

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	95
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	120-VFBGA
Supplier Device Package	120-BGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b510f2048il120-ar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. System Overview

3.1 Introduction

The Giant Gecko Series 1 product family is well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the MCU system. The detailed functional description can be found in the Giant Gecko Series 1 Reference Manual.

A block diagram of the Giant Gecko Series 1 family is shown in Figure 3.1 Detailed EFM32GG11 Block Diagram on page 11. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.

Figure 3.1. Detailed EFM32GG11 Block Diagram

	ETU ETU	Λ				1 DDC	
0x40024000	EIH	1		8%40100008		PRS	0x400e6000
0x40022400	LICD	1	CM4 Peripherals	8xe8866666	1 /	BMU	0x400e5400
0x40022000	USB			Q×dfffffff	1 .		0x400e5000
0x40020400	CMU			Oxd0000000		СМИ	0x400e4400
0x40020000	SMO	1	QSPIO	8559999999	l i		0x400e4000
0x4001d400	TENCO	4 、		8×8222222	1 /	EMU	0x400e3000
0x4001d000	TRNGO	· ·	EBI Region 3	0×8ffffffff	1 /	coverture.	0x4008f400
0x4001c800	OSPIO	1	5010	Av8hffffff	ł /		0x4008f000
0x4001c400	GPCBC	4 \	EBI Region 2	0288000000	i i	CSEN	0x4008e400
0x4001c000	Grence	· ·	EBI Region 1	8x84555555	/	GGEN	0x4008e000
0x4001b000	WTIMER3	1	EBI Region 0	8×83ffffff	1 /	12C2	0x40089c00
0x4001ac00	WTIMER2	4 、		0x80000000 0x7fffffff	ł j	12C1	0x40089800
0x4001a800	WTIMER1	· ·		0246010400		12C0	0x40089400
0x4001a400	WTIMERO	1	Bit Set	0x460f03ff		GPIO	0x40088000
0x4001a000	WHITEHO	1 \	(Peripherals / CRTP100)	0×46000000	,	VDACO	0x40086400
0x40019c00	TIMEB6	· ·		8×455‡5555	/	VDACU	0x40086000
0x40019800	TIMERS	1	Bit Clear	0x440f03ff	1 /	IDAC0	0x40084400
0x40019400	TIMER4	1	(Peripherals / CRYPTO0)	0×44000000			0x40084000
0x40019000	TIMEB3	([\]		8×43ffffff	1 /	ADC1	0x40082800
0x40018c00	TIMER3	1	Pit Pand	0x43e3ffff		ADC0	0x40082400
0x40018800	TIMEB1	1	(Peripherals / CRYPTO0 / SI	00) 0×42000000	l i		0x40082000
0x40018400	TIMEBO	(`	· ·	0x41ffffff	/	АСМРЗ	0x40080c00
0x40018000		1		0x40140000		ACMP2	0x40080800
0x40014800	UABT1	1 ,	USB	8%48199999	l (ACMPI	0x40080400
0x40014400	UABTO	· ·		8×488f5fff	1 /	ACMIPO	0×40080000
0x40014000		1	SDIO	0x400f1fff	1 /	PCNT2	0x4006ec00
0x40011800	USART5	1 ,	3510	0×40011000	l.	PCNT1	0x4006e800
0x40011400	USART4	۱ ۱		8\$488+8466	/	PCNT0	0x4006e400
0x40011000	USART3	1 \	CRYPTO0	8×488‡8355	/		0x4006a800
0x40010c00	USART2		Peripherals 1	0×400effff	1	LEUART1	0x4006a400
0x40010800	USART1			0x40040000	4	LEUARTO	0x4006a000
0x40010400	USART0	1	Peripherals 0	024000000	\mathbf{A}	L ETIMEB1	0×40066800
0x40010000			1	8x3f99999		LETIMERO	0x40066400
0x4000b400	EB	1 /	SRAM (bit-band)	8x25fffffff	1 \		0×40066000
0x40006000		1 /		0x22000000	Λ.	RTCC	0x40062400
0x40004800	CAN1			0220080000	\ \		0x40062000
0x40004400	CANO	1 .	RAM2 (data space)	8×28845555	N.	RTC	0×40060000
0x40004000		1 /	RAM1 (data space)	8×2883ffff	1 \	LECENCE	0x40055400
0x40003000	LDMA		DAMO (data array)	0x2001ffff	۱ <i>۱</i>	LESENSE	0x40055000
0x40002000			RAMU (data space)	020000000		ICD	0x40054400
0x40001400	FPUEH			⊎x1tttttt			0x40054000
0×40001000			Code		\ \	WDOG1	UX40052800
0x400000000	MSC	/		0×00000000		WDOG0	0x40052400
0.0000000000000000000000000000000000000		-			-		- 0140002000

