

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0	
Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	83
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b420f2048gq100-ar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

13.	Revision History.	257
	12.3 QFN64 Package Marking	256
	12.2 QFN64 PCB Land Pattern	254
	12.1 QFN64 Package Dimensions	252
12.	QFN64 Package Specifications	252
	11.3 TQFP64 Package Marking	251
	11.2 TQFP64 PCB Land Pattern	250
	11.1 TQFP64 Package Dimensions	248
11.	TQFP64 Package Specifications	248
	10.3 TQFP100 Package Marking	247
	10.2 TQFP100 PCB Land Pattern	246
	10.1 TQFP100 Package Dimensions	244
10.	TQFP100 Package Specifications	244
	9.3 BGA112 Package Marking	243
	9.2 BGA112 PCB Land Pattern	241

3.8.4 Capacitive Sense (CSEN)

The CSEN module is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a switches and sliders. The CSEN module uses a charge ramping measurement technique, which provides robust sensing even in adverse conditions including radiated noise and moisture. The module can be configured to take measurements on a single port pin or scan through multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter, as well as digital threshold comparators to reduce software overhead.

3.8.5 Digital to Analog Current Converter (IDAC)

The Digital to Analog Current Converter can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 μ A and 64 μ A with several ranges consisting of various step sizes.

3.8.6 Digital to Analog Converter (VDAC)

The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500 ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any CPU intervention. The VDAC is available in all energy modes down to and including EM3.

3.8.7 Operational Amplifiers

The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to rail output. They can be used in conjunction with the VDAC module or in stand-alone configurations. The opamps save energy, PCB space, and cost as compared with standalone opamps because they are integrated on-chip.

3.8.8 Liquid Crystal Display Driver (LCD)

The LCD driver is capable of driving a segmented LCD display with up to 8x36 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. A patented charge redistribution driver can reduce the LCD module supply current by up to 40%. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data.

3.9 Reset Management Unit (RMU)

The RMU is responsible for handling reset of the EFM32GG11. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.

3.10 Core and Memory

3.10.1 Processor Core

The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:

- ARM Cortex-M4 RISC processor with FPU achieving 1.25 Dhrystone MIPS/MHz
- Memory Protection Unit (MPU) supporting up to 8 memory segments
- Embedded Trace Macrocell (ETM) for real-time trace and debug
- Up to 2048 kB flash program memory
 - · Dual-bank memory with read-while-write support
- Up to 512 kB RAM data memory
- · Configuration and event handling of all modules
- · 2-pin Serial-Wire or 4-pin JTAG debug interface

4.1.5 5V Regulator

 V_{VREGI} = 5 V, V_{VREGO} = 3.3 V, C_{VREGI} = 10 μ F, C_{VREGO} = 4.7 μ F, unless otherwise specified.

Table 4.5. 5V Regulator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
VREGI or VBUS input volt-	V _{VREGI}	Regulating output	2.7		5.5	V
age range		Bypass mode enabled	2.7	_	3.8	V
VREGO output voltage	V _{VREGO}	Regulating output, 3.3 V setting	3.1	3.3	3.5	V
		EM4S open-loop output, I _{OUT} < 100 μA	1.8	_	3.8	V
Voltage output step size	V _{VREGO_SS}		_	0.1	_	V
Resistance in Bypass Mode	R _{BYP}	Bypass mode enabled		1.2	TBD	Ω
Output current	I _{OUT}	EM0 or EM1, V _{VREGI} > V _{VREGO} + 0.6 V	_		200	mA
		EM0 or EM1, V _{VREGI} > V _{VREGO} + 0.3 V	_	_	100	mA
		EM2, EM3, or EM4H, V _{VREGI} > V _{VREGO} + 0.6 V	_		2	mA
		EM2, EM3, or EM4H, V _{VREGI} > V _{VREGO} + 0.3 V	—	_	0.5	mA
		EM4S	_	_	20	μA
Load regulation	LR _{VREGO}	EM0 or EM1	_	0.10	_	mV/mA
		EM2, EM3, or EM4H	_	2.5	_	mV/mA
DC power supply rejection	PSR _{DC}		_	40	_	dB
VREGI or VBUS bypass capacitance	C _{VREGI}		_	10	-	μF
VREGO bypass capacitance	C _{VREGO}		1	4.7	10	μF
Supply current consumption	I _{VREGI}	EM0 or EM1, No load	_	29	_	μA
		EM2, EM3, or EM4H, No load	_	270	_	nA
		EM4S, No load	_	70	_	nA
VREGI and VBUS detection high threshold	V _{DET_H}		TBD	1.18	_	V
VREGI and VBUS detection low threshold	V _{DET_L}		_	1.12	TBD	V
Current monitor transfer ratio	IMON _{XF}	Translation of current through VREGO path to voltage at ADC input	_	0.35	_	mA/mV

