

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b420f2048gq64-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. System Overview

3.1 Introduction

The Giant Gecko Series 1 product family is well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the MCU system. The detailed functional description can be found in the Giant Gecko Series 1 Reference Manual.

A block diagram of the Giant Gecko Series 1 family is shown in Figure 3.1 Detailed EFM32GG11 Block Diagram on page 11. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.

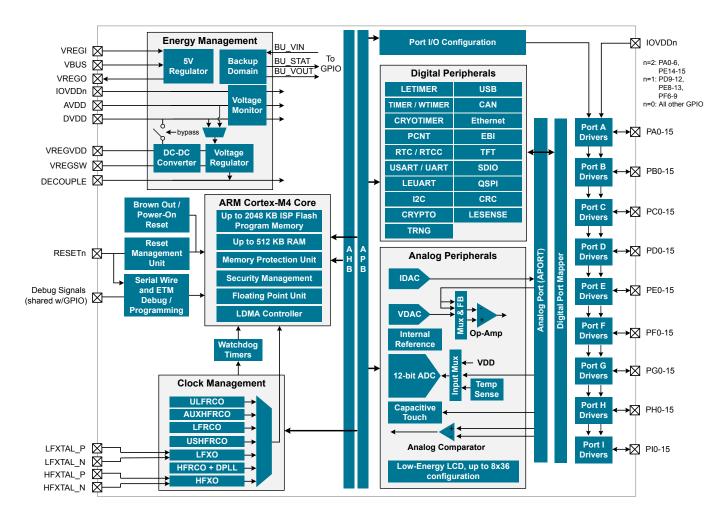


Figure 3.1. Detailed EFM32GG11 Block Diagram

3.8.4 Capacitive Sense (CSEN)

The CSEN module is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a switches and sliders. The CSEN module uses a charge ramping measurement technique, which provides robust sensing even in adverse conditions including radiated noise and moisture. The module can be configured to take measurements on a single port pin or scan through multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter, as well as digital threshold comparators to reduce software overhead.

3.8.5 Digital to Analog Current Converter (IDAC)

The Digital to Analog Current Converter can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 μ A and 64 μ A with several ranges consisting of various step sizes.

3.8.6 Digital to Analog Converter (VDAC)

The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500 ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any CPU intervention. The VDAC is available in all energy modes down to and including EM3.

3.8.7 Operational Amplifiers

The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to rail output. They can be used in conjunction with the VDAC module or in stand-alone configurations. The opamps save energy, PCB space, and cost as compared with standalone opamps because they are integrated on-chip.

3.8.8 Liquid Crystal Display Driver (LCD)

The LCD driver is capable of driving a segmented LCD display with up to 8x36 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. A patented charge redistribution driver can reduce the LCD module supply current by up to 40%. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data.

3.9 Reset Management Unit (RMU)

The RMU is responsible for handling reset of the EFM32GG11. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.

3.10 Core and Memory

3.10.1 Processor Core

The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:

- ARM Cortex-M4 RISC processor with FPU achieving 1.25 Dhrystone MIPS/MHz
- Memory Protection Unit (MPU) supporting up to 8 memory segments
- Embedded Trace Macrocell (ETM) for real-time trace and debug
- Up to 2048 kB flash program memory
 - · Dual-bank memory with read-while-write support
- Up to 512 kB RAM data memory
- · Configuration and event handling of all modules
- · 2-pin Serial-Wire or 4-pin JTAG debug interface

3.10.2 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep.

3.10.3 Linked Direct Memory Access Controller (LDMA)

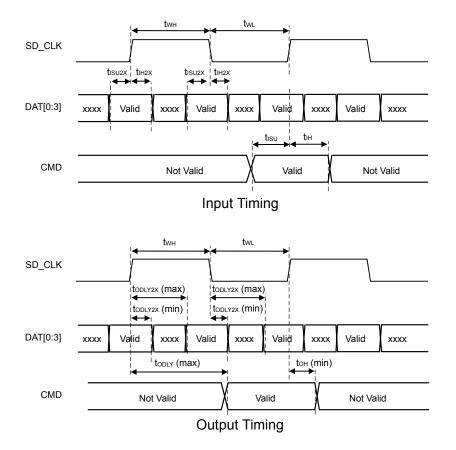
The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling so-phisticated operations to be implemented.

