

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Betano	
Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	144
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	192-VFBGA
Supplier Device Package	192-BGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b820f2048gl192-ar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.	Pin Definitions	115
	5.1 EFM32GG11B8xx in BGA192 Device Pinout	.115
	5.2 EFM32GG11B8xx in BGA152 Device Pinout	.119
	5.3 EFM32GG11B8xx in BGA120 Device Pinout	.123
	5.4 EFM32GG11B5xx in BGA120 Device Pinout	.126
	5.5 EFM32GG11B4xx in BGA120 Device Pinout	129
	5.6 EFM32GG11B4xx in BGA112 Device Pinout	.132
	5.7 EFM32GG11B3xx in BGA112 Device Pinout	.135
	5.8 EFM32GG11B8xx in QFP100 Device Pinout	138
	5.9 EFM32GG11B5xx in QFP100 Device Pinout	141
	5.10 EFM32GG11B4xx in QFP100 Device Pinout	144
	5.11 EFM32GG11B3xx in QFP100 Device Pinout	147
	5.12 EFM32GG11B8xx in QFP64 Device Pinout	150
	5.13 EFM32GG11B5xx in QFP64 Device Pinout	152
	5.14 EFM32GG11B4xx in QFP64 Device Pinout	154
	5.15 EFM32GG11B1xx in QFP64 Device Pinout	156
	5.16 EFM32GG11B8xx in QFN64 Device Pinout	158
	5.17 EFM32GG11B5xx in QFN64 Device Pinout	.160
	5.18 EFM32GG11B4xx in QFN64 Device Pinout	.162
	5.19 EFM32GG11B1xx in QFN64 Device Pinout	164
	5.20 GPIO Functionality Table	166
	5.21 Alternate Functionality Overview	178
	5.22 Analog Port (APORT) Client Maps	211
6.	BGA192 Package Specifications	224
	6.1 BGA192 Package Dimensions	.224
	6.2 BGA192 PCB Land Pattern	226
	6.3 BGA192 Package Marking	228
7.	BGA152 Package Specifications	229
	7.1 BGA152 Package Dimensions	.229
	7.2 BGA152 PCB Land Pattern	231
	7.3 BGA152 Package Marking	233
8.	BGA120 Package Specifications	234
	8.1 BGA120 Package Dimensions	.234
		236
		238
9.	BGA112 Package Specifications	239
		.239

3.2 Power

The EFM32GG11 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. A 5 V regulator is available on some OPNs, allowing the device to be powered directly from 5 V power sources, such as USB. An optional integrated DC-DC buck regulator can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor.

The EFM32GG11 device family includes support for internal supply voltage scaling, as well as two different power domain groups for peripherals. These enhancements allow for further supply current reductions and lower overall power consumption.

AVDD and VREGVDD need to be 1.8 V or higher for the MCU to operate across all conditions; however the rest of the system will operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components. Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA.

3.2.1 Energy Management Unit (EMU)

The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold.

3.2.2 DC-DC Converter

The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.

3.2.3 5 V Regulator

A 5 V input regulator is available, allowing the device to be powered directly from 5 V power sources such as the USB VBUS line. The regulator is available in all energy modes, and outputs 3.3 V to be used to power the USB PHY and other 3.3 V systems. Two inputs to the regulator allow for seamless switching between local and external power sources.

4.1.10.3 Low-Frequency RC Oscillator (LFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Oscillation frequency	f _{LFRCO}	ENVREF ² = 1	TBD	32.768	TBD	kHz
		ENVREF ² = 1, T > 85 °C	TBD	32.768	TBD	kHz
		ENVREF ² = 0	TBD	32.768	TBD	kHz
Startup time	t _{LFRCO}		_	500	_	μs
Current consumption ¹	I _{LFRCO}	ENVREF = 1 in CMU_LFRCOCTRL	_	370	_	nA
		ENVREF = 0 in CMU_LFRCOCTRL	-	520		nA
Note:	1	I.	1	1	1	1

Table 4.14. Low-Frequency RC Oscillator (LFRCO)

1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.

