

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b510f2048iq64-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4.2 Internal and External Oscillators

The EFM32GG11 supports two crystal oscillators and fully integrates five RC oscillators, listed below.

- A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 4 to 50 MHz are supported. An external clock source such as a TCXO can also be applied to the HFXO input for improved accuracy over temperature.
- A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
- An integrated high frequency RC oscillator (HFRCO) is available for the MCU system. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range. When crystal accuracy is not required, it can be operated in free-running mode at a number of factory-calibrated frequencies. A digital phase-locked loop (DPLL) feature allows the HFRCO to achieve higher accuracy and stability by referencing other available clock sources such as LFXO and HFXO.
- An integrated auxiliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial Wire Viewer port with a wide frequency range.
- An integrated auxilliary high frequency RC oscillator (USHFRCO) is available for timing the USB, SDIO and QSPI peripherals. The USHFRCO can be syncronized to the host's USB clock to allow the USB to operate in device mode without the additional cost of an external crystal.
- An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required.
- An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.

3.5 Counters/Timers and PWM

3.5.1 Timer/Counter (TIMER)

TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit TIMER_0 only.

3.5.2 Wide Timer/Counter (WTIMER)

WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only.

3.5.3 Real Time Counter and Calendar (RTCC)

The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes down to EM4H.

3.5.4 Low Energy Timer (LETIMER)

The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of wave-forms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.

3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER)

The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.

3.5.6 Pulse Counter (PCNT)

The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop.

3.5.7 Watchdog Timer (WDOG)

The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS.

3.6 Communications and Other Digital Peripherals

3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:

- ISO7816 SmartCards
- IrDA
- I²S

3.6.2 Universal Asynchronous Receiver/Transmitter (UART)

The Universal Asynchronous Receiver/Transmitter is a subset of the USART module, supporting full duplex asynchronous UART communication with hardware flow control and RS-485.

3.6.3 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption.

3.6.4 Inter-Integrated Circuit Interface (I²C)

The I²C module provides an interface between the MCU and a serial I²C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I²C module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes.

3.6.5 External Bus Interface (EBI)

The External Bus Interface provides access to external parallel interface devices. The interface is memory mapped into the address bus of the Cortex-M4. This enables seamless access from software without manually manipulating the I/O settings each time a read or write is performed. The data and address lines are multiplexed in order to reduce the number of pins required to interface to external devices. Timing is adjustable to meet specifications of the external devices. The interface is limited to asynchronous devices.

The EBI contains a TFT controller which can drive a TFT via an RGB interface. The TFT controller supports programmable display and port sizes and offers accurate control of frequency and setup and hold timing. Direct Drive is supported for TFT displays which do not have their own frame buffer. In that case TFT Direct Drive can transfer data from either on-chip memory or from an external memory device to the TFT at low CPU load. Automatic alpha-blending and masking is also supported for transfers through the EBI interface.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current consumption in EM2 mode, with voltage scaling	I _{EM2_VS}	Full 512 kB RAM retention and RTCC running from LFXO	—	3.9		μA
enabled		Full 512 kB RAM retention and RTCC running from LFRCO	—	4.3	_	μA
		16 kB (1 bank) RAM retention and RTCC running from LFRCO ²	—	2.8	TBD	μA
Current consumption in EM3 mode, with voltage scaling enabled	I _{EM3_VS}	Full 512 kB RAM retention and CRYOTIMER running from ULFR- CO	_	3.6	TBD	μA
Current consumption in EM4H mode, with voltage scaling enabled	I _{EM4H_VS}	128 byte RAM retention, RTCC running from LFXO	—	1.08	_	μA
		128 byte RAM retention, CRYO- TIMER running from ULFRCO	—	0.69	_	μA
		128 byte RAM retention, no RTCC	—	0.69	TBD	μA
Current consumption in EM4S mode	I _{EM4S}	No RAM retention, no RTCC	—	0.16	TBD	μA
Current consumption of pe- ripheral power domain 1, with voltage scaling enabled	IPD1_VS	Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled ¹	_	0.68	_	μA
Current consumption of pe- ripheral power domain 2, with voltage scaling enabled	I _{PD2_VS}	Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled ¹	_	0.28	_	μA

Note:

1. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.4 EM2 and EM3 Power Domains for a list of the peripherals in each power domain.

