

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b520f2048gq64-b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.11 Memory Map

The EFM32GG11 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.

	8×59199928]		
CM4 Peripherals	8xe88fffff			
	8×85555555			
QSPIO	0xcfffffff			
	8886666666			
EBI Region 3	8×855555555			
EBI Region 2	8×8844444	i \		
EBI Region 1	8×87555555			0xe0100000
EBI Region 0	8×83555555		CM4 ROM Table	0xe00ff000
5	8×7fffffff			0xe0042000
Bit Set	0x460f03ff		EIM	0xe0041000
(Peripherals / CRYPTO0)	0×46000000		TPIO	0xe0040000
	8×455f5455) `, F	System Control Space	0xe000f000
Bit Clear (Paripherals / CRXPTOD)	0x440f03ff		b)stern control opace	0xe000e000
(Feripherals / CKTF100)	0x44000000 0x43ffffff		FPB	0xe0003000
Pit Pand	0x43e40000 0x43e3ffff		DWT	0xe0002000
(Peripherals / CRYPTO0 / SDIO)	0×42000000		ITM	0xe0001000
	8×41146666	1 -		0xe0000000
USB	8×48136666	1 _		
	8×488‡£555	1 /-	DAMO	0x10080000
SDIO	8×488f1666	1 /	(code space)	0100.40000
	8×488f8455		RAM1	0X10040000
CRYPT00	8×488‡8355	1 / -	(code space)	0x10020000
Peripherals 1	8×48825555		(code space)	0
Peripherals 0	8×48834444			0x10000000 0x0fe09000
	8×36666666	1 / F	Chip config	0x0fe08000
SRAM (bit-band)	8×355555555		Lock bits	0x0fe05000
	8×21ffffff			0x0fe04000
RAM2 (data space)	8×28871111		User Data	0x0fe00000
RAM1 (data space)	8×2883ffff		QSPI0	0x0c000000
BAMO (data space)	0x20020000 0x2001ffff	1/		0x04000000 0x00200000
(data space)	0x1ffffff	f T		0.00200000
Code			F l ash (2048 KB)	
	0×000000000			0×00000000
				- 0.000000000

