

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	95
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	120-VFBGA
Supplier Device Package	120-BGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b520f2048il120-br

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4.2 Internal and External Oscillators

The EFM32GG11 supports two crystal oscillators and fully integrates five RC oscillators, listed below.

- A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 4 to 50 MHz are supported. An external clock source such as a TCXO can also be applied to the HFXO input for improved accuracy over temperature.
- A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
- An integrated high frequency RC oscillator (HFRCO) is available for the MCU system. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range. When crystal accuracy is not required, it can be operated in free-running mode at a number of factory-calibrated frequencies. A digital phase-locked loop (DPLL) feature allows the HFRCO to achieve higher accuracy and stability by referencing other available clock sources such as LFXO and HFXO.
- An integrated auxiliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial Wire Viewer port with a wide frequency range.
- An integrated auxilliary high frequency RC oscillator (USHFRCO) is available for timing the USB, SDIO and QSPI peripherals. The USHFRCO can be syncronized to the host's USB clock to allow the USB to operate in device mode without the additional cost of an external crystal.
- An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required.
- An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.

3.5 Counters/Timers and PWM

3.5.1 Timer/Counter (TIMER)

TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit TIMER_0 only.

3.5.2 Wide Timer/Counter (WTIMER)

WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only.

3.5.3 Real Time Counter and Calendar (RTCC)

The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes down to EM4H.

3.5.4 Low Energy Timer (LETIMER)

The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of wave-forms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.

3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER)

The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.

0x40024000	ETH	Ņ		8xe0100008	/	PRS	0x400e6000
0x40022400		1	CM4 Peripherals	8xe88fffff	,	RMU	0x400e5400
0x40022000	USB				1	KMIO	0x400e5000
0x40020400		1		8xdfffffff		СМИ	0x400e4400
0x40020000	SMU		QSPI0	8xcfffffff		0.10	0x400e4000
0x4001d400				8×955555555		EMU	0x400e3400
0x4001d000	TRNG0	[\	5010 1 0		1		0x400e3000 0x4008f400
0x4001c800			EBI Region 3	8x8c666666		CRYOTIMER	0x4008f000
0x4001c400	QSPI0		EBI Region 2	8x88999999	,		0x4008e400
0x4001c000	GPCRC		EBI Region 1	8x87ffffff	1	CSEN	0x4008e000
0x4001b000			EBI Region 0	8×83ffffff		2C2	0x40089c00
0x4001ac00	WTIMER3		EBI Region 0		1	1202	0x40089800
0x4001a800	WTIMER2	1		8x366f6466	1	2C0	0x40089400
0x4001a400	WTIMER1	1	Bit Set	0x460f03ff		GPIO	0x40089000
0x4001a000	WTIMER0		(Peripherals / CRYPTO0)	0×46000000	/		0x40088000
0x40019c00		1		8×455f6466	/	VDAC0	0x40086400 0x40086000
0x40019800	TIMER6			0x44010400 0x440f03ff			0x40086000
0x40019400	TIMER5	(·	Bit Clear (Peripherals / CRYPTO0)		1	DAC0	0x40084000
0x40019000	TIMER4	۱ ۱	(renpherals / ettir roo)	0x44000000			0x40082800
0x40018c00	TIMER3			8x43£46666		ADC1	0x40082400
0x40018800	TIMER2	1	Bit-Band	0x43e3ffff	1	ADC0	0x40082000
0x40018800	TIMER1] \	(Peripherals / CRYPTO0 / SDI	O) _{0×42000000}		ACMP3	0x40081000
0x40018400	TIMERO			8×40146666	' '	ACMP2	0x40080c00
0x40018000) \	USB	8×48135555	1	ACMP1	0x40080800
0x40014800 0x40014400	UART1	1 \	058			ACMP0	0x40080400
0x40014400 0x40014000	UART0			8×488‡£555	'		0x40080000
0x40014000 0x40011800		1 \	SDIO	8×488f1666	1	PCNT2	0x4006ec00 0x4006e800
	USART5	1 \			1	PCNT1	0x4006e400
0x40011400 0x40011000	USART4	1		8×488f8455	/	PCNT0	0x4006e000
	USART3	1 \	CRYPTO0	8×488‡8355	/		0x4006a800
0x40010c00	USART2	1	Peripherals 1	8×48845555		LEUART1 LEUART0	0x4006a400
0x40010800	USART1		Desigh and a O			LEUARTO	0x4006a000
0x40010400	USART0	1	Peripherals 0	8×48835555	1	LETIMER1	0x40066800
0x40010000		1		8×36666666		LETIMERO	0x40066400
0x4000b400	EBI	1 /	SRAM (bit-band)	8x22666666	`		0×40066000
0x4000b000		1 /			Λ.	RTCC	0x40062400 0x40062000
0x40004800	CAN1			8x21ffffff	\ \		0x40062000
0x40004400	CAN0		RAM2 (data space)	8x28846666	`	RTC	0x40060000
0x40004000		1 /	RAM1 (data space)	8×28835555	\		0x40055400
0x40003000	LDMA				\mathbf{i}	LESENSE	0x40055000
0x40002000			RAM0 (data space)	8x28816666	N.	LCD	0x40054400
0x40001400	FPUEH	1 /		0x1fffffff	\		0x40054000
0x40001000		1 /	Code		Λ.	WDOG1	0x40052800
0×40000800	MSC	/		0×00000000	\ \	WDOG1 WDOG0	0x40052400
0x40000000		r			i '		0x40052000