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current consumption in EM4H mode, with voltage	I _{EM4H_VS}	128 byte RAM retention, RTCC running from LFXO	—	0.94		μA
scaling enabled		128 byte RAM retention, CRYO- TIMER running from ULFRCO	—	0.62		μA
		128 byte RAM retention, no RTCC	_	0.62	_	μA
Current consumption in EM4S mode	I _{EM4S}	No RAM retention, no RTCC	—	0.13		μA
Current consumption of pe- ripheral power domain 1, with voltage scaling enabled, DCDC in LP mode ³	I _{PD1_VS}	Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled ⁴		0.68	_	μA
Current consumption of pe- ripheral power domain 2, with voltage scaling enabled, DCDC in LP mode ³	IPD2_VS	Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled ⁴		0.28	_	μA

Note:

1. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD.

2. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD.

3. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIM-SEL=1, ANASW=DVDD.

4. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.4 EM2 and EM3 Power Domains for a list of the peripherals in each power domain.

5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1

4.1.7.3 Current Consumption 1.8 V without DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 1.8 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.

Table 4.9. Current Consumption 1.8 V without DC-DC Converter

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM0 mode with all peripherals dis-	I _{ACTIVE}	72 MHz HFRCO, CPU running Prime from flash	_	120	_	µA/MHz
abled		72 MHz HFRCO, CPU running while loop from flash	_	120	_	µA/MHz
		72 MHz HFRCO, CPU running CoreMark loop from flash	_	140	_	µA/MHz
		50 MHz crystal, CPU running while loop from flash	—	122	_	µA/MHz
		48 MHz HFRCO, CPU running while loop from flash	_	122	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	_	124	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	_	126	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash	_	131	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	—	315	_	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_VS	19 MHz HFRCO, CPU running while loop from flash	—	107	_	µA/MHz
abled and voltage scaling enabled		1 MHz HFRCO, CPU running while loop from flash	_	259	_	µA/MHz
Current consumption in EM1	I _{EM1}	72 MHz HFRCO	_	57		µA/MHz
mode with all peripherals disabled		50 MHz crystal	_	59		µA/MHz
		48 MHz HFRCO	_	59		µA/MHz
		32 MHz HFRCO	_	61		µA/MHz
		26 MHz HFRCO	_	63		µA/MHz
		16 MHz HFRCO	_	68	_	µA/MHz
		1 MHz HFRCO	_	252		µA/MHz
Current consumption in EM1	I _{EM1_VS}	19 MHz HFRCO	_	55		µA/MHz
mode with all peripherals dis- abled and voltage scaling enabled		1 MHz HFRCO	_	207	_	µA/MHz
Current consumption in EM2 mode, with voltage scaling	I _{EM2_VS}	Full 512 kB RAM retention and RTCC running from LFXO	_	3.7	_	μΑ
enabled		Full 512 kB RAM retention and RTCC running from LFRCO	_	4.0	_	μΑ
		16 kB (1 bank) RAM retention and RTCC running from LFRCO ²	—	2.5	_	μΑ