2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current consumption in EM3 mode, with voltage scaling enabled	I _{EM3_VS}	Full 512 kB RAM retention and CRYOTIMER running from ULFR- CO	_	3.4	_	μA
Current consumption in EM4H mode, with voltage scaling enabled	I _{EM4H_VS}	128 byte RAM retention, RTCC running from LFXO	—	0.94		μA
		128 byte RAM retention, CRYO- TIMER running from ULFRCO	—	0.56		μA
		128 byte RAM retention, no RTCC	_	0.56	_	μA
Current consumption in EM4S mode	I _{EM4S}	No RAM retention, no RTCC	_	0.1	_	μA
Current consumption of pe- ripheral power domain 1, with voltage scaling enabled	IPD1_VS	Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled ¹	_	0.68	_	μA
Current consumption of pe- ripheral power domain 2, with voltage scaling enabled	IPD2_VS	Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled ¹	_	0.28	_	μA

Note:

1. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.4 EM2 and EM3 Power Domains for a list of the peripherals in each power domain.

2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
ADC clock frequency	f _{ADCCLK}		_	_	16	MHz
Throughput rate	fADCRATE		_	—	1	Msps
Conversion time ¹	t _{ADCCONV}	6 bit	_	7	_	cycles
		8 bit	_	9	_	cycles
		12 bit		13		cycles
Startup time of reference	t _{ADCSTART}	WARMUPMODE ⁴ = NORMAL	_	_	5	μs
generator and ADC core		WARMUPMODE ⁴ = KEEPIN- STANDBY			2	μs
		WARMUPMODE ⁴ = KEEPINSLO- WACC	_		1	μs
SNDR at 1Msps and f _{IN} = 10kHz	SNDR _{ADC}	Internal reference ⁷ , differential measurement	TBD	67	_	dB
		External reference ⁶ , differential measurement	_	68	_	dB
Spurious-free dynamic range (SFDR)	SFDR _{ADC}	1 MSamples/s, 10 kHz full-scale sine wave	—	75	—	dB
Differential non-linearity (DNL)	DNL _{ADC}	12 bit resolution, No missing co- des	TBD		TBD	LSB
Integral non-linearity (INL), End point method	INL _{ADC}	12 bit resolution	TBD		TBD	LSB
Offset error	VADCOFFSETERR		TBD	0	TBD	LSB
Gain error in ADC	VADCGAIN	Using internal reference	_	-0.2	TBD	%
		Using external reference	_	-1	—	%
Temperature sensor slope	V _{TS_SLOPE}			-1.84		mV/°C

Note:

1. Derived from ADCCLK.

2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL.

3. In ADCn_BIASPROG register.

4. In ADCn CNTL register.

5. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on EMU PWRCTRL ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin.

6. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential input range with this configuration is ± 1.25 V.

7. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum value is production-tested using sine wave input at 1.5 dB lower than full scale.

EBI Read Enable Timing Requirements

Timing applies to both EBI_REn and EBI_NANDREn for all addressing modes and both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.

Table 4.40. EBI Read Enable Timing Requirements

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Setup time, from EBI_AD	t _{SU_REn}	IOVDD ≥ 1.62 V	55	—	—	ns
edge		IOVDD ≥ 3.0 V	36	—	—	ns
Hold time, from trailing EBI_REn edge to EBI_AD in- valid	t _{H_REn}	IOVDD ≥ 1.62 V	-9	_	_	ns

Figure 4.7. EBI Read Enable Timing Requirements

SDIO HS Mode Timing

Timing is specified for route location 0 at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 0. Loading between 5 and 10 pF on all pins or between 10 and 20 pF on all pins.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Clock frequency during data transfer	F _{SD_CLK}	Using HFRCO, AUXHFRCO, or USHFRCO	_	—	45	MHz
		Using HFXO	_	_	TBD	MHz
Clock low time	t _{WL}	Using HFRCO, AUXHFRCO, or USHFRCO	10.0	_		ns
		Using HFXO	TBD	—	_	ns
Clock high time	t _{WH}	Using HFRCO, AUXHFRCO, or USHFRCO	10.0	_	_	ns
		Using HFXO	TBD	_	_	ns
Clock rise time	t _R		1.69	3.23	_	ns
Clock fall time	t _F		1.42	2.79	_	ns
Input setup time, CMD, DAT[0:3] valid to SD_CLK	t _{ISU}		6	_		ns
Input hold time, SD_CLK to CMD, DAT[0:3] change	t _{IH}		2.5	_		ns
Output delay time, SD_CLK to CMD, DAT[0:3] valid	todly		0	—	13	ns
Output hold time, SD_CLK to CMD, DAT[0:3] change	t _{OH}		2	—	—	ns

