

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	83
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b420f2048gq100-br

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.5 5V Regulator

 V_{VREGI} = 5 V, V_{VREGO} = 3.3 V, C_{VREGI} = 10 μ F, C_{VREGO} = 4.7 μ F, unless otherwise specified.

Table 4.5. 5V Regulator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
VREGI or VBUS input volt-	V _{VREGI}	Regulating output	2.7	_	5.5	V
age range		Bypass mode enabled	2.7	_	3.8	V
VREGO output voltage	V _{VREGO}	Regulating output, 3.3 V setting	3.1	3.3	3.5	V
		EM4S open-loop output, I _{OUT} < 100 μA	1.8	_	3.8	V
Voltage output step size	V _{VREGO_SS}		—	0.1	_	V
Resistance in Bypass Mode	R _{BYP}	Bypass mode enabled	_	1.2	TBD	Ω
Output current	I _{OUT}	EM0 or EM1, V _{VREGI} > V _{VREGO} + 0.6 V	_	_	200	mA
		EM0 or EM1, V _{VREGI} > V _{VREGO} + 0.3 V			100	mA
		EM2, EM3, or EM4H, V _{VREGI} > V _{VREGO} + 0.6 V	—	_	2	mA
		EM2, EM3, or EM4H, V _{VREGI} > V _{VREGO} + 0.3 V			0.5	mA
		EM4S	_	_	20	μA
Load regulation	LR _{VREGO}	EM0 or EM1	_	0.10	_	mV/mA
		EM2, EM3, or EM4H	_	2.5	_	mV/mA
DC power supply rejection	PSR _{DC}		_	40	_	dB
VREGI or VBUS bypass ca- pacitance	C _{VREGI}		—	10	_	μF
VREGO bypass capacitance	C _{VREGO}		1	4.7	10	μF
Supply current consumption	I _{VREGI}	EM0 or EM1, No load	_	29		μA
		EM2, EM3, or EM4H, No load	_	270	_	nA
		EM4S, No load	_	70	_	nA
VREGI and VBUS detection high threshold	V _{DET_H}		TBD	1.18	_	V
VREGI and VBUS detection low threshold	V _{DET_L}		_	1.12	TBD	V
Current monitor transfer ratio	IMON _{XF}	Translation of current through VREGO path to voltage at ADC input	_	0.35	_	mA/mV

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM4H mode, with voltage	I _{EM4H_VS}	128 byte RAM retention, RTCC running from LFXO	_	0.94	—	μA
scaling enabled		128 byte RAM retention, CRYO- TIMER running from ULFRCO	—	0.62	—	μA
		128 byte RAM retention, no RTCC	_	0.62	_	μA
Current consumption in EM4S mode	I _{EM4S}	No RAM retention, no RTCC	—	0.13	—	μA
Current consumption of pe- ripheral power domain 1, with voltage scaling enabled, DCDC in LP mode ³	IPD1_VS	Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled ⁴		0.68		μA
Current consumption of pe- ripheral power domain 2, with voltage scaling enabled, DCDC in LP mode ³	I _{PD2_VS}	Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled ⁴		0.28	_	μA

Note:

1. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD.

2. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD.

3. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIM-SEL=1, ANASW=DVDD.

4. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.4 EM2 and EM3 Power Domains for a list of the peripherals in each power domain.