4.1.10.5 Auxiliary High-Frequency RC Oscillator (AUXHFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Frequency accuracy	f _{AUXHFRCO_ACC}	At production calibrated frequen- cies, across supply voltage and temperature	TBD	_	TBD	%
Start-up time	t _{AUXHFRCO}	f _{AUXHFRCO} ≥ 19 MHz	_	400	_	ns
		4 < f _{AUXHFRCO} < 19 MHz	_	1.4	_	μs
		f _{AUXHFRCO} ≤ 4 MHz		2.5	_	μs
Current consumption on all	IAUXHFRCO	f _{AUXHFRCO} = 50 MHz	_	289	TBD	μA
supplies		f _{AUXHFRCO} = 48 MHz	_	276	TBD	μA
		f _{AUXHFRCO} = 38 MHz		227	TBD	μA
		f _{AUXHFRCO} = 32 MHz	_	186	TBD	μA
		f _{AUXHFRCO} = 26 MHz	_	158	TBD	μA
		f _{AUXHFRCO} = 19 MHz	_	126	TBD	μA
		f _{AUXHFRCO} = 16 MHz	_	114	TBD	μA
		f _{AUXHFRCO} = 13 MHz	—	88	TBD	μA
		f _{AUXHFRCO} = 7 MHz	_	59	TBD	μA
		f _{AUXHFRCO} = 4 MHz	_	33	TBD	μA
		f _{AUXHFRCO} = 2 MHz	_	28	TBD	μA
		f _{AUXHFRCO} = 1 MHz	—	26	TBD	μA
Coarse trim step size (% of period)	SS _{AUXHFR-} CO_COARSE		—	0.8	_	%
Fine trim step size (% of pe- riod)	SS _{AUXHFR-} CO_FINE		—	0.1	_	%
Period jitter	PJ _{AUXHFRCO}		_	0.2	_	% RMS

Table 4.16. Auxiliary High-Frequency RC Oscillator (AUXHFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Note:			l			
1. Supply current s the load.	specifications are for VD	AC circuitry operating with static o	output only and do n	not include cur	rent required	to drive
	ode, the output is define ngle-ended range.	d as the difference between two s	ingle-ended outputs	s. Absolute vol	tage on each	output is
3. Entire range is r	monotonic and has no m	issing codes.				
	PERCLK is dependent DAC module is enabled	on HFPERCLK frequency. This cuint in the CMU.	urrent contributes to	the total supp	ly current use	ed when
	, U I	be from 10% to 90% of full scale. It 10% of full scale with the measu		by comparing	actual VDAC	output a
		ΔV _{OUT}), VDAC output at 90% of f				

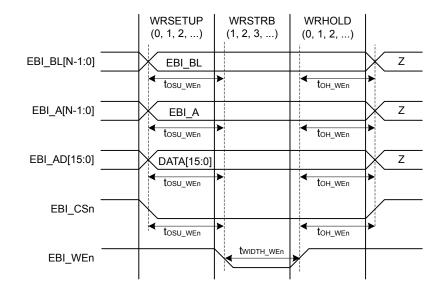


Figure 4.3. EBI Write Enable Output Timing Diagram

EBI Read Enable Timing Requirements

Timing applies to both EBI_REn and EBI_NANDREn for all addressing modes and both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.

Table 4.40. EBI Read Enable Timing Requirements

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Setup time, from EBI_AD	t _{SU_REn}	IOVDD ≥ 1.62 V	55	—	—	ns
valid to trailing EBI_REn edge		IOVDD ≥ 3.0 V	36	—	—	ns
Hold time, from trailing EBI_REn edge to EBI_AD in- valid	^t H_REn	IOVDD ≥ 1.62 V	-9	_	_	ns