Figure 3.3. EFM32GG11 Memory Map — Peripherals

4.1.7.2 Current Consumption 3.3 V using DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V DC-DC output. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.

Table 4.8.	Current Consumption 3.3	V using DC-DC Converter
------------	--------------------------------	-------------------------

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
mode with all peripherals dis-	IACTIVE_DCM	72 MHz HFRCO, CPU running Prime from flash	_	80	-	µA/MHz
abled, DCDC in Low Noise DCM mode ²		72 MHz HFRCO, CPU running while loop from flash	_	80	_	µA/MHz
		72 MHz HFRCO, CPU running CoreMark loop from flash	_	92	_	µA/MHz
		50 MHz crystal, CPU running while loop from flash	_	84	_	µA/MHz
		48 MHz HFRCO, CPU running while loop from flash	_	84	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	_	90	-	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	_	94	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash	_	109	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	_	698	_	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_CCM	72 MHz HFRCO, CPU running Prime from flash	_	84	_	µA/MHz
abled, DCDC in Low Noise CCM mode ¹		72 MHz HFRCO, CPU running while loop from flash	_	84	-	µA/MHz
		72 MHz HFRCO, CPU running CoreMark loop from flash	_	95	_	µA/MHz
		50 MHz crystal, CPU running while loop from flash	_	91	_	µA/MHz
		48 MHz HFRCO, CPU running while loop from flash	_	92	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	_	104	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	_	113	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash	_	142	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	_	1264	_	µA/MHz

4.1.7.3 Current Consumption 1.8 V without DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 1.8 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.

Table 4.9. Current Consumption 1.8 V without DC-DC Converter

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
mode with all peripherals dis-	I _{ACTIVE}	72 MHz HFRCO, CPU running Prime from flash	_	120	_	µA/MHz
abled		72 MHz HFRCO, CPU running while loop from flash	_	120	_	µA/MHz
		72 MHz HFRCO, CPU running CoreMark loop from flash	_	140	_	µA/MHz
		50 MHz crystal, CPU running while loop from flash	—	122	_	µA/MHz
		48 MHz HFRCO, CPU running while loop from flash	_	122	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	_	124	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	_	126	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash	_	131	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	—	315	_	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_VS	19 MHz HFRCO, CPU running while loop from flash	—	107	_	µA/MHz
abled and voltage scaling enabled		1 MHz HFRCO, CPU running while loop from flash	_	259	_	µA/MHz
Current consumption in EM1	IEM1	72 MHz HFRCO	_	57		µA/MHz
mode with all peripherals disabled		50 MHz crystal	_	59		µA/MHz
		48 MHz HFRCO	_	59		µA/MHz
		32 MHz HFRCO	_	61		µA/MHz
		26 MHz HFRCO	_	63		µA/MHz
		16 MHz HFRCO	_	68	_	µA/MHz
		1 MHz HFRCO	_	252		µA/MHz
Current consumption in EM1	I _{EM1_VS}	19 MHz HFRCO	_	55		µA/MHz
mode with all peripherals dis- abled and voltage scaling enabled		1 MHz HFRCO	_	207	_	µA/MHz
Current consumption in EM2 mode, with voltage scaling	I _{EM2_VS}	Full 512 kB RAM retention and RTCC running from LFXO	_	3.7	_	μΑ
enabled		Full 512 kB RAM retention and RTCC running from LFRCO	_	4.0	_	μΑ
		16 kB (1 bank) RAM retention and RTCC running from LFRCO ²	—	2.5	_	μΑ