Figure 3.3. EFM32GG11 Memory Map — Peripherals

4.1.10.3 Low-Frequency RC Oscillator (LFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Oscillation frequency	f _{LFRCO}	ENVREF ² = 1	TBD	32.768	TBD	kHz
		ENVREF ² = 1, T > 85 °C	TBD	32.768	TBD	kHz
		ENVREF ² = 0	TBD	32.768	TBD	kHz
Startup time	t _{LFRCO}		_	500		μs
Current consumption ¹	I _{LFRCO}	ENVREF = 1 in CMU_LFRCOCTRL	-	370		nA
		ENVREF = 0 in CMU_LFRCOCTRL	-	520		nA
Note:	•					

Table 4.14. Low-Frequency RC Oscillator (LFRCO)

1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.

2. In CMU_LFRCOCTRL register.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Frequency limits	f _{HFRCO_BAND}	FREQRANGE = 0, FINETUNIN- GEN = 0	1	_	10	MHz
		FREQRANGE = 3, FINETUNIN- GEN = 0	2	—	17	MHz
		FREQRANGE = 6, FINETUNIN- GEN = 0	4	—	30	MHz
		FREQRANGE = 7, FINETUNIN- GEN = 0	5	—	34	MHz
		FREQRANGE = 8, FINETUNIN- GEN = 0	7	_	42	MHz
		FREQRANGE = 10, FINETUNIN- GEN = 0	12	_	58	MHz
		FREQRANGE = 11, FINETUNIN- GEN = 0	15		68	MHz
		FREQRANGE = 12, FINETUNIN- GEN = 0	18	_	83	MHz
		FREQRANGE = 13, FINETUNIN- GEN = 0	24		100	MHz
		FREQRANGE = 14, FINETUNIN- GEN = 0	28	_	119	MHz
		FREQRANGE = 15, FINETUNIN- GEN = 0	33	_	138	MHz
		FREQRANGE = 16, FINETUNIN- GEN = 0	43		163	MHz

Note:

1. Maximum DPLL lock time ~= 6 x (M+1) x t_{REF} , where t_{REF} is the reference clock period.

4.1.13 Voltage Monitor (VMON)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply current (including I_SENSE)	I _{VMON}	In EM0 or EM1, 1 supply monitored, $T \le 85 \text{ °C}$	—	6.0	TBD	μA
		In EM0 or EM1, 4 supplies monitored, $T \le 85$ °C	—	14.9	TBD	μA
		In EM2, EM3 or EM4, 1 supply monitored and above threshold		62		nA
		In EM2, EM3 or EM4, 1 supply monitored and below threshold	—	62	_	nA
		In EM2, EM3 or EM4, 4 supplies monitored and all above threshold	_	99	_	nA
		In EM2, EM3 or EM4, 4 supplies monitored and all below threshold		99	_	nA
Loading of monitored supply	I _{SENSE}	In EM0 or EM1	_	2	_	μA
		In EM2, EM3 or EM4	—	2	_	nA
Threshold range	V _{VMON_RANGE}		1.62	_	3.4	V
Threshold step size	N _{VMON_STESP}	Coarse	_	200	_	mV
		Fine	_	20	_	mV
Response time	t _{VMON_RES}	Supply drops at 1V/µs rate	_	460	_	ns
Hysteresis	V _{VMON_HYST}			26	_	mV

Table 4.21. Voltage Monitor (VMON)

4.1.16 Digital to Analog Converter (VDAC)

DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output.

