIN
 - · Triple buffered full/half-duplex operation with flow control
 - Ultra high speed (36 MHz) operation on one instance
 - 2× Universal Asynchronous Receiver/ Transmitter
 - 2× Low Energy UART
 - · Autonomous operation with DMA in Deep Sleep Mode
 - 3× I²C Interface with SMBus support
 - Address recognition in EM3 Stop Mode

- Up to 144 General Purpose I/O Pins
 - Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
 - Configurable peripheral I/O locations
 - 5 V tolerance on select pins
 - Asynchronous external interrupts
 - · Output state retention and wake-up from Shutoff Mode
- Up to 24 Channel DMA Controller
- Up to 24 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling
- External Bus Interface for up to 4x256 MB of external memory mapped space
 - TFT Controller with Direct Drive
 - Per-pixel alpha-blending engine
- Hardware Cryptography
 - AES 128/256-bit keys
 - ECC B/K163, B/K233, P192, P224, P256
 - SHA-1 and SHA-2 (SHA-224 and SHA-256)
 - True Random Number Generator (TRNG)
- Hardware CRC engine
 - Single-cycle computation with 8/16/32-bit data and 16-bit (programmable)/32-bit (fixed) polynomial
- Security Management Unit (SMU)
 - · Fine-grained access control for on-chip peripherals
- Integrated Low-energy LCD Controller with up to 8×36 segments
 - · Voltage boost, contrast and autonomous animation
 - Patented low-energy LCD driver
- Backup Power Domain
 - RTCC and retention registers in a separate power domain, available down to energy mode EM4H
 - Operation from backup battery when main power absent/ insufficient
- Ultra Low-Power Precision Analog Peripherals
 - 2× 12-bit 1 Msamples/s Analog to Digital Converter (ADC)
 - · On-chip temperature sensor
 - 2× 12-bit 500 ksamples/s Digital to Analog Converter (VDAC)
 - Digital to Analog Current Converter (IDAC)
 - Up to 4× Analog Comparator (ACMP)
 - Up to 4× Operational Amplifier (OPAMP)
 - Robust current-based capacitive sensing with up to 64 inputs and wake-on-touch (CSEN)
 - Up to 108 GPIO pins are analog-capable. Flexible analog peripheral-to-pin routing via Analog Port (APORT)
 - Supply Voltage Monitor

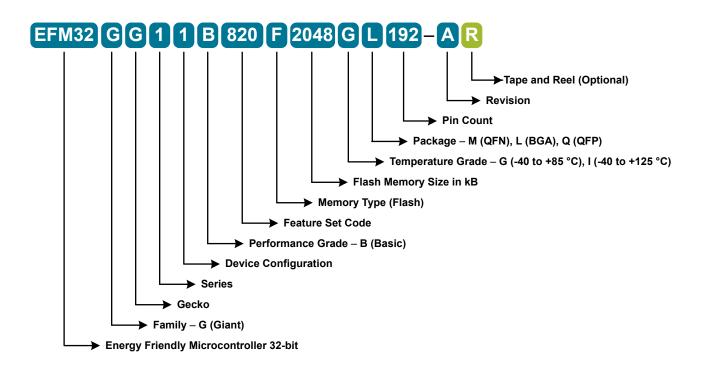


Figure 2.1. Ordering Code Key

4.1.10.2 High-Frequency Crystal Oscillator (HFXO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal frequency	f _{HFXO}	No clock doubling	4		50	MHz
		Clock doubler enabled	TBD		TBD	MHz
Supported crystal equivalent	ESR _{HFXO}	50 MHz crystal			50	Ω
series resistance (ESR)		24 MHz crystal	_		150	Ω
		4 MHz crystal	—		180	Ω
Nominal on-chip tuning cap range ¹	C _{HFXO_T}	On each of HFXTAL_N and HFXTAL_P pins	8.7		51.7	pF
On-chip tuning capacitance step	SS _{HFXO}		_	0.084	_	pF
Startup time	t _{HFXO}	50 MHz crystal, ESR = 50 Ohm, $C_L = 8 pF$		350	_	μs
		24 MHz crystal, ESR = 150 Ohm, $C_L = 6 pF$		700	_	μs
		4 MHz crystal, ESR = 180 Ohm, C_L = 18 pF		3		ms
Current consumption after	I _{HFXO}	50 MHz crystal	—	880	_	μA
startup		24 MHz crystal		420	_	μA
		4 MHz crystal	—	80	_	μA

Table 4.13. High-Frequency Crystal Oscillator (HFXO)

Note:

1. The effective load capacitance seen by the crystal will be C_{HFXO_T} /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal.