3.10.4 Bootloader

All devices come pre-programmed with a UART bootloader. This bootloader resides in flash and can be erased if it is not needed. More information about the bootloader protocol and usage can be found in *AN0003: UART Bootloader*. Application notes can be found on the Silicon Labs website (www.silabs.com/32bit-appnotes) or within Simplicity Studio in the [**Documentation**] area.

0x40024000	ETH	Ņ		8xe0100008	/	PRS	0x400e6000
0x40022400		1	CM4 Peripherals	8xe00fffff	,	RMU	0x400e5400
0x40022000	USB				1	KMIO	0x400e5000
0x40020400		1		8xdfffffff		СМИ	0x400e4400
0x40020000	SMU		QSPI0	8xcfffffff		0.10	0x400e4000
0x4001d400				8×955555555	1	EMU	0x400e3400
0x4001d000	TRNG0	[\	5010 1 0		1		0x400e3000 0x4008f400
0x4001c800			EBI Region 3	8x8c666666		CRYOTIMER	0x4008f000
0x4001c400	QSPI0		EBI Region 2	8x88999999	,		0x4008e400
0x4001c000	GPCRC		EBI Region 1	8x87ffffff	1	CSEN	0x4008e000
0x4001b000			EBI Region 0	8×83ffffff		2C2	0x40089c00
0x4001ac00	WTIMER3		EBI Region 0		1	202	0x40089800
0x4001a800	WTIMER2	1		8x366f6466	1	2C0	0x40089400
0x4001a400	WTIMER1	1	Bit Set	0x460f03ff		GPIO	0x40089000
0x4001a000	WTIMER0		(Peripherals / CRYPTO0)	0×46000000	/		0x40088000
0x40019c00		1		8×455f6466	/	VDAC0	0x40086400 0x40086000
0x40019800	TIMER6			0x44010400 0x440f03ff			0x40086000
0x40019400	TIMER5	(·	Bit Clear (Peripherals / CRYPTO0)		1	DAC0	0x40084000
0x40019000	TIMER4	۱ ۱	(renpherals / ettir roo)	0x44000000			0x40082800
0x40018c00	TIMER3			8x43£46666		ADC1	0x40082400
0x40018800	TIMER2	1	Bit-Band	0x43e3ffff	1	ADC0	0x40082000
0x40018800	TIMER1] \	(Peripherals / CRYPTO0 / SDI	O) _{0×42000000}		ACMP3	0x40081000
0x40018400	TIMERO			8×40146666	' '	ACMP2	0x40080c00
0x40018000) \	USB	8×48135555	1	ACMP1	0x40080800
0x40014800 0x40014400	UART1	1 \	058			ACMP0	0x40080400
0x40014400 0x40014000	UART0			8×488‡£555	'		0x40080000
0x40014000 0x40011800		1 \	SDIO	8×488f1666	1	PCNT2	0x4006ec00 0x4006e800
	USART5	1 \			1	PCNT1	0x4006e400
0x40011400 0x40011000	USART4	1		8×488f8455	1	PCNT0	0x4006e000
	USART3	1 \	CRYPTO0	8×488‡8355	/		0x4006a800
0x40010c00	USART2	1	Peripherals 1	8×48845555		LEUART1 LEUART0	0x4006a400
0x40010800	USART1		Desigh and a O			LEUARTO	0x4006a000
0x40010400	USART0	1	Peripherals 0	8×48835555	1	LETIMER1	0x40066800
0x40010000		1		8×36666666		LETIMERO	0x40066400
0x4000b400	EBI	1 /	SRAM (bit-band)	8x22666666	`		0×40066000
0x4000b000		1 /			Λ.	RTCC	0x40062400 0x40062000
0x40004800	CAN1			8x21656666	\ \		0x40062000
0x40004400	CAN0		RAM2 (data space)	8x28846666	`	RTC	0x40060000
0x40004000		1 /	RAM1 (data space)	8×28835555	\		0x40055400
0x40003000	LDMA				\mathbf{i}	LESENSE	0x40055000
0x40002000			RAM0 (data space)	8x28816666	N.	LCD	0x40054400
0x40001400	FPUEH	1 /		0x1fffffff	\		0x40054000
0x40001000		1 /	Code		Λ.	WDOG1	0x40052800
0×40000800	MSC	/		0×00000000	\ \	WDOG1 WDOG0	0x40052400
0x40000000		r			i '		0x40052000