Table 4.24.	Digital to	Analog Converter	(VDAC)
-------------	------------	------------------	--------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output voltage	V _{DACOUT}	Single-Ended	0	_	V _{VREF}	V
		Differential ²	-V _{VREF}	_	V _{VREF}	V
Current consumption includ- ing references (2 channels) ¹	I _{DAC}	500 ksps, 12-bit, DRIVES- TRENGTH = 2, REFSEL = 4	_	402	_	μΑ
		44.1 ksps, 12-bit, DRIVES- TRENGTH = 1, REFSEL = 4	_	88	_	μΑ
		200 Hz refresh rate, 12-bit Sam- ple-Off mode in EM2, DRIVES- TRENGTH = 2, BGRREQTIME = 1, EM2REFENTIME = 9, REFSEL = 4, SETTLETIME = 0x0A, WAR- MUPTIME = 0x02		2		μA
Current from HFPERCLK ⁴	IDAC_CLK		_	5.25		µA/MHz
Sample rate	SR _{DAC}		_	_	500	ksps
DAC clock frequency	f _{DAC}		_	_	1	MHz
Conversion time	t _{DACCONV}	f _{DAC} = 1MHz	2	_	_	μs
Settling time	t _{DACSETTLE}	50% fs step settling to 5 LSB	_	2.5		μs
Startup time	t _{DACSTARTUP}	Enable to 90% fs output, settling to 10 LSB	_		12	μs
Output impedance	R _{OUT}	DRIVESTRENGTH = 2, 0.4 V \leq V _{OUT} \leq V _{OPA} - 0.4 V, -8 mA $<$ I _{OUT} $<$ 8 mA, Full supply range	_	2	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.4 V $\leq V_{OUT} \leq V_{OPA}$ - 0.4 V, -400 μ A < I _{OUT} < 400 μ A, Full supply range	_	2	_	Ω
		$ \begin{array}{l} DRIVESTRENGTH = 2,\ 0.1\ V \leq \\ V_{OUT} \leq V_{OPA} - 0.1\ V,\ -2\ mA < \\ I_{OUT} < 2\ mA,\ Full \ supply \ range \end{array} $		2	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.1 V $\leq V_{OUT} \leq V_{OPA} - 0.1 V$, -100 µA < I _{OUT} < 100 µA, Full supply range		2	_	Ω
Power supply rejection ratio ⁶	PSRR	Vout = 50% fs. DC	_	65.5	_	dB

4.1.17 Current Digital to Analog Converter (IDAC)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Number of ranges	N _{IDAC_RANGES}		—	4	_	ranges
Output current	I _{IDAC_OUT}	RANGSEL ¹ = RANGE0	0.05	_	1.6	μA
		RANGSEL ¹ = RANGE1	1.6	_	4.7	μA
		RANGSEL ¹ = RANGE2	0.5	_	16	μA
		RANGSEL ¹ = RANGE3	2	_	64	μA
Linear steps within each range	NIDAC_STEPS		_	32	_	steps
Step size	SS _{IDAC}	RANGSEL ¹ = RANGE0	_	50	_	nA
		RANGSEL ¹ = RANGE1	—	100	_	nA
		RANGSEL ¹ = RANGE2	_	500	_	nA
		RANGSEL ¹ = RANGE3	—	2	—	μA
Total accuracy, STEPSEL ¹ = 0x10	ACCIDAC	EM0 or EM1, AVDD=3.3 V, T = 25 °C	TBD	_	TBD	%
		EM0 or EM1, Across operating temperature range	TBD	—	TBD	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE0, AVDD=3.3 V, T = 25 °C	_	-2.7	_	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE1, AVDD=3.3 V, T = 25 °C	_	-2.5	_	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE2, AVDD=3.3 V, T = 25 °C	_	-1.5	_	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE3, AVDD=3.3 V, T = 25 °C	_	-1.0	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE0, AVDD=3.3 V, T = 25 °C	_	-1.1	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE1, AVDD=3.3 V, T = 25 °C	_	-1.1	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE2, AVDD=3.3 V, T = 25 °C	_	-0.9	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE3, AVDD=3.3 V, T = 25 °C	_	-0.9	_	%