4.1.11 Flash Memory Characteristics⁵

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Flash erase cycles before failure	EC _{FLASH}		10000	_	_	cycles
Flash data retention	RET _{FLASH}	T ≤ 85 °C	10	—	_	years
		T ≤ 125 °C	10	_	_	years
Word (32-bit) programming time	tw_prog	Burst write, 128 words, average time per word	20	26.2	32	μs
		Single word	59	68.7	83	μs
Page erase time ⁴	t _{PERASE}		20	26.8	35	ms
Mass erase time ¹	t _{MERASE}		20	26.9	35	ms
Device erase time ^{2 3}	t _{DERASE}	T ≤ 85 °C	—	80.7	95	ms
		T ≤ 125 °C	_	80.7	100	ms
Erase current ⁶	I _{ERASE}	Page Erase		_	1.7	mA
		Mass or Device Erase		_	2.1	mA
Write current ⁶	I _{WRITE}		—	_	3.9	mA
Supply voltage during flash erase and write	V _{FLASH}		1.62	_	3.6	V

Table 4.19. Flash Memory Characteristics⁵

Note:

- 1. Mass erase is issued by the CPU and erases all flash.
- 2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock Word (ULW).
- 3. From setting the DEVICEERASE bit in AAP_CMD to 1 until the ERASEBUSY bit in AAP_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included.
- 4. From setting the ERASEPAGE bit in MSC_WRITECMD to 1 until the BUSY bit in MSC_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included.
- 5. Flash data retention information is published in the Quarterly Quality and Reliability Report.

6. Measured at 25 °C.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
ADC clock frequency	f _{ADCCLK}		—	—	16	MHz
Throughput rate	f ADCRATE		_	_	1	Msps
Conversion time ¹	t _{ADCCONV}	6 bit	—	7	_	cycles
		8 bit	_	9	_	cycles
		12 bit	—	13		cycles
Startup time of reference generator and ADC core	t _{ADCSTART}	WARMUPMODE ⁴ = NORMAL	—	_	5	μs
		WARMUPMODE ⁴ = KEEPIN- STANDBY	_	_	2	μs
		WARMUPMODE ⁴ = KEEPINSLO- WACC	_	_	1	μs
SNDR at 1Msps and f _{IN} = 10kHz	SNDR _{ADC}	Internal reference ⁷ , differential measurement	TBD	67	_	dB
		External reference ⁶ , differential measurement	_	68	_	dB
Spurious-free dynamic range (SFDR)	SFDR _{ADC}	1 MSamples/s, 10 kHz full-scale sine wave	_	75	_	dB
Differential non-linearity (DNL)	DNL _{ADC}	12 bit resolution, No missing co- des	TBD		TBD	LSB
Integral non-linearity (INL), End point method	INL _{ADC}	12 bit resolution	TBD		TBD	LSB
Offset error	VADCOFFSETERR		TBD	0	TBD	LSB
Gain error in ADC	VADCGAIN	Using internal reference	_	-0.2	TBD	%
		Using external reference	_	-1	—	%
Temperature sensor slope	V _{TS_SLOPE}		_	-1.84	_	mV/°C

Note:

1. Derived from ADCCLK.

2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL.

3. In ADCn_BIASPROG register.

4. In ADCn CNTL register.

5. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on EMU PWRCTRL ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin.

6. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential input range with this configuration is ± 1.25 V.

7. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum value is production-tested using sine wave input at 1.5 dB lower than full scale.