Table 4.47. SDIO HS Mode Timing (Location 0)

SDIO MMC DDR Mode Timing at 3.0 V

Timing is specified for route location 0 at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 25 pF on all pins.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Clock frequency during data transfer	F _{SD_CLK}	Using HFRCO, AUXHFRCO, or USHFRCO	—	_	20	MHz
		Using HFXO	_	_	TBD	MHz
Clock low time	t _{WL}	Using HFRCO, AUXHFRCO, or USHFRCO	22.6		_	ns
		Using HFXO	TBD	_	—	ns
Clock high time	t _{WH}	Using HFRCO, AUXHFRCO, or USHFRCO	22.6		_	ns
		Using HFXO	TBD		_	ns
Clock rise time	t _R		1.13	2.37	—	ns
Clock fall time	t _F		1.01	2.02	_	ns
Input setup time, CMD valid to SD_CLK	t _{ISU}		5.3			ns
Input hold time, SD_CLK to CMD change	t _{IH}		2.5	_	_	ns
Output delay time, SD_CLK to CMD valid	t _{ODLY}		0	_	16	ns
Output hold time, SD_CLK to CMD change	t _{OH}		3		_	ns
Input setup time, DAT[0:7] valid to SD_CLK	t _{ISU2X}		5.3		_	ns
Input hold time, SD_CLK to DAT[0:7] change	t _{IH2X}		2.5		_	ns
Output delay time, SD_CLK to DAT[0:7] valid	t _{ODLY2X}		0		16	ns
Output hold time, SD_CLK to DAT[0:7] change	t _{OH2X}		3			ns

Table 4.53. SDIO MMC DDR Mode Timing (Location 0, 3V I/O)

QSPI DDR Mode Timing (Locations 1, 2)

Timing is specified with voltage scaling disabled, PHY-mode, route locations other than 0, TX DLL = 53, RX DLL = 88, 20-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG.

Table 4.57.	QSPI [DR Mode	Timing	(Locations	1,	2)
-------------	--------	---------	--------	------------	----	----

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Half SCLK period	T/2	HFXO	(1/F _{SCLK}) * 0.4 - 0.4	_	_	ns
		HFRCO, AUXHFRCO, USHFRCO	(1/F _{SCLK}) * 0.44	_		ns
Output valid	t _{OV}		_	_	T/2 - 6.6	ns
Output hold	t _{OH}		T/2 - 52.2	_	_	ns
Input setup	t _{SU}		44.8	_	_	ns
Input hold	t _H		-2.4			ns

Figure 4.22. QSPI DDR Timing Diagrams

QSPI DDR Flash Timing Example

This example uses timing values for location 0 (DDR mode) to demonstrate the calculation of allowable flash timing using the QSPI in DDR mode.