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Hysteresis (V _{CM} = 1.25 V,	V _{ACMPHYST}	HYSTSEL ⁵ = HYST0	TBD	0	TBD	mV
$BIASPROG^4 = 0x10, FULL-BIAS^4 = 1)$		HYSTSEL ⁵ = HYST1	TBD	18	TBD	mV
		HYSTSEL ⁵ = HYST2	TBD	33	TBD	mV
		HYSTSEL ⁵ = HYST3	TBD	46	TBD	mV
		HYSTSEL ⁵ = HYST4	TBD	57	TBD	mV
		HYSTSEL ⁵ = HYST5	TBD	68	TBD	mV
		HYSTSEL ⁵ = HYST6	TBD	79	TBD	mV
		HYSTSEL ⁵ = HYST7	TBD	90	TBD	mV
		HYSTSEL ⁵ = HYST8	TBD	0	TBD	mV
		HYSTSEL ⁵ = HYST9	TBD	-18	TBD	mV
		HYSTSEL ⁵ = HYST10	TBD	-33	TBD	mV
		HYSTSEL ⁵ = HYST11	TBD	-45	TBD	mV
		HYSTSEL ⁵ = HYST12	TBD	-57	TBD	mV
		HYSTSEL ⁵ = HYST13	TBD	-67	TBD	mV
		HYSTSEL ⁵ = HYST14	TBD	-78	TBD	mV
		HYSTSEL ⁵ = HYST15	TBD	-88	TBD	mV
Comparator delay ³	t _{ACMPDELAY}	$BIASPROG^4 = 1$, $FULLBIAS^4 = 0$	_	30	_	μs
		$BIASPROG^4 = 0x10, FULLBIAS^4 = 0$		3.7	_	μs
		BIASPROG ⁴ = 0x02, FULLBIAS ⁴ = 1		360	_	ns
		BIASPROG ⁴ = 0x20, FULLBIAS ⁴ = 1	_	35	_	ns
Offset voltage	VACMPOFFSET	BIASPROG ⁴ =0x10, FULLBIAS ⁴ = 1	TBD	_	TBD	mV
Reference voltage	V _{ACMPREF}	Internal 1.25 V reference	TBD	1.25	TBD	V
		Internal 2.5 V reference	TBD	2.5	TBD	V
Capacitive sense internal re- sistance	R _{CSRES}	CSRESSEL ⁶ = 0	_	infinite	_	kΩ
		CSRESSEL ⁶ = 1		15	_	kΩ
		CSRESSEL ⁶ = 2	—	27	_	kΩ
		CSRESSEL ⁶ = 3	—	39	_	kΩ
		CSRESSEL ⁶ = 4	—	51		kΩ
		CSRESSEL ⁶ = 5	—	100		kΩ
		CSRESSEL ⁶ = 6	—	162	-	kΩ
		CSRESSEL ⁶ = 7	—	235	-	kΩ

4.1.16 Digital to Analog Converter (VDAC)

DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output.

Table 4.24.	Digital to	Analog	Converter	(VDAC)
-------------	------------	--------	-----------	--------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output voltage	V _{DACOUT}	Single-Ended	0	_	V _{VREF}	V
		Differential ²	-V _{VREF}	_	V _{VREF}	V
Current consumption includ- ing references (2 channels) ¹	IDAC	500 ksps, 12-bit, DRIVES- TRENGTH = 2, REFSEL = 4	_	402	_	μA
		44.1 ksps, 12-bit, DRIVES- TRENGTH = 1, REFSEL = 4	—	88	-	μA
		200 Hz refresh rate, 12-bit Sam- ple-Off mode in EM2, DRIVES- TRENGTH = 2, BGRREQTIME = 1, EM2REFENTIME = 9, REFSEL = 4, SETTLETIME = 0x0A, WAR- MUPTIME = 0x02		2	_	μΑ
Current from HFPERCLK ⁴	IDAC_CLK		—	5.25	_	µA/MHz
Sample rate	SR _{DAC}		—	_	500	ksps
DAC clock frequency	f _{DAC}		_	_	1	MHz
Conversion time	t _{DACCONV}	f _{DAC} = 1MHz	2	_	_	μs
Settling time	t _{DACSETTLE}	50% fs step settling to 5 LSB	—	2.5	—	μs
Startup time	t _{DACSTARTUP}	Enable to 90% fs output, settling to 10 LSB	_	_	12	μs
Output impedance	R _{OUT}	$\label{eq:DRIVESTRENGTH} \begin{array}{l} DRIVESTRENGTH = 2,0.4V \leq \\ V_{OUT} \leq V_{OPA} - 0.4V,-8mA < \\ I_{OUT} < 8mA,Full supply range \end{array}$	_	2	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.4 V \leq V _{OUT} \leq V _{OPA} - 0.4 V, -400 µA $<$ I _{OUT} $<$ 400 µA, Full supply range	_	2	_	Ω
		$\label{eq:DRIVESTRENGTH} \begin{array}{l} DRIVESTRENGTH = 2, 0.1 V \leq \\ V_{OUT} \leq V_{OPA} - 0.1 V, -2 mA < \\ I_{OUT} < 2 mA, Full \text{ supply range} \end{array}$	_	2	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.1 V \leq V _{OUT} \leq V _{OPA} - 0.1 V, -100 µA $<$ I _{OUT} $<$ 100 µA, Full supply range	_	2	-	Ω
Power supply rejection ratio ⁶	PSRR	Vout = 50% fs. DC	_	65.5	_	dB