5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1

4.1.12 General-Purpose I/O (GPIO)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Input low voltage	V _{IL}	GPIO pins	—	—	IOVDD*0.3	V
Input high voltage	V _{IH}	GPIO pins	IOVDD*0.7	—	—	V
Output high voltage relative	V _{OH}	Sourcing 3 mA, IOVDD \ge 3 V,	IOVDD*0.8	—	—	V
		DRIVESTRENGTH ¹ = WEAK				
		Sourcing 1.2 mA, IOVDD \ge 1.62 V,	IOVDD*0.6		_	V
		DRIVESTRENGTH ¹ = WEAK				
		Sourcing 20 mA, IOVDD \ge 3 V,	IOVDD*0.8	—	—	V
		DRIVESTRENGTH ¹ = STRONG				
		Sourcing 8 mA, IOVDD ≥ 1.62 V,	IOVDD*0.6	_	—	V
		DRIVESTRENGTH ¹ = STRONG				
Output low voltage relative to	V _{OL}	Sinking 3 mA, IOVDD \ge 3 V,	—	—	IOVDD*0.2	V
		DRIVESTRENGTH ¹ = WEAK				
		Sinking 1.2 mA, IOVDD \ge 1.62 V,	—	—	IOVDD*0.4	V
		DRIVESTRENGTH ¹ = WEAK				
		Sinking 20 mA, IOVDD \ge 3 V,	—	_	IOVDD*0.2	V
		DRIVESTRENGTH ¹ = STRONG				
		Sinking 8 mA, IOVDD ≥ 1.62 V,	—	—	IOVDD*0.4	V
		DRIVESTRENGTH ¹ = STRONG				
Input leakage current	I _{IOLEAK}	All GPIO except LFXO pins, GPIO ≤ IOVDD, T ≤ 85 °C	_	0.1	TBD	nA
		LFXO Pins, GPIO ≤ IOVDD, T ≤ 85 °C	—	0.1	TBD	nA
		All GPIO except LFXO pins, GPIO ≤ IOVDD, T > 85 °C	_	—	TBD	nA
		LFXO Pins, GPIO ≤ IOVDD, T > 85 °C	—	_	TBD	nA
Input leakage current on 5VTOL pads above IOVDD	I _{5VTOLLEAK}	IOVDD < GPIO ≤ IOVDD + 2 V	—	3.3	TBD	μA
I/O pin pull-up/pull-down re- sistor	R _{PUD}		TBD	40	TBD	kΩ
Pulse width of pulses re- moved by the glitch suppres- sion filter	t _{IOGLITCH}		15	25	35	ns

Table 4.20. General-Purpose I/O (GPIO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit				
Note:	,									
 Supply current specification the load. 	1. Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive the load.									
2. In differential mode, the limited to the single-ende	2. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is limited to the single-ended range.									
3. Entire range is monotoni	c and has no mis	ssing codes.								
4. Current from HFPERCLI the clock to the DAC mo	K is dependent o dule is enabled i	n HFPERCLK frequency. This current n the CMU.	contributes to	the total supp	bly current use	ed when				
5. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at 10% of full scale to ideal VDAC output at 10% of full scale with the measured gain.										
6. PSRR calculated as 20 ³	⁻ log ₁₀ (ΔVDD / Δ	V _{OUT}), VDAC output at 90% of full sca	le							

4.1.24 USART SPI

SPI Master Timing

Table 4.34. SPI Master Timing

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCLK period ^{1 3 2}	t _{SCLK}	All USARTs except USART2	2 * ^t HFPERCLK	—	_	ns
		USART2	2 * t _{HFPERBCLK}	_	_	ns
CS to MOSI ^{1 3}	t _{CS_MO}	USART2, location 4, IOVDD = 1.8 V	-3.2	—	6.8	ns
		USART2, location 4, IOVDD = 3.0 V	-2.3		6.0	ns
		USART2, location 5, IOVDD = 1.8 V	-8.1	_	6.3	ns
		USART2, location 5, IOVDD = 3.0 V	-7.3	_	4.4	ns
		All other USARTs and locations, IOVDD = 1.8 V	-15	_	13	ns
		All other USARTs and locations, IOVDD = 3.0 V	-13	—	11	ns
SCLK to MOSI ^{1 3}	t _{SCLK_MO}	USART2, location 4, IOVDD = 1.8 V	-0.3	—	9.2	ns
		USART2, location 4, IOVDD = 3.0 V	-0.3	—	8.6	ns
		USART2, location 5, IOVDD = 1.8 V	-3.6	_	5.0	ns
		USART2, location 5, IOVDD = 3.0 V	-3.4	—	3.2	ns
		All other USARTs and locations, IOVDD = 1.8 V	-10	—	11	ns
		All other USARTs and locations, IOVDD = 3.0 V	-9	_	11	ns
MISO setup time ^{1 3}	t _{SU_MI}	USART2, location 4, IOVDD = 1.8 V	39.7	_	_	ns
		USART2, location 4, IOVDD = 3.0 V	22.4	_	_	ns
		USART2, location 5, IOVDD = 1.8 V	49.2	_	_	ns
		USART2, location 5, IOVDD = 3.0 V	30.0	—	_	ns
		All other USARTs and locations, IOVDD = 1.8 V	55		_	ns
		All other USARTs and locations, IOVDD = 3.0 V	36	_	_	ns

RMII Receive Timing

Timing is specified with 3.0 V \leq IOVDD \leq 3.8 V, 25 pF external loading, and slew rate for all GPIO set to 6 unless otherwise indicated.