- Using a configured SCLK frequency ($\mathrm{F}_{\mathrm{SCLK}}$) of 8 MHz from the HFXO clock source:
- The resulting minimum half-period, T/2(min) = (1/F_{SCLK}) * 0.4 0.4 = 49.6 ns.
- Flash will see a minimum setup time of T/2 t_{OV} = T/2 (T/2 5.0) = 5.0 ns.
- Flash will see a minimum hold time of t_{OH} = T/2 39.4 = 49.6 39.4 = 10.2 ns.
- Flash can have a maximum output valid time of T/2 t_{SU} = T/2 33.1 = 49.6 33.1 = 16.5 ns.
- Flash can have a minimum output hold time of $t_{\rm H}$ = 0.9 ns.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA15	B1	GPIO	PE14	B2	GPIO
PE12	B3	GPIO	PE8	B4	GPIO
PD11	B5	GPIO	PD9	B6	GPIO
PF8	B7	GPIO	PF6	B8	GPIO
PF14	B9	GPIO (5V)	PF12	B10	GPIO
PF2	B11	GPIO	PF0	B12	GPIO (5V)
PC14	B13	GPIO (5V)	VREGO	B14	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs
PA1	C1	GPIO	PA0	C2	GPIO
PD13	C3	GPIO (5V)	PE10	C4	GPIO
PI8	C5	GPIO (5V)	PI7	C6	GPIO (5V)
Pl6	C7	GPIO (5V)	PF5	C8	GPIO
PF15	C9	GPIO (5V)	PF4	C10	GPIO
PF3	C11	GPIO	PC13	C12	GPIO (5V)
PC12	C13	GPIO (5V)	VREGI	C14	Input to 5 V regulator.
PA3	D1	GPIO	PA2	D2	GPIO
PD14	D3	GPIO (5V)	PC11	D12	GPIO (5V)
PC10	D13	GPIO (5V)	PC9	D14	GPIO (5V)
PA5	E1	GPIO	PA4	E2	GPIO
PD15	E3	GPIO (5V)	IOVDD1	E6	Digital IO power supply 1.
VSS	E7 E8 G5 G7 G8 G10 H5 H7 H8 H10 K7 K8	Ground	IOVDD0	E9 F10 J5 J10 K6 K9	Digital IO power supply 0.
PC8	E12	GPIO (5V)	PI5	E13	GPIO (5V)
Pl4	E14	GPIO (5V)	PG0	F1	GPIO (5V)
PA6	F2	GPIO	PG1	F3	GPIO (5V)
IOVDD2	F5	Digital IO power supply 2.	PI3	F12	GPIO (5V)
PI2	F13	GPIO (5V)	PI1	F14	GPIO (5V)
PG3	G1	GPIO (5V)	PG4	G2	GPIO (5V)
PG2	G3	GPIO (5V)	PE7	G12	GPIO
P10	G13	GPIO (5V)	DECOUPLE	G14	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.

Figure 5.3. EFM32GG11B8xx in BGA120 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Table 5.3. EFM32GG11B8xx in BGA120 Device Pinor

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PE15	A1	GPIO	PE14	A2	GPIO
PE12	A3	GPIO	PE9	A4	GPIO
PD11	A5	GPIO	PD9	A6	GPIO
PF7	A7	GPIO	PF5	A8	GPIO
PF14	A9	GPIO (5V)	PF12	A10	GPIO
VREGI	A11	Input to 5 V regulator.	VREGO	A12	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description	
PF11	A13	GPIO (5V)	PA15	B1	GPIO	
PE13	B2	GPIO	PE11	B3	GPIO	
PE8	B4	GPIO	PD12	B5	GPIO	
PD10	B6	GPIO	PF8	B7	GPIO	
PF6	B8	GPIO	PF13	B9	GPIO (5V)	
PF4	B10	GPIO	PF3	B11	GPIO	
NC	B12	No Connect.	PF10	B13	GPIO (5V)	
PA1	C1	GPIO	PA0	C2	GPIO	
PE10	C3	GPIO	PD13	C4	GPIO (5V)	
VSS	C5 C8 H3 J3 K11 L12 L15	Ground	IOVDD1	C6	Digital IO power supply 1.	
PF9	C7	GPIO	IOVDD0	C9 J11 K3 L11 L16	Digital IO power supply 0.	
PF2	C10	GPIO	PF1	C11	GPIO (5V)	
PC14	C12	GPIO (5V)	PC15	C13	GPIO (5V)	
PA3	D1	GPIO	PA2	D2	GPIO	
PB15	D3	GPIO (5V)	PF0	D11	GPIO (5V)	
PC12	D12	GPIO (5V)	PC13	D13	GPIO (5V)	
PA6	E1	GPIO	PA5	E2	GPIO	
PA4	E3	GPIO	PC9	E11	GPIO (5V)	
PC10	E12	GPIO (5V)	PC11	E13	GPIO (5V)	
PB0	F1	GPIO	PB1	F2	GPIO	
PB2	F3	GPIO	PE6	F11	GPIO	
PE7	F12	GPIO	PC8	F13	GPIO (5V)	
PB3	G1	GPIO	PB4	G2	GPIO	
IOVDD2	G3	Digital IO power supply 2.	PE3	G11	GPIO	
PE4	G12	GPIO	PE5	G13	GPIO	
PB5	H1	GPIO	PB6	H2	GPIO	
DVDD	H11	Digital power supply.	PE2	H12	GPIO	
DECOUPLE	H13	Decouple output for on-chip voltage regulator. An external decoupling ca- pacitor is required at this pin.	PD14	J1	GPIO (5V)	
PD15	J2	GPIO (5V)	PE1	J12	GPIO (5V)	
VREGVDD	J13	Voltage regulator VDD input	PC0	K1	GPIO (5V)	

