

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	87
Program Memory Size	2MB (2M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LFBGA
Supplier Device Package	112-BGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b420f2048gl112-ar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. System Overview

3.1 Introduction

The Giant Gecko Series 1 product family is well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the MCU system. The detailed functional description can be found in the Giant Gecko Series 1 Reference Manual.

A block diagram of the Giant Gecko Series 1 family is shown in Figure 3.1 Detailed EFM32GG11 Block Diagram on page 11. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.

Figure 3.1. Detailed EFM32GG11 Block Diagram

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Frequency limits	f _{HFRCO_BAND}	FREQRANGE = 0, FINETUNIN- GEN = 0	1	_	10	MHz
		FREQRANGE = 3, FINETUNIN- GEN = 0	2	—	17	MHz
		FREQRANGE = 6, FINETUNIN- GEN = 0	4	—	30	MHz
		FREQRANGE = 7, FINETUNIN- GEN = 0	5	—	34	MHz
		FREQRANGE = 8, FINETUNIN- GEN = 0	7	_	42	MHz
		FREQRANGE = 10, FINETUNIN- GEN = 0	12	_	58	MHz
		FREQRANGE = 11, FINETUNIN- GEN = 0	15		68	MHz
		FREQRANGE = 12, FINETUNIN- GEN = 0	18	_	83	MHz
		FREQRANGE = 13, FINETUNIN- GEN = 0	24		100	MHz
		FREQRANGE = 14, FINETUNIN- GEN = 0	28	_	119	MHz
		FREQRANGE = 15, FINETUNIN- GEN = 0	33	_	138	MHz
		FREQRANGE = 16, FINETUNIN- GEN = 0	43		163	MHz

Note:

1. Maximum DPLL lock time ~= 6 x (M+1) x t_{REF} , where t_{REF} is the reference clock period.

4.1.10.6 USB High-Frequency RC Oscillator (USHFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit		
Frequency accuracy	f _{USHFRCO_ACC}	At production calibrated frequen- cies, across supply voltage and temperature	TBD	_	TBD	%		
		USB clock recovery enabled, Ac- tive connection as device, FINE- TUNINGEN ¹ = 1	-0.25	—	0.25	%		
Start-up time	t _{USHFRCO}		_	300	_	ns		
Current consumption on all supplies	IUSHFRCO	f _{USHFRCO} = 48 MHz, FINETUNIN- GEN ¹ = 1	_	340	TBD	μA		
		f _{USHFRCO} = 50 MHz, FINETUNIN- GEN ¹ = 0	—	342	TBD	μA		
		f _{USHFRCO} = 48 MHz, FINETUNIN- GEN ¹ = 0	—	292	TBD	μA		
		f _{USHFRCO} = 32 MHz, FINETUNIN- GEN ¹ = 0	—	223	TBD	μA		
		$f_{USHFRCO}$ = 16 MHz, FINETUNIN- GEN ¹ = 0	—	132	TBD	μA		
Period jitter	PJ _{USHFRCO}		—	0.2	_	% RMS		
Note: 1. In the CMU_USHFRCOCTRL register.								

4.1.10.7 Ultra-low Frequency RC Oscillator (ULFRCO)

Table 4.18. Ultra-low Frequency RC Oscillator (ULFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Oscillation frequency	f _{ULFRCO}		TBD	1	TBD	kHz