4.1.17 Current Digital to Analog Converter (IDAC)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Number of ranges	N _{IDAC_RANGES}		_	4	_	ranges
Output current	I _{IDAC_OUT}	RANGSEL ¹ = RANGE0	0.05	_	1.6	μA
		RANGSEL ¹ = RANGE1	1.6	_	4.7	μA
		RANGSEL ¹ = RANGE2	0.5	_	16	μA
		RANGSEL ¹ = RANGE3	2	_	64	μA
Linear steps within each range	N _{IDAC_STEPS}		_	32	_	steps
Step size	SS _{IDAC}	RANGSEL ¹ = RANGE0	_	50	_	nA
		RANGSEL ¹ = RANGE1	_	100	_	nA
		RANGSEL ¹ = RANGE2	_	500	_	nA
		RANGSEL ¹ = RANGE3	_	2	_	μA
Total accuracy, STEPSEL ¹ = 0x10	ACCIDAC	EM0 or EM1, AVDD=3.3 V, T = 25 °C	TBD	_	TBD	%
		EM0 or EM1, Across operating temperature range	TBD	_	TBD	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE0, AVDD=3.3 V, T = 25 °C	_	-2.7	_	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE1, AVDD=3.3 V, T = 25 °C	_	-2.5	_	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE2, AVDD=3.3 V, T = 25 °C	_	-1.5	_	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE3, AVDD=3.3 V, T = 25 °C	_	-1.0	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE0, AVDD=3.3 V, T = 25 °C	_	-1.1	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE1, AVDD=3.3 V, T = 25 °C	_	-1.1	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE2, AVDD=3.3 V, T = 25 °C	_	-0.9	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE3, AVDD=3.3 V, T = 25 °C	_	-0.9	-	%

Table 4.25. Current Digital to Analog Converter (IDAC)

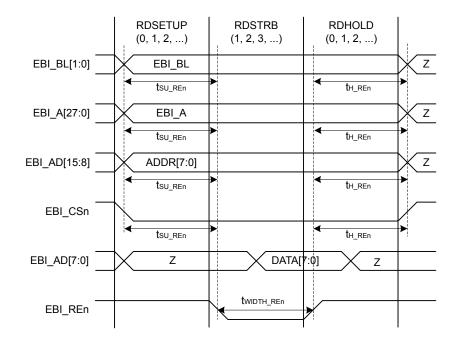


Figure 4.5. EBI Read Enable Output Timing Diagram

SDIO MMC DDR Mode Timing at 1.8 V

Timing is specified for route location 0 at 1.8 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 25 pF on all pins.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Clock frequency during data transfer	F _{SD_CLK}	Using HFRCO, AUXHFRCO, or USHFRCO	_	_	18	MHz
		Using HFXO	_	_	TBD	MHz
Clock low time	t _{WL}	Using HFRCO, AUXHFRCO, or USHFRCO	25.1	—		ns
		Using HFXO	TBD	_	_	ns
Clock high time	t _{WH}	Using HFRCO, AUXHFRCO, or USHFRCO	25.1			ns
		Using HFXO	TBD	_	_	ns
Clock rise time	t _R		1.13	5.21	_	ns
Clock fall time	t _F		1.01	4.10	_	ns
Input setup time, CMD valid to SD_CLK	t _{ISU}		5.3			ns
Input hold time, SD_CLK to CMD change	t _{IH}		2.5		_	ns
Output delay time, SD_CLK to CMD valid	t _{ODLY}		0		16	ns
Output hold time, SD_CLK to CMD change	t _{OH}		3			ns
Input setup time, DAT[0:7] valid to SD_CLK	t _{ISU2X}		5.3			ns
Input hold time, SD_CLK to DAT[0:7] change	t _{IH2X}		2.5			ns
Output delay time, SD_CLK to DAT[0:7] valid	t _{ODLY2X}		0	_	16	ns
Output hold time, SD_CLK to DAT[0:7] change	t _{OH2X}		3	—	—	ns