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description	
PB2	11	GPIO	PB3	12	GPIO	
PB4	13	GPIO	PB5	14	GPIO	
PB6	15	GPIO	VSS	16 32 59 83	Ground	
PC0	18	GPIO (5V)	PC1	19	GPIO (5V)	
PC2	20	GPIO (5V)	PC3	21	GPIO (5V)	
PC4	22	GPIO	PC5	23	GPIO	
PB7	24	GPIO	PB8	25	GPIO	
PA7	26	GPIO	PA8	27	GPIO	
PA9	28	GPIO	PA10	29	GPIO	
PA11	30	GPIO	PA12	33	GPIO (5V)	
PA13	34	GPIO (5V)	PA14	35	GPIO	
RESETn	36	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB9	37	GPIO (5V)	
PB10	38	GPIO (5V)	PB11	39	GPIO	
PB12	40	GPIO	AVDD	41	Analog power supply.	
PB13	42	GPIO	PB14	43	GPIO	
PD0	45	GPIO (5V)	PD1	46	GPIO	
PD2	47	GPIO (5V)	PD3	48	GPIO	
PD4	49	GPIO	PD5	50	GPIO	
PD6	51	GPIO	PD7	52	GPIO	
PD8	53	GPIO	PC7	54	GPIO	
VREGVSS	55	Voltage regulator VSS	VREGSW	56	DCDC regulator switching node	
VREGVDD	57	Voltage regulator VDD input	DVDD	58	Digital power supply.	
DECOUPLE	60	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PE1	61	GPIO (5V)	
PE2	62	GPIO	PE3	63	GPIO	
PE4	64	GPIO	PE5	65	GPIO	
PE6	66	GPIO	PE7	67	GPIO	
PC8	68	GPIO (5V)	PC9	69	GPIO (5V)	
PC10	70	GPIO (5V)	PC11	71	GPIO (5V)	
VREGI	72	Input to 5 V regulator.	VREGO	73	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs	
PF10	74	GPIO (5V)	PF11	75	GPIO (5V)	
PF0	76	GPIO (5V)	PF1	77	GPIO (5V)	

Figure 5.11. EFM32GG11B3xx in QFP100 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Table 5.11. EFM32GG11B3xx in QFP100 Device Pinor	ut
--	----

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	PA3	4	GPIO
PA4	5	GPIO	PA5	6	GPIO
PA6	7	GPIO	IOVDD0	8 17 31 44 82	Digital IO power supply 0.
PB0	9	GPIO	PB1	10	GPIO