4.1.15 Analog Comparator (ACMP)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input voltage range	V _{ACMPIN}	ACMPVDD = ACMPn_CTRL_PWRSEL ¹	—	—	V _{ACMPVDD}	V
Supply voltage	VACMPVDD	$BIASPROG^4 \le 0x10 \text{ or } FULL-BIAS^4 = 0$	1.8	_	V _{VREGVDD} MAX	V
		$0x10 < BIASPROG^4 \le 0x20$ and FULLBIAS ⁴ = 1	2.1	_	V _{VREGVDD} MAX	V
Active current not including	IACMP	$BIASPROG^4 = 1$, $FULLBIAS^4 = 0$		50	_	nA
voltage reference ²		$BIASPROG^4 = 0x10, FULLBIAS^4 = 0$	_	306	—	nA
		$BIASPROG^4 = 0x02, FULLBIAS^4$ $= 1$	_	6.5	—	μA
		BIASPROG ⁴ = 0x20, FULLBIAS ⁴ = 1	_	74	TBD	μA
Current consumption of inter- nal voltage reference ²	IACMPREF	VLP selected as input using 2.5 V Reference / 4 (0.625 V)	_	50	—	nA
		VLP selected as input using VDD	—	20	—	nA
		VBDIV selected as input using 1.25 V reference / 1	—	4.1	_	μA
		VADIV selected as input using VDD/1		2.4	_	μA

Table 4.23. Analog Comparator (ACMP)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit			
Note:	Note:								
 Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive the load. 									
2. In differential mode, the limited to the single-ende	2. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is limited to the single-ended range.								
3. Entire range is monotoni	c and has no mis	ssing codes.							
 Current from HFPERCLK is dependent on HFPERCLK frequency. This current contributes to the total supply current used when the clock to the DAC module is enabled in the CMU. 									
5. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at 10% of full scale to ideal VDAC output at 10% of full scale with the measured gain.									
6. PSRR calculated as 20 * $\log_{10}(\Delta VDD / \Delta V_{OUT})$, VDAC output at 90% of full scale									

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Start up time	t _{IDAC_SU}	Output within 1% of steady state value	—	5	_	μs
Settling time, (output settled	t _{IDAC_SETTLE}	Range setting is changed	—	5	_	μs
ue),		Step value is changed		1	_	μs
Current consumption ²	I _{IDAC}	EM0 or EM1 Source mode, ex- cluding output current, Across op- erating temperature range	_	11	TBD	μA
		EM0 or EM1 Sink mode, exclud- ing output current, Across operat- ing temperature range	_	13	TBD	μA
		EM2 or EM3 Source mode, ex- cluding output current, T = 25 °C	—	0.05		μA
		EM2 or EM3 Sink mode, exclud- ing output current, T = 25 °C	—	0.07	_	μA
		EM2 or EM3 Source mode, excluding output current, $T \ge 85 \text{ °C}$	—	11	_	μA
		EM2 or EM3 Sink mode, exclud- ing output current, $T \ge 85 \degree C$	—	13	_	μA
Output voltage compliance in source mode, source current	ICOMP_SRC	RANGESEL1=0, output voltage = min(V _{IOVDD} , V _{AVDD} ² -100 mv)	_	0.11	_	%
sourced at 0 V		RANGESEL1=1, output voltage = min(V _{IOVDD} , V _{AVDD} ² -100 mV)		0.06		%
		RANGESEL1=2, output voltage = min(V _{IOVDD} , V _{AVDD} ² -150 mV)	_	0.04		%
		RANGESEL1=3, output voltage = min(V _{IOVDD} , V _{AVDD} ² -250 mV)	_	0.03	_	%
Output voltage compliance in sink mode, sink current	I _{COMP_SINK}	RANGESEL1=0, output voltage = 100 mV		0.29		%
change relative to current sunk at IOVDD		RANGESEL1=1, output voltage = 100 mV	_	0.27		%
		RANGESEL1=2, output voltage = 150 mV	—	0.12	_	%
		RANGESEL1=3, output voltage = 250 mV	_	0.03		%

Note:

1. In IDAC_CURPROG register.

 The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1).