Table 4.45.	Ethernet	RMII	Receive	Timing
-------------	----------	------	---------	--------

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
REF_CLK frequency	F _{REF_CLK}	Output slew rate set to 7	—	50	_	MHz
REF_CLK duty cycle	DC _{REF_CLK}		35	_	65	%
Setup time, RXD[1:0], CRS_DV, RX_ER valid to REF_CLK	t _{SU}		4	_	_	ns
Hold time, REF_CLK to RXD[1:0], CRS_DV, RX_ER change	t _{HD}		2	_	_	ns

Figure 4.12. Ethernet RMII Receive Timing

5. Pin Definitions

5.1 EFM32GG11B8xx in BGA192 Device Pinout

Pin A1 index	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	لا	<u>رمج</u>		(1) ³	ar th	(T)	(1)	F9	~F8	<u>(19</u>	510	(A)	(N)5	(T)	619	FO)
4	PAN	PEr C	PE	PEr	PEN	PEN	pt.	60.	60	62.	62	Pr.	100	Pr 2	Pr.	90 0
В	PAU	6017	6070	600	pry	64g	PEI	640	\$IT	628	662	PET3	643	PEL	6EJ	VREGO
С	49	6013	P014	6013	P113	PI14	PI13	PI13	P170	6IJ	pF13	PET3	PFA	673	PC14	VREGI
D	(TAG)	600	P015											PC13	C12	PC77
E	EA9	602	6CJ											¢C70	609	623
F	PAG	PGA	PG3			TONDOS	IOND)	55	MC.	TONDOG	TONDE)		619	p14	P13
G	PAS	609	PG5			TONDE	TONDI	(JS)	159.	TONDOG	TONDE)		623	617	610
н	049	608	PGT			159	159	(55)	(15 ⁵)	(15 ⁵)	(15 ⁵)			PES	PEG	PET
J	617	PG10	PG9			455	(15 ⁵)	(15 ⁵)	(15 ⁵)	(15 ⁵)	159			PE3	PEA C	ECOUPLE
к	PG14	PG13	PG12			TONDE	TONDE	159	(5°).	TONDE	TONDE)		PEL	PE2	DNDD
L	PG13	PB15	PB0			TONDE	TONDE	159	(5°).	TONDE	TONDE)		PEO	60)	REGUDD
М	PB ¹	682	PB3											60	REGVS	VREGSW
Ν	PBA	PB5	680											609	P04	REGUSS
Ρ	609	PC3	602	849	PAI	PA13	PB9	PB12	PH2	PHS	PH8	eH1]	PH13	009	603	809
R	681	PC3	609	649	BODEN	RESET	B19	PH0	pH3	646	PH9	PHIZ	PH14	PH15	602	109
т	PB8	PCA	(TAG)	PA10	PAIZ	PALA	B 1	PHI	PHA	(PHT)	PH10	PB13	p814	AVOD	607	009

Figure 5.1. EFM32GG11B8xx in BGA192 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA15	A1	GPIO	PE15	A2	GPIO
PE14	A3	GPIO	PE13	A4	GPIO
PE12	A5	GPIO	PE11	A6	GPIO
PE10	A7	GPIO	PE9	A8	GPIO
PE8	A9	GPIO	PI9	A10	GPIO (5V)
PI6	A11	GPIO (5V)	PF14	A12	GPIO (5V)