2. In CMU_LFRCOCTRL register.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Note:			l			
1. Supply current s the load.	specifications are for VD	AC circuitry operating with static o	output only and do n	not include cur	rent required	to drive
	ode, the output is define ngle-ended range.	d as the difference between two s	ingle-ended outputs	s. Absolute vol	tage on each	output is
3. Entire range is r	monotonic and has no m	issing codes.				
	PERCLK is dependent DAC module is enabled	on HFPERCLK frequency. This cuint in the CMU.	urrent contributes to	the total supp	ly current use	ed when
	, U I	be from 10% to 90% of full scale. It 10% of full scale with the measu		by comparing	actual VDAC	output a
		ΔV _{OUT}), VDAC output at 90% of f				

4.1.18 Capacitive Sense (CSEN)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Single conversion time (1x	t _{CNV}	12-bit SAR Conversions	_	20.2	_	μs
accumulation)		16-bit SAR Conversions	_	26.4	_	μs
		Delta Modulation Conversion (sin- gle comparison)	_	1.55		μs
Maximum external capacitive load	C _{EXTMAX}	CS0CG=7 (Gain = 1x), including routing parasitics	_	68	-	pF
		CS0CG=0 (Gain = 10x), including routing parasitics	—	680	_	pF
Maximum external series impedance	R _{EXTMAX}		—	1	-	kΩ
Supply current, EM2 bonded conversions, WARMUP- MODE=NORMAL, WAR- MUPCNT=0	ICSEN_BOND	12-bit SAR conversions, 20 ms conversion rate, CS0CG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF) ¹	_	326	_	nA
		Delta Modulation conversions, 20 ms conversion rate, CS0CG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF) ¹	_	226	_	nA
		12-bit SAR conversions, 200 ms conversion rate, CS0CG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF) ¹	—	33	_	nA
		Delta Modulation conversions, 200 ms conversion rate, CS0CG=7 (Gain = 1x), 10 chan- nels bonded (total capacitance of 330 pF) ¹	_	25	_	nA
Supply current, EM2 scan conversions, WARMUP- MODE=NORMAL, WAR-	ICSEN_EM2	12-bit SAR conversions, 20 ms scan rate, CS0CG=0 (Gain = 10x), 8 samples per scan ¹	_	690	_	nA
MUPCNT=0		Delta Modulation conversions, 20 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), CS0CG=0 (Gain = 10x), 8 sam- ples per scan ¹	_	515	_	nA
		12-bit SAR conversions, 200 ms scan rate, CS0CG=0 (Gain = 10x), 8 samples per scan ¹	_	79	_	nA
		Delta Modulation conversions, 200 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), CS0CG=0 (Gain = 10x), 8 samples per scan ¹	_	57	_	nA

Table 4.26. Capacitive Sense (CSEN)

4.1.24 USART SPI

SPI Master Timing

Table 4.34. SPI Master Timing

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
SCLK period ^{1 3 2}	t _{SCLK}	All USARTs except USART2	2 * t _{HFPERCLK}	_	_	ns
		USART2	2 * t _{HFPERBCLK}	_	_	ns
CS to MOSI ^{1 3}	t _{CS_MO}	USART2, location 4, IOVDD = 1.8 V	-3.2	_	6.8	ns
		USART2, location 4, IOVDD = 3.0 V	-2.3	_	6.0	ns
		USART2, location 5, IOVDD = 1.8 V	-8.1	—	6.3	ns
		USART2, location 5, IOVDD = 3.0 V	-7.3	_	4.4	ns
		All other USARTs and locations, IOVDD = 1.8 V	-15	—	13	ns
		All other USARTs and locations, IOVDD = 3.0 V	-13	—	11	ns
SCLK to MOSI ^{1 3}	tsclk_mo	USART2, location 4, IOVDD = 1.8 V	-0.3	_	9.2	ns
		USART2, location 4, IOVDD = 3.0 V	-0.3	—	8.6	ns
		USART2, location 5, IOVDD = 1.8 V	-3.6	—	5.0	ns
		USART2, location 5, IOVDD = 3.0 V	-3.4	_	3.2	ns
		All other USARTs and locations, IOVDD = 1.8 V	-10	_	11	ns
		All other USARTs and locations, IOVDD = 3.0 V	-9	_	11	ns
MISO setup time ^{1 3}	t _{SU_MI}	USART2, location 4, IOVDD = 1.8 V	39.7	—	-	ns
		USART2, location 4, IOVDD = 3.0 V	22.4	—	-	ns
		USART2, location 5, IOVDD = 1.8 V	49.2	_	-	ns
		USART2, location 5, IOVDD = 3.0 V	30.0	_	_	ns
		All other USARTs and locations, IOVDD = 1.8 V	55	_	_	ns
		All other USARTs and locations, IOVDD = 3.0 V	36	_	-	ns

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
MISO hold time ^{1 3}	t _{H_MI}	USART2, location 4, IOVDD = 1.8 V	-11.6	_	—	ns
		USART2, location 4, IOVDD = 3.0 V	-11.6	_	—	ns
		USART2, location 5, IOVDD = 1.8 V	-9.1	_	_	ns
		USART2, location 5, IOVDD = 3.0 V	-9.1	_	_	ns
		All other USARTs and locations, IOVDD = 1.8 V	-8		_	ns
		All other USARTs and locations, IOVDD = 3.0 V	-8		_	ns

Note:

1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).