Table 4.52. SDIO MMC DDR Mode Timing (Location 0, 1.8V I/O)

4.2.1 Supply Current

Figure 4.23. EM0 Full Speed Active Mode Typical Supply Current vs. Temperature

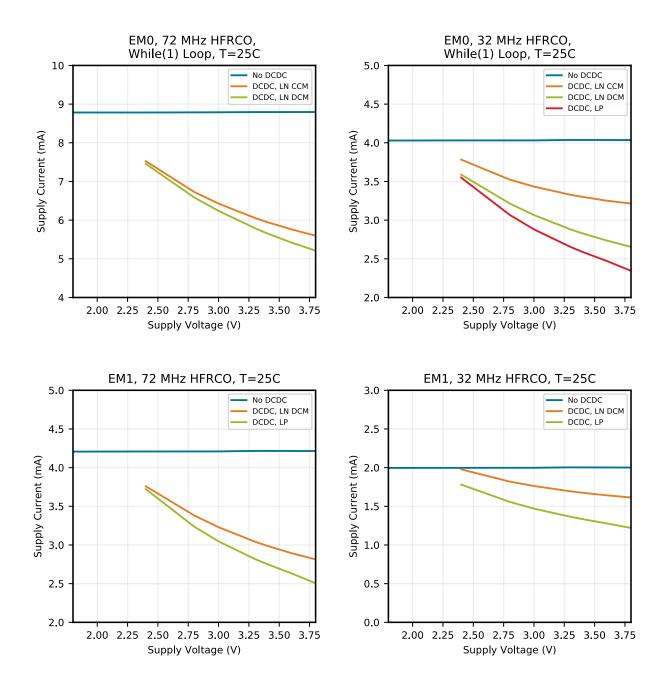


Figure 4.27. EM0 and EM1 Mode Typical Supply Current vs. Supply

Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.

4.2.2 DC-DC Converter

Default test conditions: CCM mode, LDCDC = 4.7 µH, CDCDC = 4.7 µF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz

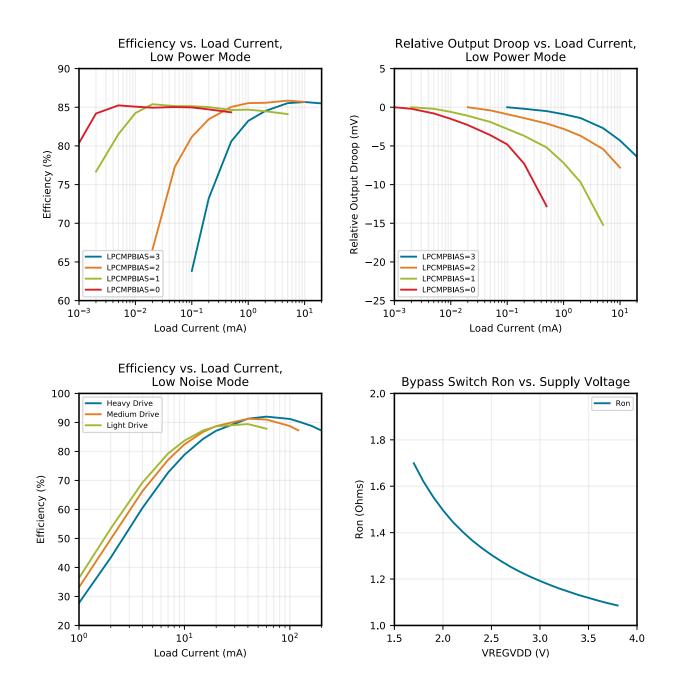
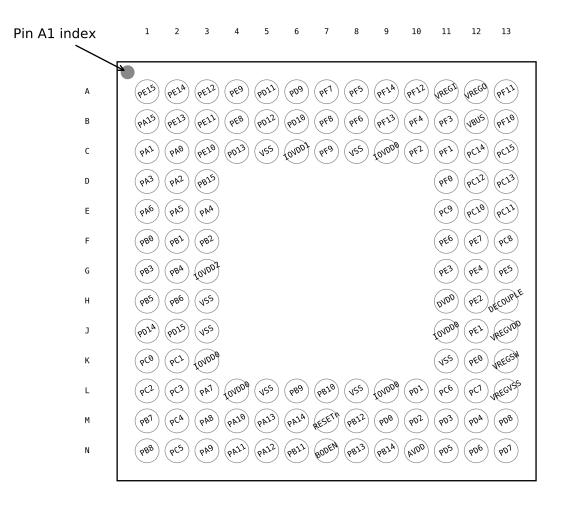