GPIO Name	Pin Alternate Functionality / Description					
	Analog	EBI	Timers	Communication	Other	
PD15		EBI_NANDREn #1	TIM2_CDTI2 #1 TIM3_CC0 #7 WTIM0_CDTI0 #1 PCNT1_S0IN #2	ETH_TSUEXTCLK #1 CAN0_TX #5 US5_CTS #1 I2C0_SCL #3		
PC13	VDAC0_OUT1ALT / OPA1_OUTALT #1 BUSACMP1Y BU- SACMP1X	EBI_ARDY #4	TIM0_CDTI0 #1 TIM1_CC0 #0 TIM1_CC2 #4 TIM5_CC2 #5 WTIM3_CC2 #2 PCNT0_S0IN #0 PCNT2_S1IN #4	US0_CTS #3 US1_RTS #4 US2_RTS #4 U0_CTS #3 U1_RX #0 I2C2_SCL #6	LES_CH13 PRS_CH21 #1 ACMP3_O #3	
PC12	VDAC0_OUT1ALT / OPA1_OUTALT #0 BUSACMP1Y BU- SACMP1X		TIM1_CC3 #0 TIM5_CC1 #5 WTIM3_CC1 #2 PCNT2_S0IN #4	CAN1_RX #4 US0_RTS #3 US1_CTS #4 US2_CTS #4 U0_RTS #3 U1_TX #0 I2C2_SDA #6	CMU_CLK0 #1 LES_CH12 PRS_CH20 #1	
PC11	BUSACMP1Y BU- SACMP1X	EBI_ALE #4 EBI_ALE #5 EBI_A23 #1	TIM5_CC0 #5 WTIM3_CC0 #2	CAN1_TX #4 US0_TX #2 I2C1_SDA #4	LES_CH11 PRS_CH19#1	
PA3	BUSAY BUSBX LCD_SEG16	EBI_AD12 #0 EBI_VSNC #3	TIM0_CDTI0 #0 TIM3_CC0 #5	ETH_RMIIREFCLK #0 ETH_MIITXD1 #0 SDIO_DAT3 #1 US3_CS #0 U0_TX #2 QSPI0_DQ1 #1	CMU_CLK2 #1 CMU_CLK10 #1 CMU_CLK2 #4 LES_ALTEX2 PRS_CH9 #1 ETM_TD1 #3	
PG2	BUSACMP2Y BU- SACMP2X	EBI_AD02 #2	TIM6_CC2 #0 TIM2_CDTI2 #3 WTIM0_CC0 #2 LE- TIM1_OUT0 #7	ETH_MIITXD2 #1 US3_CLK #4 QSPI0_DQ1 #2	CMU_CLK0 #3	
PG1	BUSACMP2Y BU- SACMP2X	EBI_AD01 #2	TIM6_CC1 #0 TIM2_CDTI1 #3 WTIM0_CDTI2 #1 LETIM1_OUT1 #6	ETH_MIITXD3 #1 US3_RX #4 QSPI0_DQ0 #2	CMU_CLK1 #3	
PC10	BUSACMP1Y BU- SACMP1X	EBI_A10 #2 EBI_A22 #1	TIM2_CC2 #2 TIM5_CC2 #4 WTIM3_CC2 #1	CAN1_TX #3 US0_RX #2	LES_CH10 PRS_CH18 #1	
PC9	BUSACMP1Y BU- SACMP1X	EBI_A09 #2 EBI_A21 #1 EBI_A27 #3	TIM2_CC1 #2 TIM5_CC1 #4 WTIM3_CC1 #1	CAN1_RX #3 US0_CLK #2	LES_CH9 PRS_CH5 #0 GPIO_EM4WU2	
PC8	BUSACMP1Y BU- SACMP1X	EBI_A08 #2 EBI_A15 #0 EBI_A20 #1 EBI_A26 #3	TIM2_CC0 #2 TIM5_CC0 #4 WTIM3_CC0 #1	US0_CS #2	LES_CH8 PRS_CH4 #0	
PA4	BUSBY BUSAX LCD_SEG17	EBI_AD13 #0 EBI_HSNC #3	TIM0_CDTI1 #0 TIM3_CC1 #5	ETH_RMIICRSDV #0 ETH_MIITXD0 #0 SDIO_DAT4 #1 US3_CTS #0 U0_RX #2 QSPI0_DQ2 #1	LES_ALTEX3 PRS_CH16 #0 ETM_TD2 #3	
PG4	BUSACMP2Y BU- SACMP2X	EBI_AD04 #2	TIM6_CDTI1 #0 WTIM0_CC2 #2	ETH_MIITXD0 #1 US3_CTS #4 QSPI0_DQ3 #2		