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Open-loop gain	G _{OL}	DRIVESTRENGTH = 3		135		dB
		DRIVESTRENGTH = 2	_	137	_	dB
		DRIVESTRENGTH = 1		121		dB
		DRIVESTRENGTH = 0		109		dB
Loop unit-gain frequency ⁷	UGF	DRIVESTRENGTH = 3, Buffer connection		3.38	_	MHz
		DRIVESTRENGTH = 2, Buffer connection		0.9	_	MHz
		DRIVESTRENGTH = 1, Buffer connection		132	_	kHz
		DRIVESTRENGTH = 0, Buffer connection		34	_	kHz
		DRIVESTRENGTH = 3, 3x Gain connection		2.57		MHz
		DRIVESTRENGTH = 2, 3x Gain connection	_	0.71	_	MHz
		DRIVESTRENGTH = 1, 3x Gain connection		113	_	kHz
		DRIVESTRENGTH = 0, 3x Gain connection		28	_	kHz
Phase margin	РМ	DRIVESTRENGTH = 3, Buffer connection	_	67	_	0
		DRIVESTRENGTH = 2, Buffer connection	_	69	_	o
		DRIVESTRENGTH = 1, Buffer connection	_	63	_	o
		DRIVESTRENGTH = 0, Buffer connection	_	68	_	o
Output voltage noise	N _{OUT}	DRIVESTRENGTH = 3, Buffer connection, 10 Hz - 10 MHz	—	146	_	µVrms
		DRIVESTRENGTH = 2, Buffer connection, 10 Hz - 10 MHz	—	163	_	µVrms
		DRIVESTRENGTH = 1, Buffer connection, 10 Hz - 1 MHz	—	170	_	µVrms
		DRIVESTRENGTH = 0, Buffer connection, 10 Hz - 1 MHz	_	176		µVrms
		DRIVESTRENGTH = 3, 3x Gain connection, 10 Hz - 10 MHz	—	313	_	µVrms
		DRIVESTRENGTH = 2, 3x Gain connection, 10 Hz - 10 MHz	—	271	—	µVrms
		DRIVESTRENGTH = 1, 3x Gain connection, 10 Hz - 1 MHz	_	247	_	µVrms
		DRIVESTRENGTH = 0, 3x Gain connection, 10 Hz - 1 MHz		245		µVrms

QSPI SDR Mode Timing (Locations 1, 2)

Timing is specified with voltage scaling disabled, PHY-mode, route locations other than 0, TX DLL = 34, RX DLL = 59, 20-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG.

Table 4.55. QSPI SDR Mode Timing (Locations 1, 2)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Full SCLK period	Т		(1/F _{SCLK}) * 0.95	—	_	ns
Output valid	t _{OV}		_	_	T/2 - 2.1	ns
Output hold	t _{OH}		T/2 - 42.3	—	_	ns
Input setup	t _{SU}		48.2 - T/2	_	_	ns
Input hold	t _H		T/2 - 5.1	_		ns

DQx Input Timing

Figure 4.21. QSPI SDR Timing Diagrams

QSPI SDR Flash Timing Example

This example uses timing values for location 0 (SDR mode) to demonstrate the calculation of allowable flash timing using the QSPI in SDR mode.

- Using a configured SCLK frequency (F_{SCLK}) of 19 MHz:
- The resulting minimum period, T(min) = (1/F_{SCLK}) * 0.95 = 50.0 ns.
- Flash will see a minimum setup time of T/2 t_{OV} = T/2 (T/2 2.4) = 2.4 ns.
- Flash will see a minimum hold time of $T/2 + t_{OH} = T/2 + (T/2 32.9) = T 32.9 = 50.0 32.9 = 17.1 ns.$
- Flash can have a maximum output valid time of T/2 t_{SU} = T/2 (36.2 T/2) = T 36.2 = 50.0 36.2 = 13.8 ns.
- Flash can have a minimum output hold time of $t_H T/2 = (T/2 3.3) T/2 = -3.3$ ns.