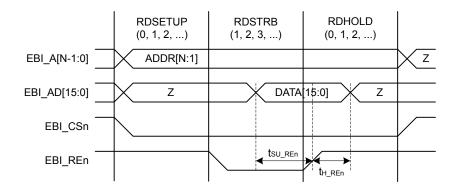


Figure 4.7. EBI Read Enable Timing Requirements

SDIO MMC SDR Mode Timing at 3.0 V

Timing is specified for route location 0 at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 20 pF on all pins.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Clock frequency during data transfer	F _{SD_CLK}	Using HFRCO, AUXHFRCO, or USHFRCO	_	—	48	MHz
		Using HFXO	_	_	TBD	MHz
Clock low time	t _{WL}	Using HFRCO, AUXHFRCO, or USHFRCO	9.4	_	_	ns
		Using HFXO	TBD	_	_	ns
Clock high time	t _{WH}	Using HFRCO, AUXHFRCO, or USHFRCO	9.4	_	_	ns
		Using HFXO	TBD	_	_	ns
Clock rise time	t _R		1.96	3.87	_	ns
Clock fall time	t _F		1.67	3.31	_	ns
Input setup time, CMD, DAT[0:7] valid to SD_CLK	t _{ISU}		5.3	-	_	ns
Input hold time, SD_CLK to CMD, DAT[0:7] change	tiH		2.5	-	_	ns
Output delay time, SD_CLK to CMD, DAT[0:7] valid	t _{ODLY}		0	-	16	ns
Output hold time, SD_CLK to CMD, DAT[0:7] change	t _{OH}		3	-	_	ns

Table 4.51. SDIO MMC SDR Mode Timing (Location 0, 3V I/O)

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VREGVDD	J13	Voltage regulator VDD input	PC0	K1	GPIO (5V)
PC1	K2	GPIO (5V)	PE0	K12	GPIO (5V)
VREGSW	K13	DCDC regulator switching node	PC2	L1	GPIO (5V)
PC3	L2	GPIO (5V)	PA7	L3	GPIO
PB9	L13	GPIO (5V)	PB10	L14	GPIO (5V)
PD1	L17	GPIO	PC6	L18	GPIO
PC7	L19	GPIO	VREGVSS	L20	Voltage regulator VSS
PB7	M1	GPIO	PC4	M2	GPIO
PA8	M3	GPIO	PA10	M4	GPIO
PA13	M5	GPIO (5V)	PA14	M6	GPIO
RESETn	M7	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB12	M8	GPIO
PD0	M9	GPIO (5V)	PD2	M10	GPIO (5V)
PD3	M11	GPIO	PD4	M12	GPIO
PD8	M13	GPIO	PB8	N1	GPIO
PC5	N2	GPIO	PA9	N3	GPIO
PA11	N4	GPIO	PA12	N5	GPIO (5V)
PB11	N6	GPIO	BODEN	N7	Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD.
PB13	N8	GPIO	PB14	N9	GPIO
AVDD	N10	Analog power supply.	PD5	N11	GPIO
PD6	N12	GPIO	PD7	N13	GPIO

Note:

1. GPIO with 5V tolerance are indicated by (5V).

2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB2	11	GPIO	PB3	12	GPIO
PB4	13	GPIO	PB5	14	GPIO
PB6	15	GPIO	VSS	16 32 58 83	Ground
PC0	18	GPIO (5V)	PC1	19	GPIO (5V)
PC2	20	GPIO (5V)	PC3	21	GPIO (5V)
PC4	22	GPIO	PC5	23	GPIO
PB7	24	GPIO	PB8	25	GPIO
PA7	26	GPIO	PA8	27	GPIO
PA9	28	GPIO	PA10	29	GPIO
PA11	30	GPIO	PA12	33	GPIO (5V)
PA13	34	GPIO (5V)	PA14	35	GPIO
RESETn	36	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB9	37	GPIO (5V)
PB10	38	GPIO (5V)	PB11	39	GPIO
PB12	40	GPIO	AVDD	41 45	Analog power supply.
PB13	42	GPIO	PB14	43	GPIO
PD0	46	GPIO (5V)	PD1	47	GPIO
PD2	48	GPIO (5V)	PD3	49	GPIO
PD4	50	GPIO	PD5	51	GPIO
PD6	52	GPIO	PD7	53	GPIO
PD8	54	GPIO	PC6	55	GPIO
PC7	56	GPIO	DVDD	57	Digital power supply.
DECOUPLE	59	Decouple output for on-chip voltage regulator. An external decoupling ca- pacitor is required at this pin.	PE0	60	GPIO (5V)
PE1	61	GPIO (5V)	PE2	62	GPIO
PE3	63	GPIO	PE4	64	GPIO
PE5	65	GPIO	PE6	66	GPIO
PE7	67	GPIO	PC8	68	GPIO (5V)
PC9	69	GPIO (5V)	PC10	70	GPIO (5V)
PC11	71	GPIO (5V)	VREGI	72	Input to 5 V regulator.
VREGO	73	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs	PF10	74	GPIO (5V)
PF11	75	GPIO (5V)	PF0	76	GPIO (5V)