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PC1	K2	GPIO (5V)	PE0	K12	GPIO (5V)
VREGSW	K13	DCDC regulator switching node	PC2	L1	GPIO (5V)
PC3	L2	GPIO (5V)	PA7	L3	GPIO
PB9	L13	GPIO (5V)	PB10	L14	GPIO (5V)
PD1	L17	GPIO	PC6	L18	GPIO
PC7	L19	GPIO	VREGVSS	L20	Voltage regulator VSS
PB7	M1	GPIO	PC4	M2	GPIO
PA8	M3	GPIO	PA10	M4	GPIO
PA13	M5	GPIO (5V)	PA14	M6	GPIO
RESETn	M7	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB12	M8	GPIO
PD0	M9	GPIO (5V)	PD2	M10	GPIO (5V)
PD3	M11	GPIO	PD4	M12	GPIO
PD8	M13	GPIO	PB8	N1	GPIO
PC5	N2	GPIO	PA9	N3	GPIO
PA11	N4	GPIO	PA12	N5	GPIO (5V)
PB11	N6	GPIO	BODEN	N7	Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD.
PB13	N8	GPIO	PB14	N9	GPIO
AVDD	N10	Analog power supply.	PD5	N11	GPIO
PD6	N12	GPIO	PD7	N13	GPIO

Note:

1. GPIO with 5V tolerance are indicated by (5V).

2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PC1	J1	GPIO (5V)	PC3	J2	GPIO (5V)
PD15	J3	GPIO (5V)	PA12	J4	GPIO (5V)
PA9	J5	GPIO	PA10	J6	GPIO
PB9	J7	GPIO (5V)	PB10	J8	GPIO (5V)
PD2	J9	GPIO (5V)	PD3	J10	GPIO
PD4	J11	GPIO	PB7	K1	GPIO
PC4	K2	GPIO	PA13	K3	GPIO (5V)
PA11	К5	GPIO	RESETn	K6	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
AVDD	K8 K9 L10	Analog power supply.	PD1	K11	GPIO
PB8	L1	GPIO	PC5	L2	GPIO
PA14	L3	GPIO	PB11	L5	GPIO
PB12	L6	GPIO	PB13	L8	GPIO
PB14	L9	GPIO	PD0	L11	GPIO (5V)

Note:

1. GPIO with 5V tolerance are indicated by (5V).

2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.

Figure 5.17. EFM32GG11B5xx in QFN64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Table 5.17. EFM32GG11B5xx in QFN64 Device Pino	ut
--	----

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VSS	0	Ground	PA0	1	GPIO
PA1	2	GPIO	PA2	3	GPIO
PA3	4	GPIO	PA4	5	GPIO
PA5	6	GPIO	PA6	7	GPIO
IOVDD0	8 27 55	Digital IO power supply 0.	PB3	9	GPIO
PB4	10	GPIO	PB5	11	GPIO

Alternate	rnate LOCATION				
Functionality	0 - 3	4 - 7	Description		
BU_STAT	0: PE3		Backup Power Domain status, whether or not the system is in backup mode.		
BU_VIN	0: PD8		Battery input for Backup Power Domain.		
BU_VOUT	0: PE2		Power output for Backup Power Domain.		
CAN0_RX	0: PC0 1: PF0 2: PD0 3: PB9	4: PG8 5: PD14 6: PE0 7: PI12	CAN0 RX.		
CAN0_TX	0: PC1 1: PF2 2: PD1 3: PB10	4: PG9 5: PD15 6: PE1 7: PI13	CAN0 TX.		
CAN1_RX	0: PC2 1: PF1 2: PD3 3: PC9	4: PC12 5: PA12 6: PG10 7: PI14	CAN1 RX.		
CAN1_TX	0: PC3 1: PF3 2: PD4 3: PC10	4: PC11 5: PA13 6: PG11 7: PI15	CAN1 TX.		
CMU_CLK0	0: PA2 1: PC12 2: PD7 3: PG2	4: PF2 5: PA12	Clock Management Unit, clock output number 0.		
CMU_CLK1	0: PA1 1: PD8 2: PE12 3: PG1	4: PF3 5: PB11	Clock Management Unit, clock output number 1.		
CMU_CLK2	0: PA0 1: PA3 2: PD6 3: PG0	4: PA3 5: PD10	Clock Management Unit, clock output number 2.		
CMU_CLKI0	0: PD4 1: PA3 2: PB8 3: PB13	4: PE1 5: PD10 6: PE12 7: PB11	Clock Management Unit, clock input number 0.		
DBG_SWCLKTCK	0: PF0		Debug-interface Serial Wire clock input and JTAG Test Clock. Note that this function is enabled to the pin out of reset, and has a built-in pull down.		
DBG_SWDIOTMS	0: PF1		Debug-interface Serial Wire data input / output and JTAG Test Mode Select. Note that this function is enabled to the pin out of reset, and has a built-in pull up.		