Figure 4.29. DC-DC Converter Typical Performance Characteristics

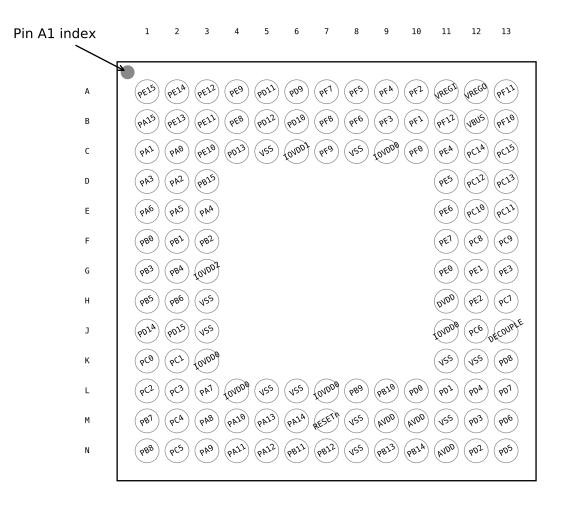


Figure 5.3. EFM32GG11B8xx in BGA120 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Table 5.3. EFM32GG11B8xx in BGA120 Device Pinout
--

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PE15	A1	GPIO	PE14	A2	GPIO
PE12	A3	GPIO	PE9	A4	GPIO
PD11	A5	GPIO	PD9	A6	GPIO
PF7	A7	GPIO	PF5	A8	GPIO
PF14	A9	GPIO (5V)	PF12	A10	GPIO
VREGI	A11	Input to 5 V regulator.	VREGO	A12	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs

Figure 5.5. EFM32GG11B4xx in BGA120 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PE15	A1	GPIO	PE14	A2	GPIO
PE12	A3	GPIO	PE9	A4	GPIO
PD11	A5	GPIO	PD9	A6	GPIO
PF7	A7	GPIO	PF5	A8	GPIO
PF4	A9	GPIO	PF2	A10	GPIO
VREGI	A11	Input to 5 V regulator.	VREGO	A12	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description	
PC4	13	GPIO	PC5	14	GPIO	
PB7	15	GPIO	PB8	16	GPIO	
PA12	17	GPIO (5V)	PA13	18	GPIO (5V)	
PA14	19	GPIO	RESETn	20	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	
PB11	21	GPIO	AVDD	23 27	Analog power supply.	
PB13	24	GPIO	PB14	25	GPIO	
PD0	28	GPIO (5V)	PD1	29	GPIO	
PD2	30	GPIO (5V)	PD3	31	GPIO	
PD4	32	GPIO	PD5	33	GPIO	
PD6	34	GPIO	PD7	35	GPIO	
PD8	36	GPIO	PC6	37	GPIO	
PC7	38	GPIO	DVDD	39	Digital power supply.	
DECOUPLE	40	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PE4	41	GPIO	
PE5	42	GPIO	PE6	43	GPIO	
PE7	44	GPIO	VREGI	45	Input to 5 V regulator.	
VREGO	46	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs	PF10	47	GPIO (5V)	
PF11	48	GPIO (5V)	PF0	49	GPIO (5V)	
PF1	50	GPIO (5V)	PF2	51	GPIO	
VBUS	52	USB VBUS signal and auxiliary input to 5 V regulator.	PF12	53	GPIO	
PF5	54	GPIO	PE8	57	GPIO	
PE9	58	GPIO	PE10	59	GPIO	
PE11	60	GPIO	PE12	61	GPIO	
PE13	62	GPIO	PE14	63	GPIO	
PE15	64	GPIO				