4.1.15 Analog Comparator (ACMP)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Input voltage range	V _{ACMPIN}	ACMPVDD = ACMPn_CTRL_PWRSEL ¹		_	V _{ACMPVDD}	V
Supply voltage	VACMPVDD	$BIASPROG^4 \le 0x10 \text{ or } FULL-BIAS^4 = 0$	1.8	_	V _{VREGVDD} MAX	V
		$0x10 < BIASPROG^4 \le 0x20$ and FULLBIAS ⁴ = 1	2.1	_	V _{VREGVDD} MAX	V
Active current not including	I _{ACMP}	$BIASPROG^4 = 1$, $FULLBIAS^4 = 0$	_	50	_	nA
voltage reference ²		$BIASPROG^4 = 0x10, FULLBIAS^4 = 0$	_	306	—	nA
		BIASPROG ⁴ = 0x02, FULLBIAS ⁴ = 1		6.5	_	μA
		BIASPROG ⁴ = 0x20, FULLBIAS ⁴ = 1		74	TBD	μA
Current consumption of inter- nal voltage reference ²	IACMPREF	VLP selected as input using 2.5 V Reference / 4 (0.625 V)		50	_	nA
		VLP selected as input using VDD		20	_	nA
		VBDIV selected as input using 1.25 V reference / 1	_	4.1	-	μA
		VADIV selected as input using VDD/1	_	2.4	—	μA

Table 4.23. Analog Comparator (ACMP)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Hysteresis (V _{CM} = 1.25 V,	V _{ACMPHYST}	HYSTSEL ⁵ = HYST0	TBD	0	TBD	mV
$BIASPROG^4 = 0x10, FULL-BIAS^4 = 1)$		HYSTSEL ⁵ = HYST1	TBD	18	TBD	mV
		HYSTSEL ⁵ = HYST2	TBD	33	TBD	mV
		HYSTSEL ⁵ = HYST3	TBD	46	TBD	mV
		HYSTSEL ⁵ = HYST4	TBD	57	TBD	mV
		HYSTSEL ⁵ = HYST5	TBD	68	TBD	mV
		HYSTSEL ⁵ = HYST6	TBD	79	TBD	mV
		HYSTSEL ⁵ = HYST7	TBD	90	TBD	mV
		HYSTSEL ⁵ = HYST8	TBD	0	TBD	mV
		HYSTSEL ⁵ = HYST9	TBD	-18	TBD	mV
		HYSTSEL ⁵ = HYST10	TBD	-33	TBD	mV
		HYSTSEL ⁵ = HYST11	TBD	-45	TBD	mV
		HYSTSEL ⁵ = HYST12	TBD	-57	TBD	mV
		HYSTSEL ⁵ = HYST13	TBD	-67	TBD	mV
		HYSTSEL ⁵ = HYST14	TBD	-78	TBD	mV
		HYSTSEL ⁵ = HYST15	TBD	-88	TBD	mV
Comparator delay ³	t _{acmpdelay}	$BIASPROG^4 = 1$, $FULLBIAS^4 = 0$	_	30	_	μs
		BIASPROG ⁴ = 0x10, FULLBIAS ⁴ = 0		3.7	_	μs
		BIASPROG ⁴ = 0x02, FULLBIAS ⁴ = 1		360	_	ns
		BIASPROG ⁴ = 0x20, FULLBIAS ⁴ = 1	_	35	_	ns
Offset voltage	VACMPOFFSET	BIASPROG ⁴ =0x10, FULLBIAS ⁴ = 1	TBD	_	TBD	mV
Reference voltage	V _{ACMPREF}	Internal 1.25 V reference	TBD	1.25	TBD	V
		Internal 2.5 V reference	TBD	2.5	TBD	V
Capacitive sense internal re- sistance	R _{CSRES}	CSRESSEL ⁶ = 0	_	infinite	_	kΩ
		CSRESSEL ⁶ = 1		15	_	kΩ
		CSRESSEL ⁶ = 2	—	27	_	kΩ
		CSRESSEL ⁶ = 3	—	39	_	kΩ
		CSRESSEL ⁶ = 4	—	51	_	kΩ
		CSRESSEL ⁶ = 5	—	100		kΩ
		CSRESSEL ⁶ = 6	—	162	-	kΩ
		CSRESSEL ⁶ = 7	—	235	-	kΩ