Figure 3.2. EFM32GG11 Memory Map — Core Peripherals and Code Space

	ETU ETU	Λ				1 DDC	
0x40024000	EIH	1		8%40100008		PRS	0x400e6000
0x40022400	LICD	1	CM4 Peripherals	8xe8866666	1 /	BMU	0x400e5400
0x40022000	USB			Q×dfffffff	1 .		0x400e5000
0x40020400	CMU			Oxd0000000		СМИ	0x400e4400
0x40020000	5M0	1	QSPIO	8559999999	l i		0x400e4000
0x4001d400	TENCO	4 、		8×8222222	1 /	EMU	0x400e3000
0x4001d000	TRNGO	· ·	EBI Region 3	0×8ffffffff	1 /	coverture.	0x4008f400
0x4001c800	OSPIO	1	5010	Av8hffffff	ł /	CRYOTIMER	0x4008f000
0x4001c400	GPCBC	4 \	EBI Region 2	0288000000	i i	CSEN	0x4008e400
0x4001c000	Grence	· ·	EBI Region 1	8x84555555		GGEN	0x4008e000
0x4001b000	WTIMER3	1	EBI Region 0	8×83ffffff	1 /	12C2	0x40089c00
0x4001ac00	WTIMER2	4 、		0x80000000 0x7fffffff	ł j	12C1	0x40089800
0x4001a800	WTIMER1	· ·		0246010400		12C0	0x40089400
0x4001a400	WTIMERO	1	Bit Set	0x460f03ff		GPIO	0x40088000
0x4001a000	WHITEHO	1 \	(Peripherals / CRTP100)	0×46000000	,	VDACO	0x40086400
0x40019c00	TIMEB6	· ·		8×455‡5555	/	VDACU	0x40086000
0x40019800	TIMERS	1	Bit Clear	0x440f03ff	1 /	IDAC0	0x40084400
0x40019400	TIMER4	1	(Peripherals / CRYPTO0)	0×44000000			0x40084000
0x40019000	TIMEB3	([\]		8×43ffffff	1 /	ADC1	0x40082800
0x40018c00	TIMER3	1	Pit Pand	0x43e3ffff		ADC0	0x40082400
0x40018800	TIMEB1	1	(Peripherals / CRYPTO0 / SI	00) 0×42000000	l i		0x40082000
0x40018400	TIMEBO	(`	· ·	0x41ffffff	/	АСМРЗ	0x40080c00
0x40018000		1		0x40140000		ACMP2	0x40080800
0x40014800	UABT1	1 ,	USB	8%48199999	l (ACMPI	0x40080400
0x40014400	UABTO	· ·		8×488f5fff	1 /	ACMIPO	0×40080000
0x40014000		1	SDIO	0x400f1fff	1 /	PCNT2	0x4006ec00
0x40011800	USART5	1 ,	3510	0x40011000	l.	PCNT1	0x4006e800
0x40011400	USART4	۱ ۱		8\$488+8466	/	PCNT0	0x4006e400
0x40011000	USART3	1 \	CRYPTO0	8×488‡8355	/		0x4006a800
0x40010c00	USART2		Peripherals 1	0×400effff	1	LEUART1	0x4006a400
0x40010800	USART1			0x40040000	4	LEUARTO	0x4006a000
0x40010400	USART0	1	Peripherals 0	024000000	\mathbf{A}	L ETIMEB1	0×40066800
0x40010000			1	8x3f99999		LETIMERO	0x40066400
0x4000b400	EB	1 /	SRAM (bit-band)	8x25fffffff	1 \		0×40066000
0x40006000		1 /		0x22000000	Λ.	RTCC	0x40062400
0x40004800	CAN1			0220080000	\ \		0x40062000
0x40004400	CANO	1 .	RAM2 (data space)	8×28845555	N.	RTC	0×40060000
0x40004000		1 /	RAM1 (data space)	8×2883ffff	1 \	LECENCE	0x40055400
0x40003000	LDMA		DAMO (data array)	0x2001ffff	۱ <i>۱</i>	LESENSE	0x40055000
0x40002000			RAMU (data space)	020000000		ICD	0x40054400
0x40001400	FPUEH			⊎x1tttttt			0x40054000
0×40001000			Code		\ \	WDOG1	UX40052800
0x400000000	MSC	/		0×00000000		WDOG0	0x40052400
0.0000000000000000000000000000000000000		-			-		- 0140002000

Figure 3.3. EFM32GG11 Memory Map — Peripherals

4.1.6 Backup Supply Domain

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Backup supply voltage range	V _{BU_VIN}		1.8	_	3.8	V
PWRRES resistor	R _{PWRRES}	EMU_BUCTRL_PWRRES = RES0	3400	3900	4400	Ω
		EMU_BUCTRL_PWRRES = RES1	1450	1800	2150	Ω
		EMU_BUCTRL_PWRRES = RES2	1000	1350	1700	Ω
		EMU_BUCTRL_PWRRES = RES3	525	815	1100	Ω
Output impedance between BU_VIN and BU_VOUT ²	R _{BU_VOUT}	EMU_BUCTRL_VOUTRES = STRONG	35	110	185	Ω
		EMU_BUCTRL_VOUTRES = MED	475	775	1075	Ω
		EMU_BUCTRL_VOUTRES = WEAK	5600	6500	7400	Ω
Supply current	I _{BU_VIN}	BU_VIN not powering backup do- main	—	11	TBD	nA
		BU_VIN powering backup do- main ¹	_	550	TBD	nA

Table 4.6. Backup Supply Domain

Note:

1. Additional current required by backup circuitry when backup is active. Includes supply current of backup switches and backup regulator. Does not include supply current required for backed-up circuitry.

2. BU_VOUT and BU_STAT signals are not available in all package configurations. Check the device pinout for availability.