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PF3	79	GPIO	PF4	80	GPIO
PF5	81	GPIO	PF6	84	GPIO
PF7	85	GPIO	PF8	86	GPIO
PF9	87	GPIO	PD9	88	GPIO
PD10	89	GPIO	PD11	90	GPIO
PD12	91	GPIO	PE8	92	GPIO
PE9	93	GPIO	PE10	94	GPIO
PE11	95	GPIO	PE12	96	GPIO
PE13	97	GPIO	PE14	98	GPIO
PE15	99	GPIO	PA15	100	GPIO
Note:					

Note:

1. GPIO with 5V tolerance are indicated by (5V).

Alternate	LOCATION			
Functionality	0 - 3	4 - 7	Description	
BU_STAT	0: PE3		Backup Power Domain status, whether or not the system is in backup mode.	
BU_VIN	0: PD8		Battery input for Backup Power Domain.	
BU_VOUT	0: PE2		Power output for Backup Power Domain.	
CAN0_RX	0: PC0 1: PF0 2: PD0 3: PB9	4: PG8 5: PD14 6: PE0 7: PI12	CAN0 RX.	
CAN0_TX	0: PC1 1: PF2 2: PD1 3: PB10	4: PG9 5: PD15 6: PE1 7: PI13	CAN0 TX.	
CAN1_RX	0: PC2 1: PF1 2: PD3 3: PC9	4: PC12 5: PA12 6: PG10 7: PI14	CAN1 RX.	
CAN1_TX	0: PC3 1: PF3 2: PD4 3: PC10	4: PC11 5: PA13 6: PG11 7: PI15	CAN1 TX.	
CMU_CLK0	0: PA2 1: PC12 2: PD7 3: PG2	4: PF2 5: PA12	Clock Management Unit, clock output number 0.	
CMU_CLK1	0: PA1 1: PD8 2: PE12 3: PG1	4: PF3 5: PB11	Clock Management Unit, clock output number 1.	
CMU_CLK2	0: PA0 1: PA3 2: PD6 3: PG0	4: PA3 5: PD10	Clock Management Unit, clock output number 2.	
CMU_CLKI0	0: PD4 1: PA3 2: PB8 3: PB13	4: PE1 5: PD10 6: PE12 7: PB11	Clock Management Unit, clock input number 0.	
DBG_SWCLKTCK	0: PF0		Debug-interface Serial Wire clock input and JTAG Test Clock. Note that this function is enabled to the pin out of reset, and has a built-in pull down.	
DBG_SWDIOTMS	0: PF1		Debug-interface Serial Wire data input / output and JTAG Test Mode Select. Note that this function is enabled to the pin out of reset, and has a built-in pull up.	