Figure 5.3. EFM32GG11B8xx in BGA120 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Table 5.3. EFM32GG11B8xx in BGA120 Device Pinor

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PE15	A1	GPIO	PE14	A2	GPIO
PE12	A3	GPIO	PE9	A4	GPIO
PD11	A5	GPIO	PD9	A6	GPIO
PF7	A7	GPIO	PF5	A8	GPIO
PF14	A9	GPIO (5V)	PF12	A10	GPIO
VREGI	A11	Input to 5 V regulator.	VREGO	A12	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs

Figure 5.17. EFM32GG11B5xx in QFN64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Table 5.17. EFM32GG11B5xx in QFN64 Device Pinor	ut
---	----

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VSS	0	Ground	PA0	1	GPIO
PA1	2	GPIO	PA2	3	GPIO
PA3	4	GPIO	PA4	5	GPIO
PA5	6	GPIO	PA6	7	GPIO
IOVDD0	8 27 55	Digital IO power supply 0.	PB3	9	GPIO
PB4	10	GPIO	PB5	11	GPIO

GPIO Name	Pin Alternate Functionality / Description								
	Analog	Communication	Other						
PD15		EBI_NANDREn #1	TIM2_CDTI2 #1 TIM3_CC0 #7 WTIM0_CDTI0 #1 PCNT1_S0IN #2	ETH_TSUEXTCLK #1 CAN0_TX #5 US5_CTS #1 I2C0_SCL #3					
PC13	VDAC0_OUT1ALT / OPA1_OUTALT #1 BUSACMP1Y BU- SACMP1X	EBI_ARDY #4	TIM0_CDTI0 #1 TIM1_CC0 #0 TIM1_CC2 #4 TIM5_CC2 #5 WTIM3_CC2 #2 PCNT0_S0IN #0 PCNT2_S1IN #4	US0_CTS #3 US1_RTS #4 US2_RTS #4 U0_CTS #3 U1_RX #0 I2C2_SCL #6	LES_CH13 PRS_CH21 #1 ACMP3_O #3				
PC12	VDAC0_OUT1ALT / OPA1_OUTALT #0 BUSACMP1Y BU- SACMP1X		TIM1_CC3 #0 TIM5_CC1 #5 WTIM3_CC1 #2 PCNT2_S0IN #4	CAN1_RX #4 US0_RTS #3 US1_CTS #4 US2_CTS #4 U0_RTS #3 U1_TX #0 I2C2_SDA #6	CMU_CLK0 #1 LES_CH12 PRS_CH20 #1				
PC11	BUSACMP1Y BU- SACMP1X	EBI_ALE #4 EBI_ALE #5 EBI_A23 #1	TIM5_CC0 #5 WTIM3_CC0 #2	CAN1_TX #4 US0_TX #2 I2C1_SDA #4	LES_CH11 PRS_CH19#1				
PA3	BUSAY BUSBX LCD_SEG16	USAY BUSBX EBI_AD12 #0 LCD_SEG16 EBI_VSNC #3		ETH_RMIIREFCLK #0 ETH_MIITXD1 #0 SDIO_DAT3 #1 US3_CS #0 U0_TX #2 QSPI0_DQ1 #1	CMU_CLK2 #1 CMU_CLK10 #1 CMU_CLK2 #4 LES_ALTEX2 PRS_CH9 #1 ETM_TD1 #3				
PG2	BUSACMP2Y BU- SACMP2X	EBI_AD02 #2	TIM6_CC2 #0 TIM2_CDTI2 #3 WTIM0_CC0 #2 LE- TIM1_OUT0 #7	ETH_MIITXD2 #1 US3_CLK #4 QSPI0_DQ1 #2	CMU_CLK0 #3				
PG1	BUSACMP2Y BU- SACMP2X	EBI_AD01 #2	TIM6_CC1 #0 TIM2_CDTI1 #3 WTIM0_CDTI2 #1 LETIM1_OUT1 #6	ETH_MIITXD3 #1 US3_RX #4 QSPI0_DQ0 #2	CMU_CLK1 #3				
PC10	BUSACMP1Y BU- SACMP1X	EBI_A10 #2 EBI_A22 #1	TIM2_CC2 #2 TIM5_CC2 #4 WTIM3_CC2 #1	CAN1_TX #3 US0_RX #2	LES_CH10 PRS_CH18 #1				
PC9	BUSACMP1Y BU- SACMP1X	EBI_A09 #2 EBI_A21 #1 EBI_A27 #3	TIM2_CC1 #2 TIM5_CC1 #4 WTIM3_CC1 #1	CAN1_RX #3 US0_CLK #2	LES_CH9 PRS_CH5 #0 GPIO_EM4WU2				
PC8	BUSACMP1Y BU- SACMP1X	EBI_A08 #2 EBI_A15 #0 EBI_A20 #1 EBI_A26 #3	TIM2_CC0 #2 TIM5_CC0 #4 WTIM3_CC0 #1	US0_CS #2	LES_CH8 PRS_CH4 #0				
PA4	BUSBY BUSAX LCD_SEG17	EBI_AD13 #0 EBI_HSNC #3	TIM0_CDTI1 #0 TIM3_CC1 #5	ETH_RMIICRSDV #0 ETH_MIITXD0 #0 SDIO_DAT4 #1 US3_CTS #0 U0_RX #2 QSPI0_DQ2 #1	LES_ALTEX3 PRS_CH16 #0 ETM_TD2 #3				
PG4	BUSACMP2Y BU- SACMP2X	EBI_AD04 #2	TIM6_CDTI1 #0 WTIM0_CC2 #2	ETH_MIITXD0 #1 US3_CTS #4 QSPI0_DQ3 #2					

