

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b420f2048gm64-b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.11 Memory Map

The EFM32GG11 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.

	8x£6166668]		
CM4 Peripherals	8xe88fffff			
	8×99999999			
QSPI0	8xcfffffff			
	8%888888888			
EBI Region 3	8x8t6666666			
EBI Region 2	8x886666666			
EBI Region 1	8x84666666	\		0xe0100000
EBI Region 0	8x83ffffff	\	CM4 ROM Table	0xe00ff000
Ebinegionio	8×7fffffff			0xe0042000
Bit Set	0x460f0400 0x460f03ff	,	ETM	0xe0041000
(Peripherals / CRYPTO0)	0×46000000		TPIU	0xe0040000
	8×45555555		Custom Control Concer	0xe000f000
Bit Clear	0x440f03ff		System Control Space	0xe000e000
(Peripherals / CRYPTO0)	0×44000000	\	FPB	0xe0003000
	8x43£46666	\ \	DWT	0xe0002000
Bit-Band (Peripherals / CRYPTO0 / SDIO)	0x43e3ffff 0x42000000	Λ.	ITM	0xe0001000
(relipitedas) extri roci (spio)	8×41ffffff	1	119	0xe0000000
USB	8×40135555			
038	0×40100000 8×488f2fff			0x10080000
SDIQ			RAM2 (code space)	0,10000000
SDIO	8×48811666		RAM1	0×10040000
	8×48818455		(code space)	010020000
CRYPTO0	8×488f8355	/	RAMO	0x10020000
Peripherals 1	8×48845555	/	(code space)	0×10000000
Peripherals 0	8×48835555	/	Chip config	0x0fe09000
	8x3fffffff	/		0x0fe08000 0x0fe05000
SRAM (bit-band)	8×33222222		Lock bits	0x0fe04000
	8×21ffffff		User Data	0x0fe01000
RAM2 (data space)	8×28846666			0x0fe00000
RAM1 (data space)	8×28835555		QSPI0	0x0c000000 0x04000000
RAM0 (data space)	8×2881ffff	1		0x00200000
	0x1fffffff	1		
Code			Flash (2048 KB)	
	0×00000000			0x00000000

Figure 3.2. EFM32GG11 Memory Map — Core Peripherals and Code Space

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Note:						
1. The minimum voltage req other loads can be calcula		node is calculated using R_{BYP} from the $h^+I_{LOAD} * R_{BYP_max}$.	e DCDC spec	cification table	e. Requiremer	nts for
2. VREGVDD must be tied t	o AVDD. Both VR	EGVDD and AVDD minimum voltage	es must be sa	tisfied for the	part to operat	te.
, ,		aracteristic specs of the capacitor use s temperature and DC bias.	ed on DECOL	JPLE to ensu	re its capacita	ince val-
	dependent on the	nsitions occur at a rate of 10 mV / use e value of the DECOUPLE output cap				
5. When the CSEN peripher	al is used with ch	opping enabled (CSEN_CTRL_CHO	PEN = ENABI	LE), IOVDD m	nust be equal	to AVDD.
 5. When the CSEN peripheral is used with chopping enabled (CSEN_CTRL_CHOPEN = ENABLE), IOVDD must be equal to AVDD. 6. The maximum limit on T_A may be lower due to device self-heating, which depends on the power dissipation of the specific application. T_A (max) = T_J (max) - (THETA_{JA} x PowerDissipation). Refer to the Absolute Maximum Ratings table and the Thermal Characteristics table for T_J and THETA_{JA}. 						