GPIO Name	Pin Alternate Functionality / Description					
	Analog	EBI	Timers	Communication	Other	
PH11	BUSACMP3Y BU- SACMP3X	EBI_A23 #2	TIM5_CC1 #1 WTIM1_CC3 #6	US5_RX #3 U1_TX #5 I2C1_SDA #5		
PH13	BUSACMP3Y BU- SACMP3X	EBI_A25 #2	TIM5_CC0 #2 WTIM1_CC1 #7 PCNT2_S1IN #7	US5_CS #3 U1_CTS #5 I2C1_SDA #6		
PD0	VDAC0_OUT0ALT / OPA0_OUTALT #4 OPA2_OUTALT BU- SADC0Y BUSADC0X	EBI_A04 #1 EBI_A13 #3	TIM4_CDTI0 TIM6_CC2 #5 WTIM1_CC2 #0 PCNT2_S0IN #0	CAN0_RX #2 US1_TX #1		
PD3	BUSADC0Y BU- SADC0X OPA2_N	EBI_A07 #1 EBI_A16 #3	TIM4_CDTI2 TIM0_CC2 #2 TIM6_CC2 #6 WTIM1_CC1 #1 WTIM2_CC0 #5	CAN1_RX #2 US1_CS #1 LEU1_RX #2	ETM_TD1 #0 ETM_TD1 #2	
PD8	BU_VIN	EBI_A12 #1	WTIM1_CC2 #2	US2_RTS #5	CMU_CLK1 #1 PRS_CH12 #2 ACMP2_O #0	
PB7	LFXTAL_P		TIM0_CDTI0 #4 TIM1_CC0 #3	US0_TX #4 US1_CLK #0 US3_RX #2 US4_TX #0 U0_CTS #4	PRS_CH22 #0	
PC3	VDAC0_OUT0ALT / OPA0_OUTALT #3 BUSACMP0Y BU- SACMP0X	EBI_AD10 #1 EBI_CS3 #2 EBI_BL1 #3 EBI_NANDREn #0	TIM0_CDTI1 #3 TIM2_CC1 #5 WTIM0_CC2 #7 LE- TIM1_OUT1 #3	ETH_TSUTMRTOG #2 CAN1_TX #0 US1_CLK #4 US2_RX #0	LES_CH3 PRS_CH11 #1	
PC5	BUSACMP0Y BU- SACMP0X OPA0_N	EBI_AD12 #1 EBI_WEn #2 EBI_NANDWEn #0 EBI_A00 #3	TIM0_CC1 #5 LE- TIM0_OUT1 #3 PCNT1_S1IN #3	SDIO_WP #1 US2_CS #0 US4_CS #0 U0_RX #4 U1_RTS #4 I2C1_SCL #0	LES_CH5 PRS_CH19 #2	
PA9	BUSAY BUSBX LCD_SEG37	EBI_AD15 #1 EBI_A03 #3 EBI_DTEN #0	TIM2_CC1 #0 TIM0_CC1 #6 WTIM2_CC0 #0 LE- TIM0_OUT1 #6	US2_CLK #2	PRS_CH9 #0	
PB10	BUSBY BUSAX	EBI_BL0 #2 EBI_A01 #1 EBI_A04 #0 EBI_A10 #3	WTIM2_CC1 #2 LE- TIM0_OUT1 #7	SDIO_CD #3 CAN0_TX #3 US1_RTS #0 US2_CTS #3 U1_RX #2	PRS_CH9 #2 ACMP1_O #6	
PH0	BUSADC1Y BU- SADC1X	EBI_DCLK #2	WTIM2_CC2 #4	US0_CTS #6 LEU1_TX #5		
PH3	BUSADC1Y BU- SADC1X	EBI_HSNC #2	TIM6_CC1 #3	US1_RTS #6		
PH6	BUSADC1Y BU- SADC1X	EBI_A18 #2	TIM6_CDTI1 #3 WTIM2_CC2 #6	US4_CLK #4		
PH9	BUSACMP3Y BU- SACMP3X	EBI_A21 #2	TIM6_CC1 #4 WTIM1_CC1 #6 WTIM2_CC2 #7	US4_RTS #4		
PH12	BUSACMP3Y BU- SACMP3X	EBI_A24 #2	TIM5_CC2 #1 WTIM1_CC0 #7	US5_CLK #3 U1_RX #5 I2C1_SCL #5		