Table 4.25. Current Digital to Analog Converter (IDAC)

4.1.23.3 I2C Fast-mode Plus (Fm+)¹

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
SCL clock frequency ²	f _{SCL}		0	_	1000	kHz
SCL clock low time	t _{LOW}		0.5	_	_	μs
SCL clock high time	t _{ніGH}		0.26	—	_	μs
SDA set-up time	t _{SU_DAT}		50	_	—	ns
SDA hold time	t _{HD_DAT}		100	_	_	ns
Repeated START condition set-up time	t _{SU_STA}		0.26	_	_	μs
(Repeated) START condition hold time	t _{HD_STA}		0.26	—	—	μs
STOP condition set-up time	t _{SU_STO}		0.26	_	_	μs
Bus free time between a STOP and START condition	t _{BUF}		0.5	—	—	μs

Table 4.33. I2C Fast-mode Plus (Fm+)¹

Note:

1. For CLHR set to 0 or 1 in the I2Cn_CTRL register.

2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual.

EBI Address Latch Enable Output Timing

Timing applies to multiplexed addressing modes D8A24ALE and D16A16ALE for both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output hold time, from trail- ing EBI_ALE edge to EBI_AD invalid ^{1 2}	^t OH_ALEn	IOVDD ≥ 1.62 V	-22 + (ADDR- HOLD * ^t HFCOR- ECLK)	_	—	ns
		IOVDD ≥ 3.0 V	-11 + (ADDR- HOLD * ^t HFCOR- ECLK)	_	_	ns
Output setup time, from	tosu_ALEn	IOVDD ≥ 1.62 V	-12	_		ns
EBI_AD valid to leading EBI_ALE edge		IOVDD ≥ 3.0 V	-9	_		ns
EBI_ALEn pulse width ¹	twidth_Alen	IOVDD ≥ 1.62 V	-4 + ((ADDR- SETUP + 1) * t{ _{}HFCOR-} ECLK{})	_	_	ns
		IOVDD ≥ 3.0 V	-3 + ((ADDR- SETUP + 1) * t{ _{}HFCOR-} ECLK{})	—	_	ns

Table 4.37. EBI Address Latch Enable Output Timing

Note:

1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFALE=0. The trailing edge of EBI_ALEn can be moved to the left by setting HALFALE=1. This decreases the length of t_{WIDTH_ALEn} and increases the length of t_{OSU_ALEn} by t_{HFCORECLK} - 1/2 * t_{HFCLKNODIV}.

2. The figure shows a write operation. For a multiplexed read operation the address hold time is controlled via the RDSETUP state instead of via the ADDRHOLD state.

EBI Ready/Wait Timing Requirements

Timing applies to both EBI_REn and EBI_WEn for all addressing modes and both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.