4.1.3 Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Thermal resistance, QFN64	THETAJA_QFN64	4-Layer PCB, Air velocity = 0 m/s	_	17.8	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	15.4		°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	13.8		°C/W
Thermal resistance, TQFP64	THE-	4-Layer PCB, Air velocity = 0 m/s	_	33.9	_	°C/W
Package	TA _{JA_TQFP64}	4-Layer PCB, Air velocity = 1 m/s	_	32.1	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	30.1	_	°C/W
Thermal resistance,	THE-	4-Layer PCB, Air velocity = 0 m/s	_	44.1	_	°C/W
TQFP100 Package	TA _{JA_TQFP100}	4-Layer PCB, Air velocity = 1 m/s	_	37.7	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	35.5	_	°C/W
Thermal resistance, BGA112	THE- TA _{JA_BGA112}	4-Layer PCB, Air velocity = 0 m/s	_	42.0	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	37.0	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	35.3	_	°C/W
Thermal resistance, BGA120	THE-	4-Layer PCB, Air velocity = 0 m/s	_	47.9	_	°C/W
Package	TA _{JA_BGA120}	4-Layer PCB, Air velocity = 1 m/s	_	41.8	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	39.6	_	°C/W
Thermal resistance, BGA152	THE-	4-Layer PCB, Air velocity = 0 m/s	_	35.7	_	°C/W
Package	TA _{JA_BGA152}	4-Layer PCB, Air velocity = 1 m/s	_	31.0	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	29.5	_	°C/W
Thermal resistance, BGA192	THE-	4-Layer PCB, Air velocity = 0 m/s	_	47.9	_	°C/W
Package	TA _{JA_BGA192}	4-Layer PCB, Air velocity = 1 m/s	_	41.8	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	39.6	_	°C/W

Table 4.3. Thermal Characteristics

4.1.4 DC-DC Converter

Test conditions: L_DCDC=4.7 µH (Murata LQH3NPN4R7MM0L), C_DCDC=4.7 µF (Samsung CL10B475KQ8NQNC), V_DCDC_I=3.3 V, V_DCDC_O=1.8 V, I_DCDC_LOAD=50 mA, Heavy Drive configuration, F_DCDC_LN=7 MHz, unless otherwise indicated.

Table 4.4. DC-DC Converter

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input voltage range	V _{DCDC_I}	Bypass mode, I _{DCDC_LOAD} = 50 mA	1.8	_	V _{VREGVDD} MAX	V
		Low noise (LN) mode, 1.8 V out- put, $I_{DCDC_LOAD} = 100$ mA, or Low power (LP) mode, 1.8 V out- put, $I_{DCDC_LOAD} = 10$ mA	2.4	_	V _{VREGVDD} MAX	V
		Low noise (LN) mode, 1.8 V out- put, I _{DCDC_LOAD} = 200 mA	2.6	_	V _{VREGVDD} MAX	V
Output voltage programma- ble range ¹	V _{DCDC_O}		1.8	_	V _{VREGVDD}	V
Regulation DC accuracy	ACC _{DC}	Low Noise (LN) mode, 1.8 V tar- get output	TBD	_	TBD	V
Regulation window ⁴	WIN _{REG}	Low Power (LP) mode, LPCMPBIASEMxx ³ = 0, 1.8 V tar- get output, I _{DCDC_LOAD} ≤ 75 µA	TBD	_	TBD	V
		Low Power (LP) mode, LPCMPBIASEMxx ³ = 3, 1.8 V tar- get output, I _{DCDC_LOAD} ≤ 10 mA	TBD	_	TBD	V
Steady-state output ripple	V _R		_	3	_	mVpp
Output voltage under/over- shoot	Vov	CCM Mode (LNFORCECCM ³ = 1), Load changes between 0 mA and 100 mA	_	25	TBD	mV
		DCM Mode (LNFORCECCM ³ = 0), Load changes between 0 mA and 10 mA	_	45	TBD	mV
		Overshoot during LP to LN CCM/DCM mode transitions com- pared to DC level in LN mode	_	200	-	mV
		Undershoot during BYP/LP to LN CCM (LNFORCECCM ³ = 1) mode transitions compared to DC level in LN mode	_	40	_	mV
		Undershoot during BYP/LP to LN DCM (LNFORCECCM ³ = 0) mode transitions compared to DC level in LN mode	_	100	_	mV
DC line regulation	V _{REG}	Input changes between V _{VREGVDD_MAX} and 2.4 V	_	0.1	-	%
DC load regulation	I _{REG}	Load changes between 0 mA and 100 mA in CCM mode	_	0.1	-	%