Figure 3.3. EFM32GG11 Memory Map — Peripherals


4.1.10.2 High-Frequency Crystal Oscillator (HFXO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal frequency	f _{HFXO}	No clock doubling	4		50	MHz
		Clock doubler enabled	TBD		TBD	MHz
Supported crystal equivalent	ESR _{HFXO}	50 MHz crystal			50	Ω
series resistance (ESR)		24 MHz crystal	_		150	Ω
		4 MHz crystal	—		180	Ω
Nominal on-chip tuning cap range ¹	C _{HFXO_T}	On each of HFXTAL_N and HFXTAL_P pins	8.7		51.7	pF
On-chip tuning capacitance step	SS _{HFXO}		_	0.084	_	pF
Startup time	t _{HFXO}	50 MHz crystal, ESR = 50 Ohm, $C_L = 8 pF$		350	_	μs
		24 MHz crystal, ESR = 150 Ohm, $C_L = 6 pF$		700	_	μs
		4 MHz crystal, ESR = 180 Ohm, C_L = 18 pF		3		ms
Current consumption after	I _{HFXO}	50 MHz crystal	—	880	_	μA
startup		24 MHz crystal		420	_	μA
		4 MHz crystal	—	80	_	μA

Table 4.13. High-Frequency Crystal Oscillator (HFXO)

Note:

1. The effective load capacitance seen by the crystal will be C_{HFXO_T} /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description			
Note:	Note:							
1. GPIO with	1. GPIO with 5V tolerance are indicated by (5V).							
2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hard- ware compatibility, do not use these pins with 5V domains.								

5.6 EFM32GG11B4xx in BGA112 Device Pinout

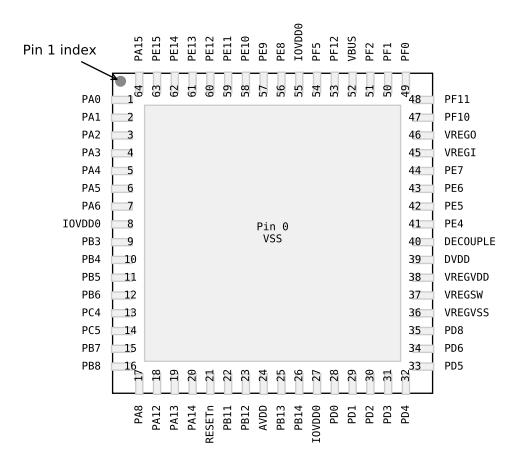

Pin A1 index	1	2	3	4	5	6	7	8	9	10	11
A	PELS	PE14	PELZ	(PE9)	2010	(PFT)	PF5	PFIZ	(PEA)	PF10	pF1
В	PALS	PEL3	PEL	PE8	6017	PF8	(PF6)	BUS	PE5	VREGI	REGD
C	(LAG)	PAO	PEIO	6013	6013	PF9	455	PF2	PEO	6C10	6C1-)
D	(PA3)	PAZ	PB1 ⁵	N55	TONDI	(PD9)	101000	PFI	PET	PC8	(⁶)9
E	PAG	PAS	PAA	<i>680</i>				PEO	PEO	PEL	PE3
F	PBI	(PB2)	PB3	(PBA)				pupp	15S	PE2	DECOUPLE
G	PB5	(PB6)	155	101002				TONDO	155	<i>(0)</i>	(PC1)
Н	(PC)	PC2	6014	(TA9)	849	(155)	TONODO	(P08)	(PD5)	<i>609</i>	(<i>TO</i> 9)
J	PCJ	PC3	015	PAIZ	PA9	PLAG	PB9	6810	605	(PD3)	(A09)
К	PB1	PCA	E149	(155)	eA1	RESETIN	155	AVOD	AVOD	155	(09)
L	P88	PC5	PALA	10000	6811	0813	155	6813	PB14	AVOD	<i>(00</i> 9