4.1.10.2 High-Frequency Crystal Oscillator (HFXO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal frequency	f _{HFXO}	No clock doubling	4	—	50	MHz
		Clock doubler enabled	TBD	—	TBD	MHz
Supported crystal equivalent	ESR _{HFXO}	50 MHz crystal	—		50	Ω
series resistance (ESR)		24 MHz crystal	—	—	150	Ω
		4 MHz crystal	—	—	180	Ω
Nominal on-chip tuning cap range ¹	C _{HFXO_T}	On each of HFXTAL_N and HFXTAL_P pins	8.7	_	51.7	pF
On-chip tuning capacitance step	SS _{HFXO}		—	0.084		pF
Startup time	thfxo	50 MHz crystal, ESR = 50 Ohm, C_L = 8 pF	—	350		μs
		24 MHz crystal, ESR = 150 Ohm, C_L = 6 pF	—	700	_	μs
		4 MHz crystal, ESR = 180 Ohm, C_L = 18 pF	—	3	_	ms
Current consumption after	I _{HFXO}	50 MHz crystal	—	880	_	μA
startup		24 MHz crystal		420		μA
		4 MHz crystal	_	80	_	μA

Table 4.13. High-Frequency Crystal Oscillator (HFXO)

Note:

1. The effective load capacitance seen by the crystal will be C_{HFXO_T} /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal.

4.1.10.3 Low-Frequency RC Oscillator (LFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Oscillation frequency	f _{LFRCO}	ENVREF ² = 1	TBD	32.768	TBD	kHz
		ENVREF ² = 1, T > 85 °C	TBD	32.768	TBD	kHz
		ENVREF ² = 0	TBD	32.768	TBD	kHz
Startup time	t _{LFRCO}		_	500		μs
Current consumption ¹	I _{LFRCO}	ENVREF = 1 in CMU_LFRCOCTRL	-	370		nA
		ENVREF = 0 in CMU_LFRCOCTRL	-	520		nA
Note:	•					

Table 4.14. Low-Frequency RC Oscillator (LFRCO)

1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.

2. In CMU_LFRCOCTRL register.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
MISO hold time ^{1 3}	t _{H_MI}	USART2, location 4, IOVDD = 1.8 V	-11.6	_	_	ns
		USART2, location 4, IOVDD = 3.0 V	-11.6		_	ns
		USART2, location 5, IOVDD = 1.8 V	-9.1		_	ns
		USART2, location 5, IOVDD = 3.0 V	-9.1	_	—	ns
		All other USARTs and locations, IOVDD = 1.8 V	-8	_	—	ns
		All other USARTs and locations, IOVDD = 3.0 V	-8	_	—	ns

Note:

1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).

2. $t_{\mbox{\scriptsize HFPERCLK}}$ is one period of the selected $\mbox{\scriptsize HFPERCLK}.$

3. Measurement done with 8 pF output loading at 10% and 90% of V_{DD} (figure shows 50% of V_{DD}).

Figure 4.1. SPI Master Timing Diagram

Figure 4.4. EBI Address Latch Enable Output Timing Diagram

SDIO MMC SDR Mode Timing at 1.8 V

Timing is specified for route location 0 at 1.8 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 20 pF on all pins.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Clock frequency during data transfer	F _{SD_CLK}	Using HFRCO, AUXHFRCO, or USHFRCO	_	_	25	MHz
		Using HFXO	_		TBD	MHz
Clock low time	t _{WL}	Using HFRCO, AUXHFRCO, or USHFRCO	18.1	—	—	ns
		Using HFXO	TBD	—	—	ns
Clock high time	t _{WH}	Using HFRCO, AUXHFRCO, or USHFRCO	18.1	_	—	ns
		Using HFXO	TBD	_	—	ns
Clock rise time	t _R		1.96	8.27	—	ns
Clock fall time	t _F		1.67	6.90	_	ns
Input setup time, CMD, DAT[0:7] valid to SD_CLK	t _{ISU}		5.3		_	ns
Input hold time, SD_CLK to CMD, DAT[0:7] change	t _{IH}		2.5		_	ns
Output delay time, SD_CLK to CMD, DAT[0:7] valid	todly		0	—	16	ns
Output hold time, SD_CLK to CMD, DAT[0:7] change	t _{OH}		3	_	_	ns

Table 4.50. SDIO MMC SDR Mode Timing (Location 0, 1.8V I/O)

4.1.28 Quad SPI (QSPI)

4.1.28.1 QSPI SDR Mode

QSPI SDR Mode Timing (Location 0)

Timing is specified with voltage scaling disabled, PHY-mode, route location 0 only, TX DLL = 23, RX DLL = 48, 20-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG.