4.1.10.2 High-Frequency Crystal Oscillator (HFXO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal frequency	f _{HFXO}	No clock doubling	4		50	MHz
		Clock doubler enabled	TBD		TBD	MHz
Supported crystal equivalent	ESR _{HFXO}	50 MHz crystal			50	Ω
series resistance (ESR)		24 MHz crystal	_		150	Ω
		4 MHz crystal	—		180	Ω
Nominal on-chip tuning cap range ¹	C _{HFXO_T}	On each of HFXTAL_N and HFXTAL_P pins	8.7		51.7	pF
On-chip tuning capacitance step	SS _{HFXO}		_	0.084	_	pF
Startup time	t _{HFXO}	50 MHz crystal, ESR = 50 Ohm, $C_L = 8 pF$		350	_	μs
		24 MHz crystal, ESR = 150 Ohm, C _L = 6 pF		700	_	μs
		4 MHz crystal, ESR = 180 Ohm, C_L = 18 pF		3		ms
Current consumption after	I _{HFXO}	50 MHz crystal	—	880	_	μA
startup		24 MHz crystal		420	_	μA
		4 MHz crystal	—	80	_	μA

Table 4.13. High-Frequency Crystal Oscillator (HFXO)

Note:

1. The effective load capacitance seen by the crystal will be C_{HFXO_T} /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
SCLK period ^{1 3 2}	t _{SCLK}		6 * ^t HFPERCLK	_	—	ns
SCLK high time ^{1 3 2}	t _{SCLK_HI}		2.5 * ^t HFPERCLK	—	_	ns
SCLK low time ^{1 3 2}	t _{SCLK_LO}		2.5 * ^t HFPERCLK	—	_	ns
CS active to MISO ^{1 3}	t _{cs_аст_мі}		24	—	69	ns
CS disable to MISO ^{1 3}	t _{CS_DIS_MI}		19	_	175	ns
MOSI setup time ^{1 3}	t _{SU_MO}		7	—	—	ns
MOSI hold time ^{1 3 2}	t _{H_MO}		6	_	—	ns
SCLK to MISO ^{1 3 2}	t _{SCLK_MI}		16 + 1.5 * ^t HFPERCLK	_	43 + 2.5 * t _{HFPERCLK}	ns

Table 4.35. SPI Slave Timing

Note:

1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).

2. t_{HFPERCLK} is one period of the selected HFPERCLK.

3. Measurement done with 8 pF output loading at 10% and 90% of V_{DD} (figure shows 50% of V_{DD}).

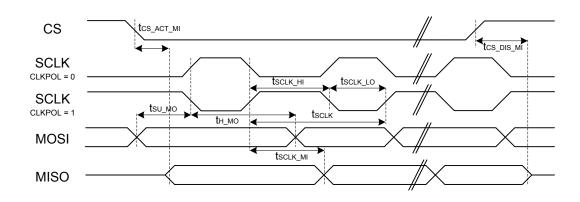


Figure 4.2. SPI Slave Timing Diagram

EBI Address Latch Enable Output Timing

Timing applies to multiplexed addressing modes D8A24ALE and D16A16ALE for both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output hold time, from trail- ing EBI_ALE edge to EBI_AD invalid ^{1 2}	edge to		-22 + (ADDR- HOLD * ^t HFCOR- ECLK)	_	_	ns
		IOVDD ≥ 3.0 V	-11 + (ADDR- HOLD * ^t HFCOR- ECLK)	_	_	ns
Output setup time, from	t _{OSU_ALEn}	IOVDD ≥ 1.62 V	-12	—	—	ns
EBI_AD valid to leading EBI_ALE edge		IOVDD ≥ 3.0 V	-9	—	_	ns
EBI_ALEn pulse width ¹	twidth_Alen	IOVDD ≥ 1.62 V	-4 + ((ADDR- SETUP + 1) * t{ _{}HFCOR-} ECLK{})	_	_	ns
		IOVDD ≥ 3.0 V	-3 + ((ADDR- SETUP + 1) * t{ _{}HFCOR-} ECLK{})	_	_	ns

Table 4.37. EBI Address Latch Enable Output Timing

Note:

1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFALE=0. The trailing edge of EBI_ALEn can be moved to the left by setting HALFALE=1. This decreases the length of t_{WIDTH_ALEn} and increases the length of t_{OSU_ALEn} by t_{HFCORECLK} - 1/2 * t_{HFCLKNODIV}.

2. The figure shows a write operation. For a multiplexed read operation the address hold time is controlled via the RDSETUP state instead of via the ADDRHOLD state.