4.1.23 I2C

4.1.23.1 I2C Standard-mode (Sm)¹

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCL clock frequency ²	f _{SCL}		0	_	100	kHz
SCL clock low time	t _{LOW}		4.7	—	_	μs
SCL clock high time	t _{HIGH}		4	_	_	μs
SDA set-up time	t _{SU_DAT}		250	_	_	ns
SDA hold time ³	t _{HD_DAT}		100	_	3450	ns
Repeated START condition set-up time	t _{SU_STA}		4.7	_	_	μs
(Repeated) START condition hold time	t _{HD_STA}		4	_		μs
STOP condition set-up time	t _{SU_STO}		4	_		μs
Bus free time between a STOP and START condition	t _{BUF}		4.7	_	_	μs

Table 4.31. I2C Standard-mode (Sm)¹

Note:

1. For CLHR set to 0 in the I2Cn_CTRL register.

2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual.

3. The maximum SDA hold time (t_{HD DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW}).

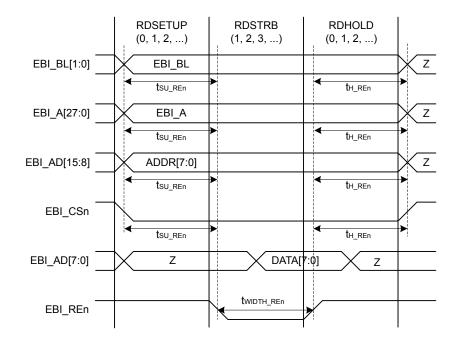


Figure 4.5. EBI Read Enable Output Timing Diagram

SDIO MMC SDR Mode Timing at 3.0 V

Timing is specified for route location 0 at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 20 pF on all pins.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Clock frequency during data transfer	F _{SD_CLK}	Using HFRCO, AUXHFRCO, or USHFRCO	_	—	48	MHz
		Using HFXO	_	_	TBD	MHz
Clock low time	t _{WL}	Using HFRCO, AUXHFRCO, or USHFRCO	9.4	_	_	ns
		Using HFXO	TBD	_	_	ns
Clock high time	t _{WH}	Using HFRCO, AUXHFRCO, or USHFRCO	9.4	_	_	ns
		Using HFXO	TBD	_	_	ns
Clock rise time	t _R		1.96	3.87	_	ns
Clock fall time	t _F		1.67	3.31	_	ns
Input setup time, CMD, DAT[0:7] valid to SD_CLK	t _{ISU}		5.3	-	_	ns
Input hold time, SD_CLK to CMD, DAT[0:7] change	tiH		2.5	-	_	ns
Output delay time, SD_CLK to CMD, DAT[0:7] valid	t _{ODLY}		0	-	16	ns
Output hold time, SD_CLK to CMD, DAT[0:7] change	t _{OH}		3	-	_	ns

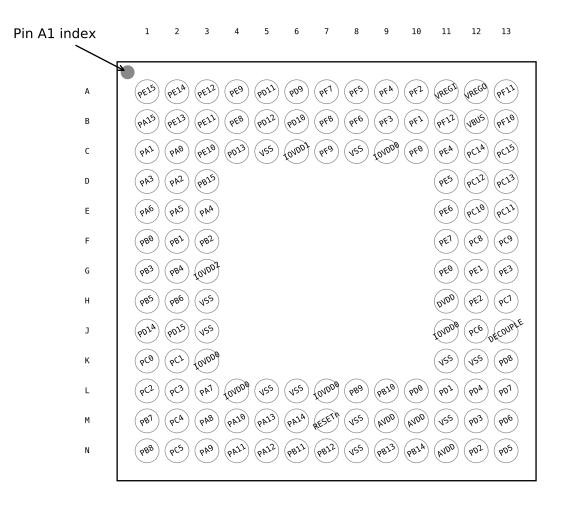
Table 4.51. SDIO MMC SDR Mode Timing (Location 0, 3V I/O)