Figure 5.6. EFM32GG11B4xx in BGA112 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Table 5.6. EFM32GG11B4xx in BGA112 Device Pinc	ut
--	----

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PE15	A1	GPIO	PE14	A2	GPIO
PE12	A3	GPIO	PE9	A4	GPIO
PD10	A5	GPIO	PF7	A6	GPIO
PF5	A7	GPIO	PF12	A8	GPIO
PE4	A9	GPIO	PF10	A10	GPIO (5V)
PF11	A11	GPIO (5V)	PA15	B1	GPIO
PE13	B2	GPIO	PE11	В3	GPIO

Figure 5.16. EFM32GG11B8xx in QFN64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Table 5.16. EFM32GG11B8xx in QFN64 Device Pinout
--

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VSS	0	Ground	PA0	1	GPIO
PA1	2	GPIO	PA2	3	GPIO
PA3	4	GPIO	PA4	5	GPIO
PA5	6	GPIO	PA6	7	GPIO
IOVDD0	8 27 55	Digital IO power supply 0.	PB3	9	GPIO
PB4	10	GPIO	PB5	11	GPIO

Alternate	LOCATION					
Functionality	0 - 3	4 - 7	Description			
BU_STAT	0: PE3		Backup Power Domain status, whether or not the system is in backup mode.			
BU_VIN	0: PD8		Battery input for Backup Power Domain.			
BU_VOUT	0: PE2		Power output for Backup Power Domain.			
CAN0_RX	0: PC0 1: PF0 2: PD0 3: PB9	4: PG8 5: PD14 6: PE0 7: PI12	CAN0 RX.			
CAN0_TX	0: PC1 1: PF2 2: PD1 3: PB10	4: PG9 5: PD15 6: PE1 7: PI13	CAN0 TX.			
CAN1_RX	0: PC2 1: PF1 2: PD3 3: PC9	4: PC12 5: PA12 6: PG10 7: PI14	CAN1 RX.			
CAN1_TX	0: PC3 1: PF3 2: PD4 3: PC10	4: PC11 5: PA13 6: PG11 7: PI15	CAN1 TX.			
CMU_CLK0	0: PA2 1: PC12 2: PD7 3: PG2	4: PF2 5: PA12	Clock Management Unit, clock output number 0.			
CMU_CLK1	0: PA1 1: PD8 2: PE12 3: PG1	4: PF3 5: PB11	Clock Management Unit, clock output number 1.			
CMU_CLK2	0: PA0 1: PA3 2: PD6 3: PG0	4: PA3 5: PD10	Clock Management Unit, clock output number 2.			
CMU_CLKI0	0: PD4 1: PA3 2: PB8 3: PB13	4: PE1 5: PD10 6: PE12 7: PB11	Clock Management Unit, clock input number 0.			
DBG_SWCLKTCK	0: PF0		Debug-interface Serial Wire clock input and JTAG Test Clock. Note that this function is enabled to the pin out of reset, and has a built-in pull down.			
DBG_SWDIOTMS	0: PF1		Debug-interface Serial Wire data input / output and JTAG Test Mode Select. Note that this function is enabled to the pin out of reset, and has a built-in pull up.			

Alternate	LOCATION		
Functionality	0 - 3	4 - 7	Description
ETH_MDIO	0: PB3 1: PD13 2: PC0 3: PA15		Ethernet Management Data I/O.
ETH_MIICOL	0: PB2 1: PG15 2: PB4		Ethernet MII Collision Detect.
ETH_MIICRS	0: PB1 1: PG14 2: PB3		Ethernet MII Carrier Sense.
ETH_MIIRXCLK	0: PA15 1: PG7 2: PD12		Ethernet MII Receive Clock.
ETH_MIIRXD0	0: PE12 1: PG11 2: PF9		Ethernet MII Receive Data Bit 0.
ETH_MIIRXD1	0: PE13 1: PG10 2: PD9		Ethernet MII Receive Data Bit 1.
ETH_MIIRXD2	0: PE14 1: PG9 2: PD10		Ethernet MII Receive Data Bit 2.
ETH_MIIRXD3	0: PE15 1: PG8 2: PD11		Ethernet MII Receive Data Bit 3.
ETH_MIIRXDV	0: PE11 1: PG12 2: PF8		Ethernet MII Receive Data Valid.
ETH_MIIRXER	0: PE10 1: PG13 2: PF7		Ethernet MII Receive Error.
ETH_MIITXCLK	0: PA0 1: PG0		Ethernet MII Transmit Clock.
ETH_MIITXD0	0: PA4 1: PG4		Ethernet MII Transmit Data Bit 0.
ETH_MIITXD1	0: PA3 1: PG3		Ethernet MII Transmit Data Bit 1.