Table 4.41.	EBI Ready/Wait	Timing	Requirements
-------------	----------------	--------	--------------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Setup time, from EBI_ARDY valid to trailing EBI_REn, EBI_WEn edge	tsu_ardy	IOVDD ≥ 1.62 V	55 + (3 * t _{HFCOR-} _{ECLK})	_	_	ns
		IOVDD ≥ 3.0 V	36 + (3 * t _{HFCOR-} _{ECLK})	_	_	ns
Hold time, from trailing EBI_REn, EBI_WEn edge to EBI_ARDY invalid	th_ardy	IOVDD ≥ 1.62 V	-9	_	_	ns

Figure 4.8. EBI Ready/Wait Timing Requirements

SDIO SDR Mode Timing

Timing is specified for route location 0 at 1.8 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 0. Loading between 5 and 10 pF on all pins or between 10 and 40 pF on all pins.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Clock frequency during data transfer	F _{SD_CLK}	Using HFRCO, AUXHFRCO, or USHFRCO	_	_	20	MHz
		Using HFXO	_	_	TBD	MHz
Clock low time	t _{WL}	Using HFRCO, AUXHFRCO, or USHFRCO	22.6			ns
		Using HFXO	TBD	—	_	ns
Clock high time	t _{WH}	Using HFRCO, AUXHFRCO, or USHFRCO	22.6	_	_	ns
		Using HFXO	TBD		_	ns
Clock rise time	t _R		0.99	4.68	_	ns
Clock fall time	t _F		0.90	3.64	_	ns
Input setup time, CMD, DAT[0:3] valid to SD_CLK	t _{ISU}		8			ns
Input hold time, SD_CLK to CMD, DAT[0:3] change	t _{IH}		1.5			ns
Output delay time, SD_CLK to CMD, DAT[0:3] valid	t _{ODLY}		0	—	35	ns
Output hold time, SD_CLK to CMD, DAT[0:3] change	t _{OH}		0.8	_	_	ns

Table 4.48. SDIO SDR Mode Timing (Location 0)

Figure 4.27. EM0 and EM1 Mode Typical Supply Current vs. Supply

Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description	
Note:						
1. GPIO with 5V tolerance are indicated by (5V).						
2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hard- ware compatibility, do not use these pins with 5V domains.						

Figure 5.15. EFM32GG11B1xx in QFP64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Table 5.15. EFM32GG11B1xx in QFP64 Device Pinou

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	PA3	4	GPIO
PA4	5	GPIO	PA5	6	GPIO
IOVDD0	7 26 55	Digital IO power supply 0.	VSS	8 22 56	Ground
PC0	9	GPIO (5V)	PC1	10	GPIO (5V)
PC2	11	GPIO (5V)	PC3	12	GPIO (5V)

Alternate	Iternate LOCATION		
Functionality	0 - 3	4 - 7	Description
EBI_CS1	0: PD10 1: PA11 2: PC1 3: PB1	4: PE9	External Bus Interface (EBI) Chip Select output 1.
EBI_CS2	0: PD11 1: PA12 2: PC2 3: PB2	4: PE10	External Bus Interface (EBI) Chip Select output 2.
EBI_CS3	0: PD12 1: PB15 2: PC3 3: PB3	4: PE11	External Bus Interface (EBI) Chip Select output 3.
EBI_CSTFT	0: PA7 1: PF6 2: PB12 3: PA0		External Bus Interface (EBI) Chip Select output TFT.
EBI_DCLK	0: PA8 1: PF7 2: PH0 3: PA1		External Bus Interface (EBI) TFT Dot Clock pin.
EBI_DTEN	0: PA9 1: PD9 2: PH1 3: PA2		External Bus Interface (EBI) TFT Data Enable pin.
EBI_HSNC	0: PA11 1: PD11 2: PH3 3: PA4		External Bus Interface (EBI) TFT Horizontal Synchronization pin.
EBI_NANDREn	0: PC3 1: PD15 2: PB9 3: PC4	4: PC15 5: PF12	External Bus Interface (EBI) NAND Read Enable output.
EBI_NANDWEn	0: PC5 1: PD14 2: PA13 3: PC2	4: PC14 5: PF11	External Bus Interface (EBI) NAND Write Enable output.
EBI_REn	0: PF5 1: PA14 2: PA12 3: PC0	4: PF9 5: PF5	External Bus Interface (EBI) Read Enable output.
EBI_VSNC	0: PA10 1: PD10 2: PH2 3: PA3		External Bus Interface (EBI) TFT Vertical Synchronization pin.
EBI_WEn	0: PF4 1: PA13 2: PC5 3: PB6	4: PF8 5: PF4	External Bus Interface (EBI) Write Enable output.
ETH_MDC	0: PB4 1: PD14 2: PC1 3: PA6		Ethernet Management Data Clock.