SDIO MMC DDR Mode Timing at 3.0 V

Timing is specified for route location 0 at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 25 pF on all pins.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Clock frequency during data transfer	F _{SD_CLK}	Using HFRCO, AUXHFRCO, or USHFRCO	_		20	MHz
		Using HFXO	_	_	TBD	MHz
Clock low time	t _{WL}	Using HFRCO, AUXHFRCO, or USHFRCO	22.6		_	ns
		Using HFXO	TBD	_	_	ns
Clock high time	t _{WH}	Using HFRCO, AUXHFRCO, or USHFRCO	22.6			ns
		Using HFXO	TBD	_	_	ns
Clock rise time	t _R		1.13	2.37	_	ns
Clock fall time	t _F		1.01	2.02	_	ns
Input setup time, CMD valid to SD_CLK	t _{ISU}		5.3		_	ns
Input hold time, SD_CLK to CMD change	t _{IH}		2.5			ns
Output delay time, SD_CLK to CMD valid	t _{ODLY}		0		16	ns
Output hold time, SD_CLK to CMD change	t _{OH}		3		_	ns
Input setup time, DAT[0:7] valid to SD_CLK	t _{ISU2X}		5.3	_	_	ns
Input hold time, SD_CLK to DAT[0:7] change	t _{IH2X}		2.5	_	_	ns
Output delay time, SD_CLK to DAT[0:7] valid	t _{ODLY2X}		0	_	16	ns
Output hold time, SD_CLK to DAT[0:7] change	t _{OH2X}		3		<u> </u>	ns

Table 4.53. SDIO MMC DDR Mode Timing (Location 0, 3V I/O)


4.1.28.2 QSPI DDR Mode

QSPI DDR Mode Timing (Location 0)

Timing is specified with voltage scaling disabled, PHY-mode, route location 0 only, TX DLL = 35, RX DLL = 70, 20-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG.

Table 4.56. QSPI DDR Mode Timing (Location 0)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Half SCLK period	T/2	HFXO	(1/F _{SCLK}) * 0.4 - 0.4	—	-	ns
		HFRCO, AUXHFRCO, USHFRCO	(1/F _{SCLK}) * 0.44	—	_	ns
Output valid	t _{OV}		_	_	T/2 - 5.0	ns
Output hold	t _{OH}		T/2 - 39.4	_	—	ns
Input setup	t _{SU}		33.1	_	—	ns
Input hold	t _H		-0.9		_	ns

Figure 5.5. EFM32GG11B4xx in BGA120 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PE15	A1	GPIO	PE14	A2	GPIO
PE12	A3	GPIO	PE9	A4	GPIO
PD11	A5	GPIO	PD9	A6	GPIO
PF7	A7	GPIO	PF5	A8	GPIO
PF4	A9	GPIO	PF2	A10	GPIO
VREGI	A11	Input to 5 V regulator.	VREGO	A12	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PC4	13	GPIO	PC5	14	GPIO
PB7	15	GPIO	PB8	16	GPIO
PA8	17	GPIO	PA9	18	GPIO
PA10	19	GPIO	RESETn	20	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	21	GPIO	AVDD	23 27	Analog power supply.
PB13	24	GPIO	PB14	25	GPIO
PD0	28	GPIO (5V)	PD1	29	GPIO
PD2	30	GPIO (5V)	PD3	31	GPIO
PD4	32	GPIO	PD5	33	GPIO
PD6	34	GPIO	PD7	35	GPIO
PD8	36	GPIO	PC6	37	GPIO
PC7	38	GPIO	DVDD	39	Digital power supply.
DECOUPLE	40	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PC8	41	GPIO (5V)
PC9	42	GPIO (5V)	PC10	43	GPIO (5V)
PC11	44	GPIO (5V)	PC12	45	GPIO (5V)
PC13	46	GPIO (5V)	PC14	47	GPIO (5V)
PC15	48	GPIO (5V)	PF0	49	GPIO (5V)
PF1	50	GPIO (5V)	PF2	51	GPIO
PF3	52	GPIO	PF4	53	GPIO
PF5	54	GPIO	PE8	57	GPIO
PE9	58	GPIO	PE10	59	GPIO
PE11	60	GPIO	PE12	61	GPIO
PE13	62	GPIO	PE14	63	GPIO
PE15	64	GPIO			