Alternate LOCATION			
Functionality	0 - 3	4 - 7	Description
	0: PF2		Debug-interface Serial Wire viewer Output.
DBG_SWO	1: PC15 2: PD1 3: PD2		Note that this function is not enabled after reset, and must be enabled by software to be used.
	0: PF5		Debug-interface JTAG Test Data In.
DBG_TDI			Note that this function becomes available after the first valid JTAG command is re- ceived, and has a built-in pull up when JTAG is active.
	0: PF2		Debug-interface JTAG Test Data Out.
DBG_TDO			Note that this function becomes available after the first valid JTAG command is received.
EBI_A00	0: PA12 1: PB9 2: PE0 3: PC5		External Bus Interface (EBI) address output pin 00.
EBI_A01	0: PA13 1: PB10 2: PE1 3: PA7		External Bus Interface (EBI) address output pin 01.
EBI_A02	0: PA14 1: PB11 2: PI0 3: PA8		External Bus Interface (EBI) address output pin 02.
EBI_A03	0: PB9 1: PB12 2: PI1 3: PA9		External Bus Interface (EBI) address output pin 03.
EBI_A04	0: PB10 1: PD0 2: PI2 3: PA10		External Bus Interface (EBI) address output pin 04.
EBI_A05	0: PC6 1: PD1 2: PI3 3: PA11		External Bus Interface (EBI) address output pin 05.
EBI_A06	0: PC7 1: PD2 2: Pl4 3: PA12		External Bus Interface (EBI) address output pin 06.
EBI_A07	0: PE0 1: PD3 2: PI5 3: PA13		External Bus Interface (EBI) address output pin 07.
EBI_A08	0: PE1 1: PD4 2: PC8 3: PA14		External Bus Interface (EBI) address output pin 08.
EBI_A09	0: PE2 1: PD5 2: PC9 3: PB9		External Bus Interface (EBI) address output pin 09.

Alternate	LOCATION		
Functionality	0 - 3	4 - 7	Description
TIM4_CDTI2	0: PD3		Timer 4 Complimentary Dead Time Insertion channel 2.
TIM5_CC0	0: PE4 1: PE7 2: PH13 3: PI0	4: PC8 5: PC11 6: PC14 7: PF12	Timer 5 Capture Compare input / output channel 0.
TIM5_CC1	0: PE5 1: PH11 2: PH14 3: PI1	4: PC9 5: PC12 6: PF10 7: PF13	Timer 5 Capture Compare input / output channel 1.
TIM5_CC2	0: PE6 1: PH12 2: PH15 3: PI2	4: PC10 5: PC13 6: PF11 7: PF14	Timer 5 Capture Compare input / output channel 2.
TIM6_CC0	0: PG0 1: PG6 2: PG12 3: PH2	4: PH8 5: PB13 6: PD1 7: PD4	Timer 6 Capture Compare input / output channel 0.
TIM6_CC1	0: PG1 1: PG7 2: PG13 3: PH3	4: PH9 5: PB14 6: PD2 7: PD5	Timer 6 Capture Compare input / output channel 1.
TIM6_CC2	0: PG2 1: PG8 2: PG14 3: PH4	4: PH10 5: PD0 6: PD3 7: PD6	Timer 6 Capture Compare input / output channel 2.
TIM6_CDTI0	0: PG3 1: PG9 2: PE4 3: PH5		Timer 6 Complimentary Dead Time Insertion channel 0.
TIM6_CDTI1	0: PG4 1: PG10 2: PE5 3: PH6		Timer 6 Complimentary Dead Time Insertion channel 1.
TIM6_CDTI2	0: PG5 1: PG11 2: PE6 3: PH7		Timer 6 Complimentary Dead Time Insertion channel 2.
U0_CTS	0: PF8 1: PE2 2: PA5 3: PC13	4: PB7 5: PD5	UART0 Clear To Send hardware flow control input.
U0_RTS	0: PF9 1: PE3 2: PA6 3: PC12	4: PB8 5: PD6	UART0 Request To Send hardware flow control output.
U0_RX	0: PF7 1: PE1 2: PA4 3: PC15	4: PC5 5: PF2 6: PE4	UART0 Receive input.

5.22 Analog Port (APORT) Client Maps

The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 5.20 APORT Connection Diagram on page 211 shows the APORT routing for this device family (note that available features may vary by part number). A complete description of APORT functionality can be found in the Reference Manual.

Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.

In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column.

Figure 9.3. BGA112 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.