Table 4.54. QSPI SDR Mode Timing (Location 0)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Full SCLK period	Т		(1/F _{SCLK}) * 0.95	_		ns
Output valid	t _{OV}			_	T/2 - 2.4	ns
Output hold	t _{OH}		T/2 - 32.9	—	_	ns
Input setup	t _{SU}		36.2 - T/2		_	ns
Input hold	t _H		T/2 - 3.3		_	ns

Figure 4.26. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Temperature

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB6	12	GPIO	PC4	13	GPIO
PC5	14	GPIO	PB7	15	GPIO
PB8	16	GPIO	PA8	17	GPIO
PA12	18	GPIO (5V)	PA13	19	GPIO (5V)
PA14	20	GPIO	RESETn	21	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	22	GPIO	PB12	23	GPIO
AVDD	24	Analog power supply.	PB13	25	GPIO
PB14	26	GPIO	PD0	28	GPIO (5V)
PD1	29	GPIO	PD2	30	GPIO (5V)
PD3	31	GPIO	PD4	32	GPIO
PD5	33	GPIO	PD6	34	GPIO
PD8	35	GPIO	VREGVSS	36	Voltage regulator VSS
VREGSW	37	DCDC regulator switching node	VREGVDD	38	Voltage regulator VDD input
DVDD	39	Digital power supply.	DECOUPLE	40	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PE4	41	GPIO	PE5	42	GPIO
PE6	43	GPIO	PE7	44	GPIO
VREGI	45	Input to 5 V regulator.	VREGO	46	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs
PF10	47	GPIO (5V)	PF11	48	GPIO (5V)
PF0	49	GPIO (5V)	PF1	50	GPIO (5V)
PF2	51	GPIO	VBUS	52	USB VBUS signal and auxiliary input to 5 V regulator.
PF12	53	GPIO	PF5	54	GPIO
PE8	56	GPIO	PE9	57	GPIO
PE10	58	GPIO	PE11	59	GPIO
PE12	60	GPIO	PE13	61	GPIO
PE14	62	GPIO	PE15	63	GPIO
PA15	64	GPIO			
Note:		·		•	·

1. GPIO with 5V tolerance are indicated by (5V).

5.20 GPIO Functionality Table

A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO pin, followed by the functionality available on that pin. Refer to 5.21 Alternate Functionality Overview for a list of GPIO locations available for each function.