SDIO DDR Mode Timing

Timing is specified for route location 0 at 1.8 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 6, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 30 pF on all pins.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Clock frequency during data transfer	F _{SD_CLK}	Using HFRCO, AUXHFRCO, or USHFRCO	_		20	MHz
		Using HFXO	_	_	TBD	MHz
Clock low time	t _{WL}	Using HFRCO, AUXHFRCO, or USHFRCO	22.6	—	_	ns
		Using HFXO	TBD	_	_	ns
Clock high time	t _{WH}	Using HFRCO, AUXHFRCO, or USHFRCO	22.6	_	_	ns
		Using HFXO	TBD	_	_	ns
Clock rise time	t _R		1.69	6.52	—	ns
Clock fall time	t _F		1.42	4.96	_	ns
Input setup time, CMD valid to SD_CLK	t _{ISU}		6		_	ns
Input hold time, SD_CLK to CMD change	t _{IH}		1.8		_	ns
Output delay time, SD_CLK to CMD valid	t _{ODLY}		0		16	ns
Output hold time, SD_CLK to CMD change	t _{OH}		0.8	_	_	ns
Input setup time, DAT[0:3] valid to SD_CLK	t _{ISU2X}		6	_	_	ns
Input hold time, SD_CLK to DAT[0:3] change	t _{IH2X}		1.5	_	_	ns
Output delay time, SD_CLK to DAT[0:3] valid	t _{ODLY2X}		0	_	16	ns
Output hold time, SD_CLK to DAT[0:3] change	t _{OH2X}		0.8		—	ns

Table 4.49. SDIO DS Mode Timing (Location 0)

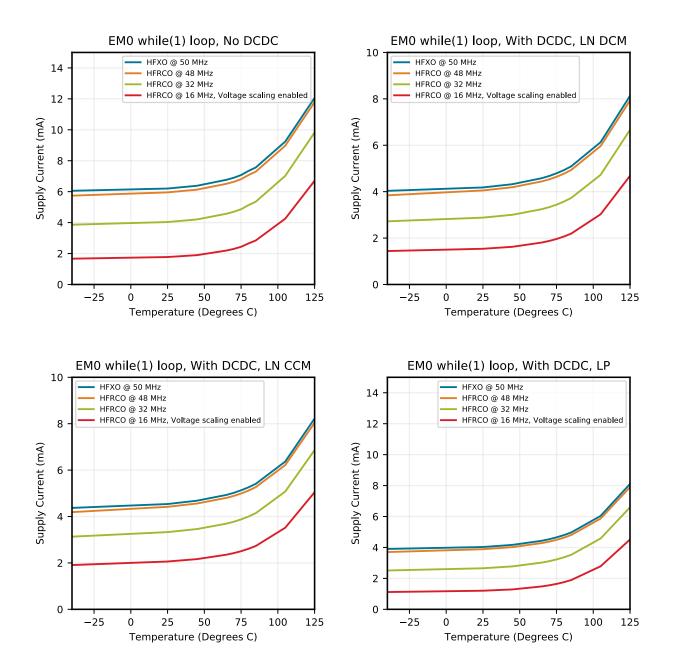
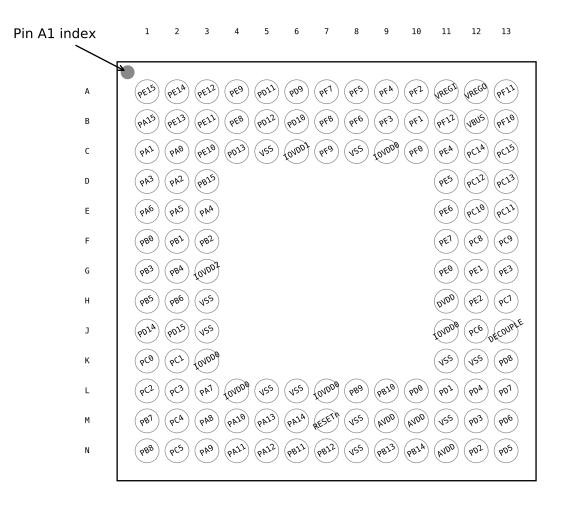