Alternate	LOCATION		
Functionality	0 - 3	4 - 7	Description
PRS_CH7	0: PB13 1: PA7 2: PE7		Peripheral Reflex System PRS, channel 7.
PRS_CH8	0: PA8 1: PA2 2: PE9		Peripheral Reflex System PRS, channel 8.
PRS_CH9	0: PA9 1: PA3 2: PB10		Peripheral Reflex System PRS, channel 9.
PRS_CH10	0: PA10 1: PC2 2: PD4		Peripheral Reflex System PRS, channel 10.
PRS_CH11	0: PA11 1: PC3 2: PD5		Peripheral Reflex System PRS, channel 11.
PRS_CH12	0: PA12 1: PB6 2: PD8		Peripheral Reflex System PRS, channel 12.
PRS_CH13	0: PA13 1: PB9 2: PE14		Peripheral Reflex System PRS, channel 13.
PRS_CH14	0: PA14 1: PC6 2: PE15		Peripheral Reflex System PRS, channel 14.
PRS_CH15	0: PA15 1: PC7 2: PF0		Peripheral Reflex System PRS, channel 15.
PRS_CH16	0: PA4 1: PB12 2: PE4		Peripheral Reflex System PRS, channel 16.
PRS_CH17	0: PA5 1: PB15 2: PE5		Peripheral Reflex System PRS, channel 17.
PRS_CH18	0: PB2 1: PC10 2: PC4		Peripheral Reflex System PRS, channel 18.
PRS_CH19	0: PB3 1: PC11 2: PC5		Peripheral Reflex System PRS, channel 19.

Alternate	LOCA	TION	
Functionality	0 - 3	4 - 7	Description
QSPI0_DQ7	0: PE11 1: PB6 2: PG8		Quad SPI 0 Data 7.
QSPI0_DQS	0: PF9 1: PE15 2: PG11		Quad SPI 0 Data S.
QSPI0_SCLK	0: PF6 1: PE14 2: PG0		Quad SPI 0 Serial Clock.
SDIO_CD	0: PF8 1: PC4 2: PA6 3: PB10		SDIO Card Detect.
SDIO_CLK	0: PE13 1: PE14		SDIO Serial Clock.
SDIO_CMD	0: PE12 1: PE15		SDIO Command.
SDIO_DAT0	0: PE11 1: PA0		SDIO Data 0.
SDIO_DAT1	0: PE10 1: PA1		SDIO Data 1.
SDIO_DAT2	0: PE9 1: PA2		SDIO Data 2.
SDIO_DAT3	0: PE8 1: PA3		SDIO Data 3.
SDIO_DAT4	0: PD12 1: PA4		SDIO Data 4.
SDIO_DAT5	0: PD11 1: PA5		SDIO Data 5.
SDIO_DAT6	0: PD10 1: PB3		SDIO Data 6.

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
APORT0X	BUSACMP3X																									PH15	PH14	PH13	PH12	PH11	PH10	6H9	PH8
APORT0Y	BUSACMP3Y																									PH15	PH14	PH13	PH12	PH11	PH10	6H9	PH8
APORT1X	BUSAX		PB14		PB12		PB10				PB6		PB4		PB2		PB0		PA14		PA12		PA10		PA8		PA6		PA4		PA2		PA0
APORT1Y	BUSAY	PB15		PB13		PB11		PB9				PB5		PB3		PB1		PA15		PA13		PA11		PA9		PA7		PA5		PA3		PA1	
APORT2X	BUSBX	PB15		PB13		PB11		PB9				PB5		PB3		PB1		PA15		PA13		PA11		PA9		PA7		PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12		PB10				PB6		PB4		PB2		PB0		PA14		PA12		PA10		PA8		9Yd		PA4		PA2		PA0
APORT3X	BUSCX		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0		PE14		PE12		PE10		PE8		93d		PE4				PEO
APORT3Y	BUSCY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		199		PE15		PE13		PE11		PE9		PE7		PE5				PE1	
APORT4X	BUSDX	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5				PE1	
APORT4Y	BUSDY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				PEO