Alternate	LOCATION				
Functionality	0 - 3	4 - 7	Description		
EBI_AD08	0: PA15 1: PC1 2: PG8		External Bus Interface (EBI) address and data input / output pin 08.		
EBI_AD09	0: PA0 1: PC2 2: PG9		External Bus Interface (EBI) address and data input / output pin 09.		
EBI_AD10	0: PA1 1: PC3 2: PG10		External Bus Interface (EBI) address and data input / output pin 10.		
EBI_AD11	0: PA2 1: PC4 2: PG11		External Bus Interface (EBI) address and data input / output pin 11.		
EBI_AD12	0: PA3 1: PC5 2: PG12		External Bus Interface (EBI) address and data input / output pin 12.		
EBI_AD13	0: PA4 1: PA7 2: PG13		External Bus Interface (EBI) address and data input / output pin 13.		
EBI_AD14	0: PA5 1: PA8 2: PG14		External Bus Interface (EBI) address and data input / output pin 14.		
EBI_AD15	0: PA6 1: PA9 2: PG15		External Bus Interface (EBI) address and data input / output pin 15.		
EBI_ALE	0: PF3 1: PB9 2: PC4 3: PB5	4: PC11 5: PC11	External Bus Interface (EBI) Address Latch Enable output.		
EBI_ARDY	0: PF2 1: PD13 2: PB15 3: PB4	4: PC13 5: PF10	External Bus Interface (EBI) Hardware Ready Control input.		
EBI_BL0	0: PF6 1: PF8 2: PB10 3: PC1	4: PF6 5: PF6	External Bus Interface (EBI) Byte Lane/Enable pin 0.		
EBI_BL1	0: PF7 1: PF9 2: PB11 3: PC3	4: PF7 5: PF7	External Bus Interface (EBI) Byte Lane/Enable pin 1.		
EBI_CS0	0: PD9 1: PA10 2: PC0 3: PB0	4: PE8	External Bus Interface (EBI) Chip Select output 0.		

Alternate	LOCA	TION	
Functionality	0 - 3	4 - 7	Description
LCD_SEG7	0: PE11		LCD segment line 7.
LCD_SEG8	0: PE12		LCD segment line 8.
LCD_SEG9	0: PE13		LCD segment line 9.
LCD_SEG10	0: PE14		LCD segment line 10.
LCD_SEG11	0: PE15		LCD segment line 11.
LCD_SEG12	0: PA15		LCD segment line 12.
LCD_SEG13	0: PA0		LCD segment line 13.
LCD_SEG14	0: PA1		LCD segment line 14.
LCD_SEG15	0: PA2		LCD segment line 15.
LCD_SEG16	0: PA3		LCD segment line 16.
LCD_SEG17	0: PA4		LCD segment line 17.
LCD_SEG18	0: PA5		LCD segment line 18.
LCD_SEG19	0: PA6		LCD segment line 19.