Figure 4.24. EM0 Active Mode Typical Supply Current vs. Temperature

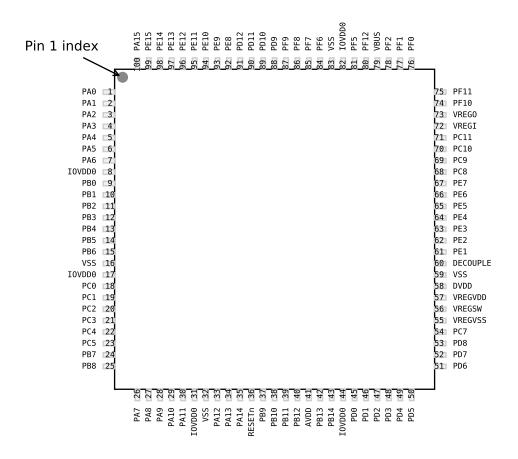

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description				
Note:	Note:								
1. GPIO with	5V tolera	nce are indicated by (5V).							
2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hard- ware compatibility, do not use these pins with 5V domains.									

Figure 5.5. EFM32GG11B4xx in BGA120 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PE15	A1	GPIO	PE14	A2	GPIO
PE12	A3	GPIO	PE9	A4	GPIO
PD11	A5	GPIO	PD9	A6	GPIO
PF7	A7	GPIO	PF5	A8	GPIO
PF4	A9	GPIO	PF2	A10	GPIO
VREGI	A11	Input to 5 V regulator.	VREGO	A12	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs

Figure 5.8. EFM32GG11B8xx in QFP100 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Table 5.8.	EFM32GG11B8xx in QFP100 Device Pinout
------------	---------------------------------------

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	PA3	4	GPIO
PA4	5	GPIO	PA5	6	GPIO
PA6	7	GPIO	IOVDD0	8 17 31 44 82	Digital IO power supply 0.
PB0	9	GPIO	PB1	10	GPIO

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB2	11	GPIO	PB3	12	GPIO
PB4	13	GPIO	PB5	14	GPIO
PB6	15	GPIO	VSS	16 32 59 83	Ground
PC0	18	GPIO (5V)	PC1	19	GPIO (5V)
PC2	20	GPIO (5V)	PC3	21	GPIO (5V)
PC4	22	GPIO	PC5	23	GPIO
PB7	24	GPIO	PB8	25	GPIO
PA7	26	GPIO	PA8	27	GPIO
PA9	28	GPIO	PA10	29	GPIO
PA11	30	GPIO	PA12	33	GPIO (5V)
PA13	34	GPIO (5V)	PA14	35	GPIO
RESETn	36	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB9	37	GPIO (5V)
PB10	38	GPIO (5V)	PB11	39	GPIO
PB12	40	GPIO	AVDD	41	Analog power supply.
PB13	42	GPIO	PB14	43	GPIO
PD0	45	GPIO (5V)	PD1	46	GPIO
PD2	47	GPIO (5V)	PD3	48	GPIO
PD4	49	GPIO	PD5	50	GPIO
PD6	51	GPIO	PD7	52	GPIO
PD8	53	GPIO	PC7	54	GPIO
VREGVSS	55	Voltage regulator VSS	VREGSW	56	DCDC regulator switching node
VREGVDD	57	Voltage regulator VDD input	DVDD	58	Digital power supply.
DECOUPLE	60	Decouple output for on-chip voltage regulator. An external decoupling ca- pacitor is required at this pin.	PE1	61	GPIO (5V)
PE2	62	GPIO	PE3	63	GPIO
PE4	64	GPIO	PE5	65	GPIO
PE6	66	GPIO	PE7	67	GPIO
PC8	68	GPIO (5V)	PC9	69	GPIO (5V)
PC10	70	GPIO (5V)	PC11	71	GPIO (5V)
VREGI	72	Input to 5 V regulator.	VREGO	73	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs
PF10	74	GPIO (5V)	PF11	75	GPIO (5V)
PF0	76	GPIO (5V)	PF1	77	GPIO (5V)