1. GPIO with 5V tolerance are indicated by (5V).

Alternate	LOCA	TION	
Functionality	0 - 3	4 - 7	Description
ETH_MDIO	0: PB3 1: PD13 2: PC0 3: PA15		Ethernet Management Data I/O.
ETH_MIICOL	0: PB2 1: PG15 2: PB4		Ethernet MII Collision Detect.
ETH_MIICRS	0: PB1 1: PG14 2: PB3		Ethernet MII Carrier Sense.
ETH_MIIRXCLK	0: PA15 1: PG7 2: PD12		Ethernet MII Receive Clock.
ETH_MIIRXD0	0: PE12 1: PG11 2: PF9		Ethernet MII Receive Data Bit 0.
ETH_MIIRXD1	0: PE13 1: PG10 2: PD9		Ethernet MII Receive Data Bit 1.
ETH_MIIRXD2	0: PE14 1: PG9 2: PD10		Ethernet MII Receive Data Bit 2.
ETH_MIIRXD3	0: PE15 1: PG8 2: PD11		Ethernet MII Receive Data Bit 3.
ETH_MIIRXDV	0: PE11 1: PG12 2: PF8		Ethernet MII Receive Data Valid.
ETH_MIIRXER	0: PE10 1: PG13 2: PF7		Ethernet MII Receive Error.
ETH_MIITXCLK	0: PA0 1: PG0		Ethernet MII Transmit Clock.
ETH_MIITXD0	0: PA4 1: PG4		Ethernet MII Transmit Data Bit 0.
ETH_MIITXD1	0: PA3 1: PG3		Ethernet MII Transmit Data Bit 1.

Alternate LOCA ⁻		ATION			
Functionality	0 - 3	4 - 7	Description		
SDIO_DAT7	0: PD9 1: PB4		SDIO Data 7.		
SDIO_WP	0: PF9 1: PC5 2: PB15 3: PB9		SDIO Write Protect.		
TIM0_CC0	0: PA0 1: PF6 2: PD1 3: PB6	4: PF0 5: PC4 6: PA8 7: PA1	Timer 0 Capture Compare input / output channel 0.		
TIM0_CC1	0: PA1 1: PF7 2: PD2 3: PC0	4: PF1 5: PC5 6: PA9 7: PA0	Timer 0 Capture Compare input / output channel 1.		
TIM0_CC2	0: PA2 1: PF8 2: PD3 3: PC1	4: PF2 5: PA7 6: PA10 7: PA13	Timer 0 Capture Compare input / output channel 2.		
TIM0_CDTI0	0: PA3 1: PC13 2: PF3 3: PC2	4: PB7	Timer 0 Complimentary Dead Time Insertion channel 0.		
TIM0_CDTI1	0: PA4 1: PC14 2: PF4 3: PC3	4: PB8	Timer 0 Complimentary Dead Time Insertion channel 1.		
TIM0_CDTI2	0: PA5 1: PC15 2: PF5 3: PC4	4: PB11	Timer 0 Complimentary Dead Time Insertion channel 2.		
TIM1_CC0	0: PC13 1: PE10 2: PB0 3: PB7	4: PD6 5: PF2 6: PF13 7: PI6	Timer 1 Capture Compare input / output channel 0.		
TIM1_CC1	0: PC14 1: PE11 2: PB1 3: PB8	4: PD7 5: PF3 6: PF14 7: PI7	Timer 1 Capture Compare input / output channel 1.		
TIM1_CC2	0: PC15 1: PE12 2: PB2 3: PB11	4: PC13 5: PF4 6: PF15 7: PI8	Timer 1 Capture Compare input / output channel 2.		
TIM1_CC3	0: PC12 1: PE13 2: PB3 3: PB12	4: PC14 5: PF12 6: PF5 7: PI9	Timer 1 Capture Compare input / output channel 3.		
TIM2_CC0	0: PA8 1: PA12 2: PC8 3: PF2	4: PB6 5: PC2 6: PG8 7: PG5	Timer 2 Capture Compare input / output channel 0.		