GPIO Name		Pin Alternate Functionality / Description						
	Analog	EBI	Timers	Communication	Other			
PA15	BUSAY BUSBX LCD_SEG12	EBI_AD08 #0	TIM3_CC2 #0	ETH_MIIRXCLK #0 ETH_MDIO #3 US2_CLK #3	PRS_CH15 #0			
PE15	BUSCY BUSDX LCD_SEG11	EBI_AD07 #0	TIM2_CDTI2 #2 TIM3_CC1 #0	ETH_RMIITXD0 #0 ETH_MIIRXD3 #0 SDIO_CMD #1 US0_RTS #0 QSPI0_DQS #1 LEU0_RX #2	PRS_CH14 #2 ETM_TD3 #4			
PE14	BUSDY BUSCX LCD_SEG10	EBI_AD06 #0	TIM2_CDTI1 #2 TIM3_CC0 #0	ETH_RMIITXD1 #0 ETH_MIIRXD2 #0 SDIO_CLK #1 US0_CTS #0 QSPI0_SCLK #1 LEU0_TX #2	PRS_CH13 #2 ETM_TD2 #4			
PE13	BUSCY BUSDX LCD_SEG9	EBI_AD05 #0	TIM1_CC3 #1 TIM2_CC2 #3 LE- TIM0_OUT1 #4	SDIO_CLK #0 ETH_MIIRXD1 #0 US0_TX #3 US0_CS #0 U1_RX #4 I2C0_SCL #6	LES_ALTEX7 PRS_CH2 #3 ACMP0_O #0 ETM_TD1 #4 GPIO_EM4WU5			
PE12	BUSDY BUSCX LCD_SEG8	EBI_AD04 #0	TIM1_CC2 #1 TIM2_CC1 #3 WTIM0_CDTI2 #0 LETIM0_OUT0 #4	SDIO_CMD #0 ETH_MIIRXD0 #0 US0_RX #3 US0_CLK #0 U1_TX #4 I2C0_SDA #6	CMU_CLK1 #2 CMU_CLKI0 #6 LES_ALTEX6 PRS_CH1 #3 ETM_TD0 #4			
PE11	BUSCY BUSDX LCD_SEG7	EBI_AD03 #0 EBI_CS3 #4	TIM1_CC1 #1 TIM4_CC2 #7 WTIM0_CDTI1 #0	SDIO_DAT0 #0 QSPI0_DQ7 #0 ETH_MIIRXDV #0 US0_RX #0	LES_ALTEX5 PRS_CH3 #2 ETM_TCLK #4			
PE10	BUSDY BUSCX LCD_SEG6	EBI_AD02 #0 EBI_CS2 #4	TIM1_CC0 #1 TIM4_CC1 #7 WTIM0_CDTI0 #0	SDIO_DAT1 #0 QSPI0_DQ6 #0 ETH_MIIRXER #0 US0_TX #0	PRS_CH2 #2 GPIO_EM4WU9			
PE9	BUSCY BUSDX LCD_SEG5	EBI_AD01 #0 EBI_CS1 #4	TIM4_CC0 #7 PCNT2_S1IN #1	SDIO_DAT2 #0 QSPI0_DQ5 #0 US5_RX #0	PRS_CH8 #2			
PE8	BUSDY BUSCX LCD_SEG4	EBI_AD00 #0 EBI_CS0 #4	TIM2_CDTI0 #2 TIM4_CC2 #6 PCNT2_S0IN #1	SDIO_DAT3 #0 QSPI0_DQ4 #0 US5_TX #0 I2C2_SDA #0	PRS_CH3 #1			
PI9		EBI_A14 #2	TIM1_CC3 #7 TIM4_CC1 #3	US4_CS #3				
PI6		EBI_A11 #2	TIM1_CC0 #7 TIM4_CC1 #2 WTIM3_CC0 #5	US4_TX #3				

Table 5.20. GPIO Functionality Table

Alternate	LOCA		
Functionality	0 - 3	4 - 7	Description
LCD_SEG20 / LCD_COM4	0: PB3		LCD segment line 20. This pin may also be used as LCD COM line 4
LCD_SEG21 / LCD_COM5	0: PB4		LCD segment line 21. This pin may also be used as LCD COM line 5
LCD_SEG22 / LCD_COM6	0: PB5		LCD segment line 22. This pin may also be used as LCD COM line 6
LCD_SEG23 / LCD_COM7	0: PB6		LCD segment line 23. This pin may also be used as LCD COM line 7
LCD_SEG24	0: PF6		LCD segment line 24.
LCD_SEG25	0: PF7		LCD segment line 25.
LCD_SEG26	0: PF8		LCD segment line 26.
LCD_SEG27	0: PF9		LCD segment line 27.
LCD_SEG28	0: PD9		LCD segment line 28.
LCD_SEG29	0: PD10		LCD segment line 29.
LCD_SEG30	0: PD11		LCD segment line 30.
LCD_SEG31	0: PD12		LCD segment line 31.
LCD_SEG32	0: PB0		LCD segment line 32.