1. GPIO with 5V tolerance are indicated by (5V).

Alternate	LOCA	TION		
Functionality	0 - 3	4 - 7	Description	
EBI_A10	0: PE3 1: PD6 2: PC10 3: PB10		External Bus Interface (EBI) address output pin 10.	
EBI_A11	0: PE4 1: PD7 2: PI6 3: PB11		External Bus Interface (EBI) address output pin 11.	
EBI_A12	0: PE5 1: PD8 2: PI7 3: PB12		External Bus Interface (EBI) address output pin 12.	
EBI_A13	0: PE6 1: PC7 2: PI8 3: PD0		External Bus Interface (EBI) address output pin 13.	
EBI_A14	0: PE7 1: PE2 2: PI9 3: PD1		External Bus Interface (EBI) address output pin 14.	
EBI_A15	0: PC8 1: PE3 2: PI10 3: PD2		External Bus Interface (EBI) address output pin 15.	
EBI_A16	0: PB0 1: PE4 2: PH4 3: PD3		External Bus Interface (EBI) address output pin 16.	
EBI_A17	0: PB1 1: PE5 2: PH5 3: PD4		External Bus Interface (EBI) address output pin 17.	
EBI_A18	0: PB2 1: PE6 2: PH6 3: PD5		External Bus Interface (EBI) address output pin 18.	
EBI_A19	0: PB3 1: PE7 2: PH7 3: PD6		External Bus Interface (EBI) address output pin 19.	
EBI_A20	0: PB4 1: PC8 2: PH8 3: PD7		External Bus Interface (EBI) address output pin 20.	
EBI_A21	0: PB5 1: PC9 2: PH9 3: PC7		External Bus Interface (EBI) address output pin 21.	
EBI_A22	0: PB6 1: PC10 2: PH10 3: PE4		External Bus Interface (EBI) address output pin 22.	

Alternate LOCATION		ATION	
Functionality	0 - 3	4 - 7	Description
EBI_CS1	0: PD10 1: PA11 2: PC1 3: PB1	4: PE9	External Bus Interface (EBI) Chip Select output 1.
EBI_CS2	0: PD11 1: PA12 2: PC2 3: PB2	4: PE10	External Bus Interface (EBI) Chip Select output 2.
EBI_CS3	0: PD12 1: PB15 2: PC3 3: PB3	4: PE11	External Bus Interface (EBI) Chip Select output 3.
EBI_CSTFT	0: PA7 1: PF6 2: PB12 3: PA0		External Bus Interface (EBI) Chip Select output TFT.
EBI_DCLK	0: PA8 1: PF7 2: PH0 3: PA1		External Bus Interface (EBI) TFT Dot Clock pin.
EBI_DTEN	0: PA9 1: PD9 2: PH1 3: PA2		External Bus Interface (EBI) TFT Data Enable pin.
EBI_HSNC	0: PA11 1: PD11 2: PH3 3: PA4		External Bus Interface (EBI) TFT Horizontal Synchronization pin.
EBI_NANDREn	0: PC3 1: PD15 2: PB9 3: PC4	4: PC15 5: PF12	External Bus Interface (EBI) NAND Read Enable output.
EBI_NANDWEn	0: PC5 1: PD14 2: PA13 3: PC2	4: PC14 5: PF11	External Bus Interface (EBI) NAND Write Enable output.
EBI_REn	0: PF5 1: PA14 2: PA12 3: PC0	4: PF9 5: PF5	External Bus Interface (EBI) Read Enable output.
EBI_VSNC	0: PA10 1: PD10 2: PH2 3: PA3		External Bus Interface (EBI) TFT Vertical Synchronization pin.
EBI_WEn	0: PF4 1: PA13 2: PC5 3: PB6	4: PF8 5: PF4	External Bus Interface (EBI) Write Enable output.
ETH_MDC	0: PB4 1: PD14 2: PC1 3: PA6		Ethernet Management Data Clock.