Alternate LOCATION		ATION			
Functionality	0 - 3	4 - 7	Description		
TIM2_CC1	0: PA9 1: PA13 2: PC9 3: PE12	4: PC0 5: PC3 6: PG9 7: PG6	Timer 2 Capture Compare input / output channel 1.		
TIM2_CC2	0: PA10 1: PA14 2: PC10 3: PE13	4: PC1 5: PC4 6: PG10 7: PG7	Timer 2 Capture Compare input / output channel 2.		
TIM2_CDTI0	0: PB0 1: PD13 2: PE8 3: PG0		Timer 2 Complimentary Dead Time Insertion channel 0.		
TIM2_CDTI1	0: PB1 1: PD14 2: PE14 3: PG1		Timer 2 Complimentary Dead Time Insertion channel 1.		
TIM2_CDTI2	0: PB2 1: PD15 2: PE15 3: PG2		Timer 2 Complimentary Dead Time Insertion channel 2.		
TIM3_CC0	0: PE14 1: PE0 2: PE3 3: PE5	4: PA0 5: PA3 6: PA6 7: PD15	Timer 3 Capture Compare input / output channel 0.		
TIM3_CC1	0: PE15 1: PE1 2: PE4 3: PE6	4: PA1 5: PA4 6: PD13 7: PB15	Timer 3 Capture Compare input / output channel 1.		
TIM3_CC2	0: PA15 1: PE2 2: PE5 3: PE7	4: PA2 5: PA5 6: PD14 7: PB0	Timer 3 Capture Compare input / output channel 2.		
TIM4_CC0	0: PF3 1: PF13 2: PF5 3: PI8	4: PF6 5: PF9 6: PD11 7: PE9	Timer 4 Capture Compare input / output channel 0.		
TIM4_CC1	0: PF4 1: PF14 2: PI6 3: PI9	4: PF7 5: PD9 6: PD12 7: PE10	Timer 4 Capture Compare input / output channel 1.		
TIM4_CC2	0: PF12 1: PF15 2: PI7 3: PI10	4: PF8 5: PD10 6: PE8 7: PE11	Timer 4 Capture Compare input / output channel 2.		
TIM4_CDTI0	0: PD0		Timer 4 Complimentary Dead Time Insertion channel 0.		
TIM4_CDTI1	0: PD1		Timer 4 Complimentary Dead Time Insertion channel 1.		

Alternate	LOCA	ATION			
Functionality	0 - 3	4 - 7	Description		
WTIM0_CC2	0: PE6 1: PD14 2: PG4 3: PG10	4: PF1 5: PB2 6: PB5 7: PC3	Wide timer 0 Capture Compare input / output channel 2.		
WTIM0_CDTI0	0: PE10 1: PD15 2: PA12 3: PG11	4: PD4	Wide timer 0 Complimentary Dead Time Insertion channel 0.		
WTIM0_CDTI1	0: PE11 1: PG0 2: PA13 3: PG12	4: PD5	Wide timer 0 Complimentary Dead Time Insertion channel 1.		
WTIM0_CDTI2	0: PE12 1: PG1 2: PA14 3: PG13	4: PD6	Wide timer 0 Complimentary Dead Time Insertion channel 2.		
WTIM1_CC0	0: PB13 1: PD2 2: PD6 3: PC7	4: PE3 5: PE7 6: PH8 7: PH12	Wide timer 1 Capture Compare input / output channel 0.		
WTIM1_CC1	0: PB14 1: PD3 2: PD7 3: PE0	4: PE4 5: PI0 6: PH9 7: PH13	Wide timer 1 Capture Compare input / output channel 1.		
WTIM1_CC2	0: PD0 1: PD4 2: PD8 3: PE1	4: PE5 5: PI1 6: PH10 7: PH14	Wide timer 1 Capture Compare input / output channel 2.		
WTIM1_CC3	0: PD1 1: PD5 2: PC6 3: PE2	4: PE6 5: PI2 6: PH11 7: PH15	Wide timer 1 Capture Compare input / output channel 3.		
WTIM2_CC0	0: PA9 1: PA12 2: PB9 3: PB12	4: PG14 5: PD3 6: PH4 7: PH7	Wide timer 2 Capture Compare input / output channel 0.		
WTIM2_CC1	0: PA10 1: PA13 2: PB10 3: PG12	4: PG15 5: PD4 6: PH5 7: PH8	Wide timer 2 Capture Compare input / output channel 1.		
WTIM2_CC2	0: PA11 1: PA14 2: PB11 3: PG13	4: PH0 5: PD5 6: PH6 7: PH9	Wide timer 2 Capture Compare input / output channel 2.		
WTIM3_CC0	0: PD9 1: PC8 2: PC11 3: PC14	4: PI3 5: PI6 6: PB6 7: PF13	Wide timer 3 Capture Compare input / output channel 0.		
WTIM3_CC1	0: PD10 1: PC9 2: PC12 3: PF10	4: PI4 5: PI7 6: PF4 7: PF14	Wide timer 3 Capture Compare input / output channel 1.		

Dimension	Min	Тур	Мах				
A	0.77	0.83	0.89				
A1	0.13	0.18	0.23				
A3	0.16 0.20 0.24						
A2	0.45 REF						
D	7.00 BSC						
е		0.40 BSC					
E	7.00 BSC						
D1	6.00 BSC						
E1	6.00 BSC						
b	0.20 0.25 0.30						
ааа	0.10						
bbb	0.10						
ddd	0.08						
eee	0.15						
fff	0.05						
Noto							

Table 6.1. BGA192 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.