GPIO Name	Pin Alternate Functionality / Description					
	Analog	EBI	Timers	Communication	Other	
PF14	BUSDY BUSCX		TIM1_CC1 #6 TIM4_CC1 #1 TIM5_CC2 #7 WTIM3_CC1 #7	12C2_SCL #4		
PF11	BUSCY BUSDX	EBI_NANDWEn #5	TIM5_CC2 #6 WTIM3_CC2 #3 PCNT2_S1IN #3	US5_CTS #2 U1_RX #1 I2C2_SCL #2 USB_DP		
PF10	BUSDY BUSCX	EBI_ARDY #5	TIM5_CC1 #6 WTIM3_CC1 #3 PCNT2_S0IN #3	US5_RTS #2 U1_TX #1 I2C2_SDA #2 USB_DM		
PF0	BUSDY BUSCX	EBI_A24 #1	TIM0_CC0 #4 WTIM0_CC1 #4 LE- TIM0_OUT0 #2	US2_TX #5 CAN0_RX #1 US1_CLK #2 LEU0_TX #3 I2C0_SDA #5	PRS_CH15 #2 ACMP3_O #0 DBG_SWCLKTCK BOOT_TX	
PA0	BUSBY BUSAX LCD_SEG13	EBI_AD09 #0 EBI_CSTFT #3	TIM0_CC0 #0 TIM0_CC1 #7 TIM3_CC0 #4 PCNT0_S0IN #4	ETH_RMIITXEN #0 ETH_MIITXCLK #0 SDIO_DAT0 #1 US1_RX #5 US3_TX #0 QSPI0_CS0 #1 LEU0_RX #4 I2C0_SDA #0	CMU_CLK2 #0 PRS_CH0 #0 PRS_CH3 #3 GPIO_EM4WU0	
PD11	LCD_SEG30	EBI_CS2 #0 EBI_HSNC #1	TIM4_CC0 #6 WTIM3_CC2 #0	ETH_RMIICRSDV #1 SDIO_DAT5 #0 QSPI0_DQ2 #0 ETH_MIIRXD3 #2 US4_CLK #1		
PD10	LCD_SEG29	EBI_CS1 #0 EBI_VSNC #1	TIM4_CC2 #5 WTIM3_CC1 #0	ETH_RMIIREFCLK #1 SDIO_DAT6 #0 QSPI0_DQ1 #0 ETH_MIIRXD2 #2 US4_RX #1	CMU_CLK2 #5 CMU_CLKI0 #5	
PD9	LCD_SEG28	EBI_CS0 #0 EBI_DTEN #1	TIM4_CC1 #5 WTIM3_CC0 #0	ETH_RMIIRXD0 #1 SDIO_DAT7 #0 QSPI0_DQ0 #0 ETH_MIIRXD1 #2 US4_TX #1		
PF9	BUSCY BUSDX LCD_SEG27	EBI_REn #4 EBI_BL1 #1	TIM4_CC0 #5	ETH_RMIIRXD1 #1 US2_CS #4 QSPI0_DQS #0 ETH_MIIRXD0 #2 ETH_TSUTMRTOG #3 SDIO_WP #0 U0_RTS #0 U1_CTS #1	ETM_TD0 #1	
PF8	BUSDY BUSCX LCD_SEG26	EBI_WEn #4 EBI_BL0 #1	TIM0_CC2 #1 TIM4_CC2 #4	ETH_RMIITXEN #1 US2_CLK #4 QSPI0_CS1 #0 ETH_MIIRXDV #2 ETH_TSUEXTCLK #3 SDIO_CD #0 U0_CTS #0 U1_RTS #1	ETM_TCLK #1 GPIO_EM4WU8	