Alternate	LOCATION			
Functionality	0 - 3	4 - 7	Description	
US3_RTS	0: PA5 1: PC1 2: PA14 3: PC15	4: PG5 5: PG11	USART3 Request To Send hardware flow control output.	
US3_RX	0: PA1 1: PE7 2: PB7 3: PG7	4: PG1 5: PI13	USART3 Asynchronous Receive. USART3 Synchronous mode Master Input / Slave Output (MISO).	
US3_TX	0: PA0 1: PE6 2: PB3 3: PG6	4: PG0 5: PI12	USART3 Asynchronous Transmit. Also used as receive input in half duplex communica- tion. USART3 Synchronous mode Master Output / Slave Input (MOSI).	
US4_CLK	0: PC4 1: PD11 2: PI2 3: PI8	4: PH6	USART4 clock input / output.	
US4_CS	0: PC5 1: PD12 2: PI3 3: PI9	4: PH7	USART4 chip select input / output.	
US4_CTS	0: PA7 1: PD13 2: PI4 3: PI10	4: PH8	USART4 Clear To Send hardware flow control input.	
US4_RTS	0: PA8 1: PD14 2: PI5 3: PI11	4: PH9	USART4 Request To Send hardware flow control output.	
US4_RX	0: PB8 1: PD10 2: PI1 3: PI7	4: PH5	USART4 Asynchronous Receive. USART4 Synchronous mode Master Input / Slave Output (MISO).	
US4_TX	0: PB7 1: PD9 2: PI0 3: PI6	4: PH4	USART4 Asynchronous Transmit. Also used as receive input in half duplex communica- tion. USART4 Synchronous mode Master Output / Slave Input (MOSI).	
US5_CLK	0: PB11 1: PD13 2: PF13 3: PH12		USART5 clock input / output.	
US5_CS	0: PB13 1: PD14 2: PF12 3: PH13		USART5 chip select input / output.	
US5_CTS	0: PB14 1: PD15 2: PF11 3: PH14		USART5 Clear To Send hardware flow control input.	
US5_RTS	0: PB12 1: PB15 2: PF10 3: PH15		USART5 Request To Send hardware flow control output.	

Alternate	LOCATION		
Functionality	0 - 3	4 - 7	Description
US5 RX	0: PE9 1: PA7		USART5 Asynchronous Receive.
	2: PB1 3: PH11		USART5 Synchronous mode Master Input / Slave Output (MISO).
US5_TX	0: PE8 1: PA6		USART5 Asynchronous Transmit. Also used as receive input in half duplex communica- tion.
	2. PF 15 3: PH10		USART5 Synchronous mode Master Output / Slave Input (MOSI).
USB_DM	0: PF10		USB D- pin.
USB_DP	0: PF11		USB D+ pin.
USB_ID	0: PF12		USB ID pin.
USB_VBUSEN	0: PF5		USB 5 V VBUS enable.
VDAC0_EXT	0: PD6		Digital to analog converter VDAC0 external reference input pin.
VDAC0_OUT0 / OPA0_OUT	0: PB11		Digital to Analog Converter DAC0 output channel number 0.
VDAC0_OUT0ALT / OPA0_OUTALT	0: PC0 1: PC1 2: PC2 3: PC3	4: PD0	Digital to Analog Converter DAC0 alternative output for channel 0.
VDAC0_OUT1 / OPA1_OUT	0: PB12		Digital to Analog Converter DAC0 output channel number 1.
VDAC0_OUT1ALT / OPA1_OUTALT	0: PC12 1: PC13 2: PC14 3: PC15	4: PD1	Digital to Analog Converter DAC0 alternative output for channel 1.
WTIM0_CC0	0: PE4 1: PA6 2: PG2 3: PG8	4: PC15 5: PB0 6: PB3 7: PC1	Wide timer 0 Capture Compare input / output channel 0.
WTIM0_CC1	0: PE5 1: PD13 2: PG3 3: PG9	4: PF0 5: PB1 6: PB4 7: PC2	Wide timer 0 Capture Compare input / output channel 1.

Figure 6.3. BGA192 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

8.2 BGA120 PCB Land Pattern

Figure 8.2. BGA120 PCB Land Pattern Drawing

Figure 8.3. BGA120 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

Figure 9.3. BGA112 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

Dimension	Min	Тур	Мах		
A	_	1.15	1.20		
A1	0.05	_	0.15		
A2	0.95	1.00	1.05		
b	0.17	0.22	0.27		
b1	0.17	0.20	0.23		
С	0.09	_	0.20		
c1	0.09	—	0.16		
D	12.00 BSC				
D1	10.00 BSC				
е	0.50 BSC				
E	12.00 BSC				
E1	10.00 BSC				
L	0.45 0.60 0.75				
L1	1.00 REF				
R1	0.08	_	_		
R2	0.08	0.20			
S	0.20 — —				
θ	0 3.5 7				
θ1	0	_	0.10		
θ2	11	12	13		
θ3	11	12	13		

Table 11.1. TQFP64 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.