Alternate	LOCATION		
Functionality	0 - 3	4 - 7	Description
US1_CTS	0: PB9 1: PD4 2: PF3 3: PC6	4: PC12 5: PB13 6: PH2	USART1 Clear To Send hardware flow control input.
US1_RTS	0: PB10 1: PD5 2: PF4 3: PC7	4: PC13 5: PB14 6: PH3	USART1 Request To Send hardware flow control output.
US1_RX	0: PC1 1: PD1 2: PD6 3: PF7	4: PC2 5: PA0 6: PA2	USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO).
US1_TX	0: PC0 1: PD0 2: PD7 3: PF6	4: PC1 5: PF2 6: PA14	USART1 Asynchronous Transmit. Also used as receive input in half duplex communica- tion. USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	0: PC4 1: PB5 2: PA9 3: PA15	4: PF8 5: PF2	USART2 clock input / output.
US2_CS	0: PC5 1: PB6 2: PA10 3: PB11	4: PF9 5: PF5	USART2 chip select input / output.
US2_CTS	0: PC1 1: PB12 2: PA11 3: PB10	4: PC12 5: PD6	USART2 Clear To Send hardware flow control input.
US2_RTS	0: PC0 1: PB15 2: PA12 3: PC14	4: PC13 5: PD8	USART2 Request To Send hardware flow control output.
US2_RX	0: PC3 1: PB4 2: PA8 3: PA14	4: PF7 5: PF1	USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Output (MISO).
US2_TX	0: PC2 1: PB3 2: PA7 3: PA13	4: PF6 5: PF0	USART2 Asynchronous Transmit. Also used as receive input in half duplex communica- tion. USART2 Synchronous mode Master Output / Slave Input (MOSI).
US3_CLK	0: PA2 1: PD7 2: PD4 3: PG8	4: PG2 5: PI14	USART3 clock input / output.
US3_CS	0: PA3 1: PE4 2: PC14 3: PC0	4: PG3 5: PI15	USART3 chip select input / output.
US3_CTS	0: PA4 1: PE5 2: PD6 3: PG10	4: PG4 5: PG9	USART3 Clear To Send hardware flow control input.

Table 8.2. BGA120 PCB Land Pattern Dimensions

Min	Nom	Мах		
0.20				
6.00				
6.00				
0.5				
	0.5			
	Min	0.20 6.00 6.00 0.5		

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

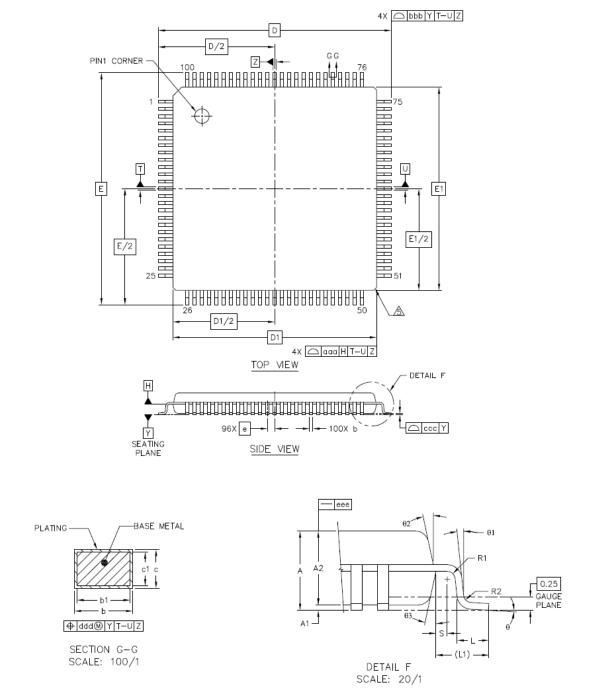
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.

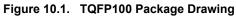
3. This Land Pattern Design is based on the IPC-7351 guidelines.

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

6. The stencil thickness should be 0.125 mm (5 mils).


7. The ratio of stencil aperture to land pad size should be 1:1.


8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

10. TQFP100 Package Specifications

10.1 TQFP100 Package Dimensions

Dimension	Min	Тур	Мах		
A	_	1.15	1.20		
A1	0.05	—	0.15		
A2	0.95	1.00	1.05		
b	0.17	0.22	0.27		
b1	0.17	0.20	0.23		
С	0.09	_	0.20		
c1	0.09	—	0.16		
D	12.00 BSC				
D1	10.00 BSC				
e	0.50 BSC				
E	12.00 BSC				
E1	10.00 BSC				
L	0.45	0.60	0.75		
L1	1.00 REF				
R1	0.08	—	—		
R2	0.08	_	0.20		
S	0.20	—	—		
θ	0	3.5	7		
θ1	0	—	0.10		
θ2	11	12	13		
θ3	11	12	13		
Note:		· ·			

Table 11.1. TQFP64 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 12.3. QFN64 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com