Alternate LOCATION		ATION			
Functionality	0 - 3	4 - 7	Description		
BU_STAT	0: PE3		Backup Power Domain status, whether or not the system is in backup mode.		
BU_VIN	0: PD8		Battery input for Backup Power Domain.		
BU_VOUT	0: PE2		Power output for Backup Power Domain.		
CAN0_RX	0: PC0 1: PF0 2: PD0 3: PB9	4: PG8 5: PD14 6: PE0 7: PI12	CAN0 RX.		
CAN0_TX	0: PC1 1: PF2 2: PD1 3: PB10	4: PG9 5: PD15 6: PE1 7: PI13	CAN0 TX.		
CAN1_RX	0: PC2 1: PF1 2: PD3 3: PC9	4: PC12 5: PA12 6: PG10 7: PI14	CAN1 RX.		
CAN1_TX	0: PC3 1: PF3 2: PD4 3: PC10	4: PC11 5: PA13 6: PG11 7: PI15	CAN1 TX.		
CMU_CLK0	0: PA2 1: PC12 2: PD7 3: PG2	4: PF2 5: PA12	Clock Management Unit, clock output number 0.		
CMU_CLK1	0: PA1 1: PD8 2: PE12 3: PG1	4: PF3 5: PB11	Clock Management Unit, clock output number 1.		
CMU_CLK2	0: PA0 1: PA3 2: PD6 3: PG0	4: PA3 5: PD10	Clock Management Unit, clock output number 2.		
CMU_CLKI0	0: PD4 1: PA3 2: PB8 3: PB13	4: PE1 5: PD10 6: PE12 7: PB11	Clock Management Unit, clock input number 0.		
DBG_SWCLKTCK	0: PF0		Debug-interface Serial Wire clock input and JTAG Test Clock. Note that this function is enabled to the pin out of reset, and has a built-in pull down.		
DBG_SWDIOTMS	0: PF1		Debug-interface Serial Wire data input / output and JTAG Test Mode Select. Note that this function is enabled to the pin out of reset, and has a built-in pull up.		

Alternate	LOCA	TION		
Functionality	0 - 3	4 - 7	Description	
EBI_A10	0: PE3 1: PD6 2: PC10 3: PB10		External Bus Interface (EBI) address output pin 10.	
EBI_A11	0: PE4 1: PD7 2: PI6 3: PB11		External Bus Interface (EBI) address output pin 11.	
EBI_A12	0: PE5 1: PD8 2: PI7 3: PB12		External Bus Interface (EBI) address output pin 12.	
EBI_A13	0: PE6 1: PC7 2: PI8 3: PD0		External Bus Interface (EBI) address output pin 13.	
EBI_A14	0: PE7 1: PE2 2: PI9 3: PD1		External Bus Interface (EBI) address output pin 14.	
EBI_A15	0: PC8 1: PE3 2: PI10 3: PD2		External Bus Interface (EBI) address output pin 15.	
EBI_A16	0: PB0 1: PE4 2: PH4 3: PD3		External Bus Interface (EBI) address output pin 16.	
EBI_A17	0: PB1 1: PE5 2: PH5 3: PD4		External Bus Interface (EBI) address output pin 17.	
EBI_A18	0: PB2 1: PE6 2: PH6 3: PD5		External Bus Interface (EBI) address output pin 18.	
EBI_A19	0: PB3 1: PE7 2: PH7 3: PD6		External Bus Interface (EBI) address output pin 19.	
EBI_A20	0: PB4 1: PC8 2: PH8 3: PD7		External Bus Interface (EBI) address output pin 20.	
EBI_A21	0: PB5 1: PC9 2: PH9 3: PC7		External Bus Interface (EBI) address output pin 21.	
EBI_A22	0: PB6 1: PC10 2: PH10 3: PE4		External Bus Interface (EBI) address output pin 22.	