Alternate	LOCA	ATION	
Functionality	0 - 3	4 - 7	Description
EBI_CS1	0: PD10 1: PA11 2: PC1 3: PB1	4: PE9	External Bus Interface (EBI) Chip Select output 1.
EBI_CS2	0: PD11 1: PA12 2: PC2 3: PB2	4: PE10	External Bus Interface (EBI) Chip Select output 2.
EBI_CS3	0: PD12 1: PB15 2: PC3 3: PB3	4: PE11	External Bus Interface (EBI) Chip Select output 3.
EBI_CSTFT	0: PA7 1: PF6 2: PB12 3: PA0		External Bus Interface (EBI) Chip Select output TFT.
EBI_DCLK	0: PA8 1: PF7 2: PH0 3: PA1		External Bus Interface (EBI) TFT Dot Clock pin.
EBI_DTEN	0: PA9 1: PD9 2: PH1 3: PA2		External Bus Interface (EBI) TFT Data Enable pin.
EBI_HSNC	0: PA11 1: PD11 2: PH3 3: PA4		External Bus Interface (EBI) TFT Horizontal Synchronization pin.
EBI_NANDREn	0: PC3 1: PD15 2: PB9 3: PC4	4: PC15 5: PF12	External Bus Interface (EBI) NAND Read Enable output.
EBI_NANDWEn	0: PC5 1: PD14 2: PA13 3: PC2	4: PC14 5: PF11	External Bus Interface (EBI) NAND Write Enable output.
EBI_REn	0: PF5 1: PA14 2: PA12 3: PC0	4: PF9 5: PF5	External Bus Interface (EBI) Read Enable output.
EBI_VSNC	0: PA10 1: PD10 2: PH2 3: PA3		External Bus Interface (EBI) TFT Vertical Synchronization pin.
EBI_WEn	0: PF4 1: PA13 2: PC5 3: PB6	4: PF8 5: PF4	External Bus Interface (EBI) Write Enable output.
ETH_MDC	0: PB4 1: PD14 2: PC1 3: PA6		Ethernet Management Data Clock.