Alternate Functionality	LOC <i>A</i> 0 - 3	ATION 4 - 7	Description
LCD_SEG7	0: PE11		LCD segment line 7.
LCD_SEG8	0: PE12		LCD segment line 8.
LCD_SEG9	0: PE13		LCD segment line 9.
LCD_SEG10	0: PE14		LCD segment line 10.
LCD_SEG11	0: PE15		LCD segment line 11.
LCD_SEG12	0: PA15		LCD segment line 12.
LCD_SEG13	0: PA0		LCD segment line 13.
LCD_SEG14	0: PA1		LCD segment line 14.
LCD_SEG15	0: PA2		LCD segment line 15.
LCD_SEG16	0: PA3		LCD segment line 16.
LCD_SEG17	0: PA4		LCD segment line 17.
LCD_SEG18	0: PA5		LCD segment line 18.
LCD_SEG19	0: PA6		LCD segment line 19.

Alternate	LOCA	TION	
Functionality	0 - 3	4 - 7	Description
LES_ALTEX6	0: PE12		LESENSE alternate excite output 6.
LES_ALTEX7	0: PE13		LESENSE alternate excite output 7.
LES_CH0	0: PC0		LESENSE channel 0.
LES_CH1	0: PC1		LESENSE channel 1.
LES_CH2	0: PC2		LESENSE channel 2.
LES_CH3	0: PC3		LESENSE channel 3.
LES_CH4	0: PC4		LESENSE channel 4.
LES_CH5	0: PC5		LESENSE channel 5.
LES_CH6	0: PC6		LESENSE channel 6.
LES_CH7	0: PC7		LESENSE channel 7.
LES_CH8	0: PC8		LESENSE channel 8.
LES_CH9	0: PC9		LESENSE channel 9.
LES_CH10	0: PC10		LESENSE channel 10.

Dimension	Min	Тур	Мах		
A	0.70	0.75	0.80		
A1	0.00	_	0.05		
b	0.20	0.25	0.30		
A3	0.203 REF				
D	9.00 BSC				
е	0.50 BSC				
E	9.00 BSC				
D2	7.10	7.20	7.30		
E2	7.10	7.20	7.30		
L	0.40	0.45	0.50		
L1	0.00	_	0.10		
ааа	0.10				
bbb	0.10				
ссс	0.10				
ddd	0.05				
еее	0.08				
Note:					

Table 12.1. QFN64 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

13. Revision History

Revision 0.6

March, 2018

- Removed "Confindential" watermark.
- Updated 4.1 Electrical Characteristics and 4.2 Typical Performance Curves with latest characterization data.

Revision 0.2

October, 2017

- · Updated memory maps to latest formatting and to include all peripherals.
- Updated all electrical specifications tables with latest characterization results.
- Absolute Maximum Ratings Table:
 - Removed redundant I_{VSSMAX} line.
 - Added footnote to clarify V_{DIGPIN} specification for 5V tolerant GPIO.
- General Operating Conditions Table:
 - Removed dV_{DD} specification and redundant footnote about shorting VREGVDD and AVDD together.
 - Added footnote about IOVDD voltage restriction when CSEN peripheral is used with chopping enabled.
- Flash Memory Characteristics Table: Added timing measurement clarification for Device Erase and Mass Erase.
- · Analog to Digital Converter (ADC) Table:
 - · Added header text for general specification conditions.
 - Added footnote for clarification of input voltage limits.
- · Minor typographical corrections, including capitalization, mis-spellings and punctuation marks, throughout document.
- Minor formatting and styling updates, including table formats, TOC location, and boilerplate information throughout document.

Revision 0.1

April 27th, 2017

Initial release.