Alternate	LOCATION		
Functionality	0 - 3	4 - 7	Description
SDIO_DAT7	0: PD9 1: PB4		SDIO Data 7.
SDIO_WP	0: PF9 1: PC5 2: PB15 3: PB9		SDIO Write Protect.
TIM0_CC0	0: PA0 1: PF6 2: PD1 3: PB6	4: PF0 5: PC4 6: PA8 7: PA1	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	0: PA1 1: PF7 2: PD2 3: PC0	4: PF1 5: PC5 6: PA9 7: PA0	Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	0: PA2 1: PF8 2: PD3 3: PC1	4: PF2 5: PA7 6: PA10 7: PA13	Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0	0: PA3 1: PC13 2: PF3 3: PC2	4: PB7	Timer 0 Complimentary Dead Time Insertion channel 0.
TIM0_CDTI1	0: PA4 1: PC14 2: PF4 3: PC3	4: PB8	Timer 0 Complimentary Dead Time Insertion channel 1.
TIM0_CDTI2	0: PA5 1: PC15 2: PF5 3: PC4	4: PB11	Timer 0 Complimentary Dead Time Insertion channel 2.
TIM1_CC0	0: PC13 1: PE10 2: PB0 3: PB7	4: PD6 5: PF2 6: PF13 7: PI6	Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	0: PC14 1: PE11 2: PB1 3: PB8	4: PD7 5: PF3 6: PF14 7: PI7	Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	0: PC15 1: PE12 2: PB2 3: PB11	4: PC13 5: PF4 6: PF15 7: PI8	Timer 1 Capture Compare input / output channel 2.
TIM1_CC3	0: PC12 1: PE13 2: PB3 3: PB12	4: PC14 5: PF12 6: PF5 7: PI9	Timer 1 Capture Compare input / output channel 3.
TIM2_CC0	0: PA8 1: PA12 2: PC8 3: PF2	4: PB6 5: PC2 6: PG8 7: PG5	Timer 2 Capture Compare input / output channel 0.

Alternate Functionality	Location	Priority
QSPI0_DQS	0: PF9	High Speed
QSPI0_SCLK	0: PF6	High Speed
SDIO_CLK	0: PE13	High Speed
SDIO_CMD	0: PE12	High Speed
SDIO_DAT0	0: PE11	High Speed
SDIO_DAT1	0: PE10	High Speed
SDIO_DAT2	0: PE9	High Speed
SDIO_DAT3	0: PE8	High Speed
SDIO_DAT4	0: PD12	High Speed
SDIO_DAT5	0: PD11	High Speed
SDIO_DAT6	0: PD10	High Speed
SDIO_DAT7	0: PD9	High Speed
TIM0_CC0	3: PB6	Non-interference
TIM0_CC1	3: PC0	Non-interference
TIM0_CC2	3: PC1	Non-interference
TIM0_CDTI0	1: PC13	Non-interference
TIM0_CDTI1	1: PC14	Non-interference
TIM0_CDTI2	1: PC15	Non-interference
TIM2_CC0	0: PA8	Non-interference
TIM2_CC1	0: PA9	Non-interference
TIM2_CC2	0: PA10	Non-interference
TIM2_CDTI0	0: PB0	Non-interference
TIM2_CDTI1	0: PB1	Non-interference
TIM2_CDTI2	0: PB2	Non-interference
TIM4_CC0	0: PF3	Non-interference
TIM4_CC1	0: PF4	Non-interference
TIM4_CC2	0: PF12	Non-interference
TIM4_CDTI0	0: PD0	Non-interference
TIM4_CDTI1	0: PD1	Non-interference
TIM4_CDTI2	0: PD3	Non-interference
TIM6_CC0	0: PG0	Non-interference
TIM6_CC1	0: PG1	Non-interference
TIM6_CC2	0: PG2	Non-interference
TIM6_CDTI0	0: PG3	Non-interference
TIM6_CDTI1	0: PG4	Non-interference
TIM6_CDTI2	0: PG5	Non-interference

6. BGA192 Package Specifications

6.1 BGA192 Package Dimensions

Figure 6.1. BGA192 Package Drawing

7.2 BGA152 PCB Land Pattern

Figure 7.2. BGA152 PCB Land Pattern Drawing

Table 7.2. BGA152 PCB Land Pattern Dimensions

Dimension	Min	Nom	Мах		
X	0.20				
C1	6.50				
C2	6.50				
E1	0.5				
E2	0.5				

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.

3. This Land Pattern Design is based on the IPC-7351 guidelines.

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

6. The stencil thickness should be 0.125 mm (5 mils).

7. The ratio of stencil aperture to land pad size should be 1:1.

8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

8. BGA120 Package Specifications

8.1 BGA120 Package Dimensions

Figure 8.1. BGA120 Package Drawing

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, Cecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com