6. BGA192 Package Specifications

6.1 BGA192 Package Dimensions

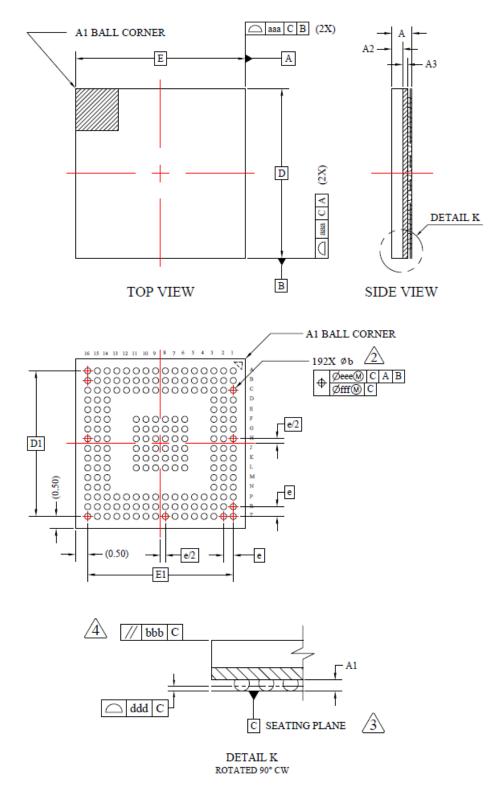


Figure 6.1. BGA192 Package Drawing

Dimension	Min	Тур	Мах		
A	0.77	0.83	0.89		
A1	0.13	0.18	0.23		
A3	0.16 0.20 0.24				
A2		0.45 REF			
D		7.00 BSC			
е		0.40 BSC			
E	7.00 BSC				
D1	6.00 BSC				
E1	6.00 BSC				
b	0.20 0.25 0.30				
ааа	0.10				
bbb	0.10				
ddd	0.08				
eee	0.15				
fff	0.05				
Noto					

Table 6.1. BGA192 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8. BGA120 Package Specifications

8.1 BGA120 Package Dimensions

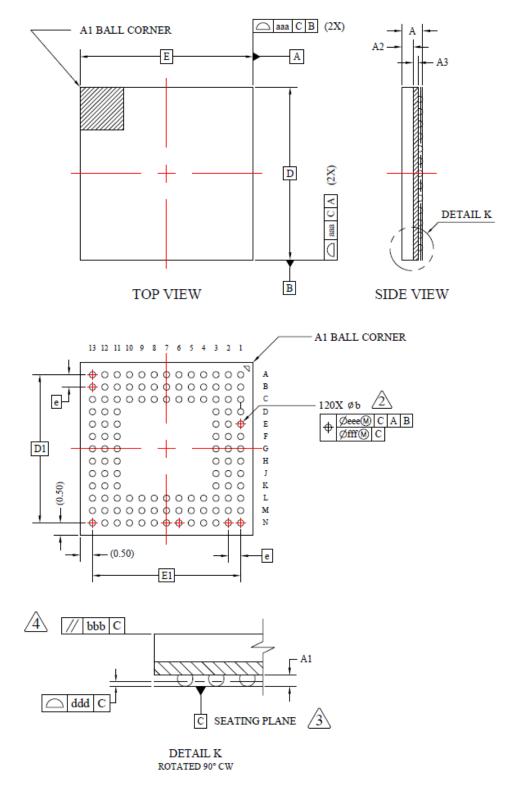


Figure 8.1. BGA120 Package Drawing

Dimension	Min	Тур	Мах		
A	-	-	1.30		
A1	0.55	0.60	0.65		
A2		0.21 BSC			
A3	0.30	0.35 0.40			
d	0.43	0.48	0.53		
D	10.00 BSC				
D1	8.00 BSC				
E	10.00 BSC				
E1	8.00 BSC				
e1	0.80 BSC				
e2	0.80 BSC				
L1	1.00 REF				
L2	1.00 REF				
Noto					

Table 9.1. BGA112 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

12. QFN64 Package Specifications

12.1 QFN64 Package Dimensions

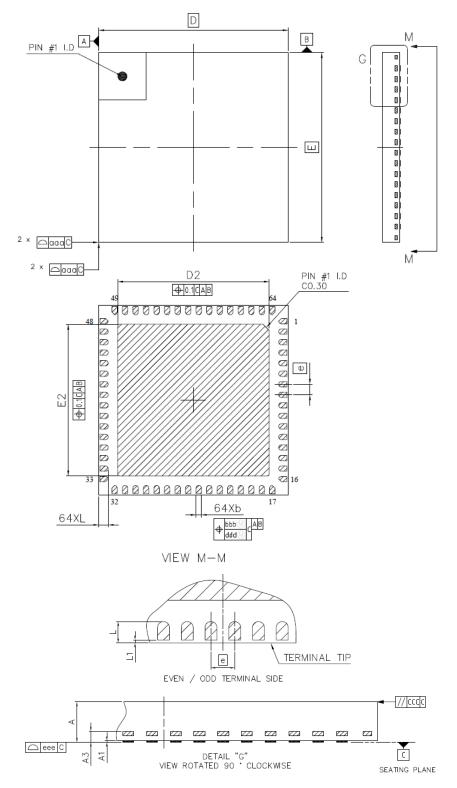


Figure 12.1. QFN64 Package Drawing