Alternate	LOCATION		
Functionality	0 - 3	4 - 7	Description
TIM4_CDTI2	0: PD3		Timer 4 Complimentary Dead Time Insertion channel 2.
TIM5_CC0	0: PE4 1: PE7 2: PH13 3: PI0	4: PC8 5: PC11 6: PC14 7: PF12	Timer 5 Capture Compare input / output channel 0.
TIM5_CC1	0: PE5 1: PH11 2: PH14 3: PI1	4: PC9 5: PC12 6: PF10 7: PF13	Timer 5 Capture Compare input / output channel 1.
TIM5_CC2	0: PE6 1: PH12 2: PH15 3: PI2	4: PC10 5: PC13 6: PF11 7: PF14	Timer 5 Capture Compare input / output channel 2.
TIM6_CC0	0: PG0 1: PG6 2: PG12 3: PH2	4: PH8 5: PB13 6: PD1 7: PD4	Timer 6 Capture Compare input / output channel 0.
TIM6_CC1	0: PG1 1: PG7 2: PG13 3: PH3	4: PH9 5: PB14 6: PD2 7: PD5	Timer 6 Capture Compare input / output channel 1.
TIM6_CC2	0: PG2 1: PG8 2: PG14 3: PH4	4: PH10 5: PD0 6: PD3 7: PD6	Timer 6 Capture Compare input / output channel 2.
TIM6_CDTI0	0: PG3 1: PG9 2: PE4 3: PH5		Timer 6 Complimentary Dead Time Insertion channel 0.
TIM6_CDTI1	0: PG4 1: PG10 2: PE5 3: PH6		Timer 6 Complimentary Dead Time Insertion channel 1.
TIM6_CDTI2	0: PG5 1: PG11 2: PE6 3: PH7		Timer 6 Complimentary Dead Time Insertion channel 2.
U0_CTS	0: PF8 1: PE2 2: PA5 3: PC13	4: PB7 5: PD5	UART0 Clear To Send hardware flow control input.
U0_RTS	0: PF9 1: PE3 2: PA6 3: PC12	4: PB8 5: PD6	UART0 Request To Send hardware flow control output.
U0_RX	0: PF7 1: PE1 2: PA4 3: PC15	4: PC5 5: PF2 6: PE4	UART0 Receive input.

Figure 7.3. BGA152 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

Dimension	Min	Тур	Мах			
A	_	1.15	1.20			
A1	0.05	_	0.15			
A2	0.95	1.00	1.05			
b	0.17	0.22	0.27			
b1	0.17	0.20	0.23			
С	0.09	_	0.20			
c1	0.09	—	0.16			
D	12.00 BSC					
D1	10.00 BSC					
е	0.50 BSC					
E	12.00 BSC					
E1	10.00 BSC					
L	0.45 0.60 0.75					
L1	1.00 REF					
R1	0.08	_	_			
R2	0.08	—	0.20			
S	0.20 — —					
θ	0 3.5 7					
θ1	0	0 — 0.10				
θ2	11	12	13			
θ3	11	12	13			

Table 11.1. TQFP64 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Table 12.2. QFN64 PCB Land Pattern Dimensions

Dimension	Тур
C1	8.90
C2	8.90
E	0.50
X1	0.30
Y1	0.85
X2	7.30
Y2	7.30

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm.

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

6. The stencil thickness should be 0.125 mm (5 mils).

7. The ratio of stencil aperture to land pad size can be 1:1 for all pads.

8. A 3x3 array of 1.45 mm square openings on a 2.00 mm pitch can be used for the center ground pad.

9. A No-Clean, Type-3 solder paste is recommended.

10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.