Table 5.26. ACMP3 Bus and Pin Mapping

6.2 BGA192 PCB Land Pattern

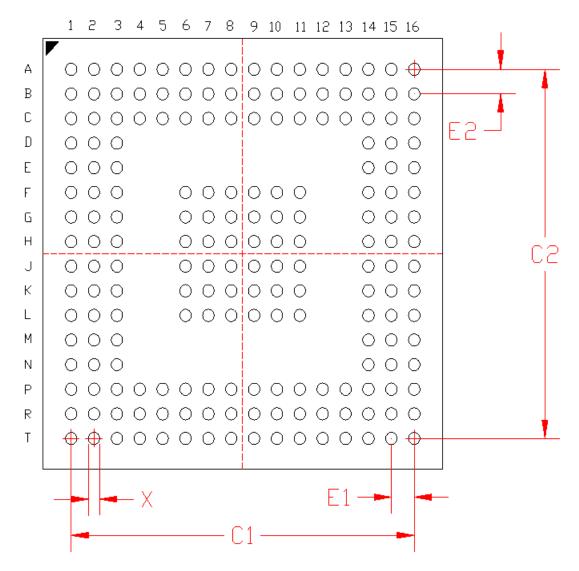


Figure 6.2. BGA192 PCB Land Pattern Drawing

Dimension	Min	Тур	Мах							
A	0.78	0.84	0.90							
A1	0.13	0.18	0.23							
A3	0.16	0.24								
A2		0.45 REF								
D	8.00 BSC									
е	0.50 BSC									
E	8.00 BSC									
D1	6.50 BSC									
E1	6.50 BSC									
b	0.20 0.25 0.30									
ааа	0.10									
bbb	0.10									
ddd	0.08									
eee		0.15								
fff	0.05									
Noto	1									

Table 7.1. BGA152 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

Dimension	Min	Тур	Мах							
A	0.78	0.84	0.90							
A1	0.13	0.18	0.23							
A3	0.17 0.21 0.25									
A2		0.45 REF								
D	7.00 BSC									
е	0.50 BSC									
E	7.00 BSC									
D1	6.00 BSC									
E1	6.00 BSC									
b	0.20 0.25 0.30									
ааа	0.10									
bbb		0.10								
ddd	0.08									
еее		0.15								
fff	0.05									
Noto	1									

Table 8.1. BGA120 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

Dimension	Min	Тур	Мах							
A	-	-	1.20							
A1	0.05	-	0.15							
A2	0.95 1.00 1.05									
b	0.17 0.22 0.27									
b1	0.17	0.17 0.20 0.23								
С	0.09	0.09 -								
c1	0.09	0.16								
D	16.0 BSC									
E	16.0 BSC									
D1	14.0 BSC									
E1	14.0 BSC									
е	0.50 BSC									
L1		1 REF								
L	0.45	0.60	0.75							
θ	0	0 3.5								
θ1	0	0 -								
θ2	11	12	13							
θ3	11	12	13							
R1	0.08	-	-							
R2	0.08	-	0.2							
S	0.2	-	-							
ааа		0.2								
bbb		0.2								
ссс		0.08								
ddd		0.08								
eee	0.05									
Noto:										

Table 10.1. TQFP100 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

Dimension	Min	Тур	Мах							
A	0.70	0.75	0.80							
A1	0.00	_	0.05							
b	0.20	0.25	0.30							
A3		0.203 REF								
D	9.00 BSC									
е	0.50 BSC									
E	9.00 BSC									
D2	7.10	7.20	7.30							
E2	7.10	7.20	7.30							
L	0.40	0.45	0.50							
L1	0.00	_	0.10							
ааа		0.10								
bbb	0.10									
ссс		0.10								
ddd		0.05								
еее	0.08									
Note:										

Table 12.1. QFN64 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

Figure 12.3. QFN64 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.