Alternate	LOCA	ATION								
Functionality	0 - 3	4 - 7	Description							
SDIO_DAT7	0: PD9 1: PB4		SDIO Data 7.							
SDIO_WP	0: PF9 1: PC5 2: PB15 3: PB9		SDIO Write Protect.							
TIM0_CC0	0: PA0 1: PF6 2: PD1 3: PB6	4: PF0 5: PC4 6: PA8 7: PA1	Timer 0 Capture Compare input / output channel 0.							
TIM0_CC1	0: PA1 1: PF7 2: PD2 3: PC0	4: PF1 5: PC5 6: PA9 7: PA0	Timer 0 Capture Compare input / output channel 1.							
TIM0_CC2	0: PA2 1: PF8 2: PD3 3: PC1	4: PF2 5: PA7 6: PA10 7: PA13	Timer 0 Capture Compare input / output channel 2.							
TIM0_CDTI0	0: PA3 1: PC13 2: PF3 3: PC2	4: PB7	Timer 0 Complimentary Dead Time Insertion channel 0.							
TIM0_CDTI1	0: PA4 1: PC14 2: PF4 3: PC3	4: PB8	Timer 0 Complimentary Dead Time Insertion channel 1.							
TIM0_CDTI2	0: PA5 1: PC15 2: PF5 3: PC4	4: PB11	Timer 0 Complimentary Dead Time Insertion channel 2.							
TIM1_CC0	0: PC13 1: PE10 2: PB0 3: PB7	4: PD6 5: PF2 6: PF13 7: PI6	Timer 1 Capture Compare input / output channel 0.							
TIM1_CC1	0: PC14 1: PE11 2: PB1 3: PB8	4: PD7 5: PF3 6: PF14 7: PI7	Timer 1 Capture Compare input / output channel 1.							
TIM1_CC2	0: PC15 1: PE12 2: PB2 3: PB11	4: PC13 5: PF4 6: PF15 7: PI8	Timer 1 Capture Compare input / output channel 2.							
TIM1_CC3	0: PC12 1: PE13 2: PB3 3: PB12	4: PC14 5: PF12 6: PF5 7: PI9	Timer 1 Capture Compare input / output channel 3.							
TIM2_CC0	0: PA8 1: PA12 2: PC8 3: PF2	4: PB6 5: PC2 6: PG8 7: PG5	Timer 2 Capture Compare input / output channel 0.							

5.22 Analog Port (APORT) Client Maps

The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 5.20 APORT Connection Diagram on page 211 shows the APORT routing for this device family (note that available features may vary by part number). A complete description of APORT functionality can be found in the Reference Manual.

Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.

In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column.

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	СНЗ	CH2	CH1	CH0
APORT0X	BUSADC1X																									2Hd	9Hd	PH5	PH4	EH4	PH2	PH1	ЬНО
APORT0Y	BUSADC1Y																									2Hd	9Hd	PH5	PH4	EH4	PH2	PH1	ЬНО
APORT1X	BUSAX		PB14		PB12		PB10				PB6		PB4		PB2		PB0		PA14		PA12		PA10		PA8		PA6		PA4		PA2		PA0
APORT1Y	BUSAY	PB15		PB13		PB11		PB9				PB5		PB3		PB1		PA15		PA13		PA11		6A9		PA7		PA5		PA3		PA1	
APORT2X	BUSBX	PB15		PB13		PB11		PB9				PB5		PB3		PB1		PA15		PA13		PA11		6Yd		PA7		PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12		PB10				PB6		PB4		PB2		PB0		PA14		PA12		PA10		PA8		PA6		PA4		PA2		PA0
APORT3X	BUSCX		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				PE0
APORT3Y	BUSCY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5				PE1	
APORT4X	BUSDX	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1		PE15		PE13		PE11		63d		PE7		PE5				PE1	
APORT4Y	BUSDY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PFO		PE14		PE12		PE10		PE8		PE6		PE4				PE0

Table 5.28. ADC1 Bus and Pin Mapping

Table 7.2. BGA152 PCB Land Pattern Dimensions

Dimension	Min	Мах	
X		0.20	
C1		6.50	
C2		6.50	
E1		0.5	
E2		0.5	

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.

3. This Land Pattern Design is based on the IPC-7351 guidelines.

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

6. The stencil thickness should be 0.125 mm (5 mils).

7. The ratio of stencil aperture to land pad size should be 1:1.

8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

Figure 7.3. BGA152 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

8.2 BGA120 PCB Land Pattern

Figure 8.2. BGA120 PCB Land Pattern Drawing

Figure 9.3. BGA112 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

12. QFN64 Package Specifications

12.1 QFN64 Package Dimensions

Figure 12.1. QFN64 Package Drawing