2. $t_{\mbox{\scriptsize HFPERCLK}}$ is one period of the selected $\mbox{\scriptsize HFPERCLK}.$

3. Measurement done with 8 pF output loading at 10% and 90% of V_{DD} (figure shows 50% of V_{DD}).

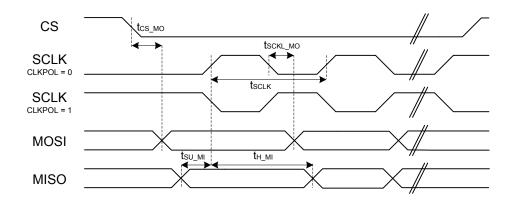


Figure 4.1. SPI Master Timing Diagram

4.1.25 External Bus Interface (EBI)

EBI Write Enable Output Timing

Timing applies to both EBI_WEn and EBI_NANDWEn for all addressing modes and both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.

Table 4.36. EBI Write Enable Timing

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Output hold time, from trail- ing EBI_WEn / EBI_NAND- WEn edge to EBI_AD, EBI_A, EBI_CSn, EBI_BLn invalid	t _{OH_WEn}	IOVDD ≥ 1.62 V	-22 + (WRHOLD * t{ _{}HFCOR- ECLK{})	-	_	ns
		IOVDD ≥ 3.0 V	-13 + (WRHOLD ^{* t} HFCOR- ECLK)	_	_	ns
Output setup time, from EBI_AD, EBI_A, EBI_CSn, EBI_BLn valid to leading EBI_WEn / EBI_NANDWEn edge ¹	tosu_wen	IOVDD ≥ 1.62 V	-12 + (WRSET- UP * t _{HFCOR-} ECLK)	_		ns
		IOVDD ≥ 3.0 V	-10 + (WRSET- UP * t _{HFCOR-} ЕСLК)			ns
EBI_WEn / EBI_NANDWEn pulse width ¹	twidth_wen	IOVDD ≥ 1.62 V	-6 + (MAX(1, WRSTRB) ^{* t} HFCOR- ECLK)			ns
		IOVDD ≥ 3.0 V	-5 + (MAX(1, WRSTRB) ^{* t} HFCOR- ECLK)	_	-	ns

Note:

1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFWE=0. The leading edge of EBI_WEn can be moved to the right by setting HALFWE=1. This decreases the length of t_{WIDTH_WEn} and increases the length of t_{OSU_WEn} by 1/2 * t_{HFCLKNODIV}.

EBI Address Latch Enable Output Timing

Timing applies to multiplexed addressing modes D8A24ALE and D16A16ALE for both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output hold time, from trail- ing EBI_ALE edge to EBI_AD invalid ^{1 2}	t _{OH_ALEn}	IOVDD ≥ 1.62 V	-22 + (ADDR- HOLD * ^t HFCOR- ECLK)	_	_	ns
		IOVDD ≥ 3.0 V	-11 + (ADDR- HOLD * ^t HFCOR- ECLK)	_	_	ns
Output setup time, from	t _{OSU_ALEn}	IOVDD ≥ 1.62 V	-12	—	—	ns
EBI_AD valid to leading EBI_ALE edge		IOVDD ≥ 3.0 V	-9	—	_	ns
EBI_ALEn pulse width ¹	^t WIDTH_ALEn	IOVDD ≥ 1.62 V	-4 + ((ADDR- SETUP + 1) * t{ _{}HFCOR-} ECLK{})	_	_	ns
		IOVDD ≥ 3.0 V	-3 + ((ADDR- SETUP + 1) * t{ _{}HFCOR-} ECLK{})	_	_	ns

Table 4.37. EBI Address Latch Enable Output Timing

Note:

1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFALE=0. The trailing edge of EBI_ALEn can be moved to the left by setting HALFALE=1. This decreases the length of t_{WIDTH_ALEn} and increases the length of t_{OSU_ALEn} by t_{HFCORECLK} - 1/2 * t_{HFCLKNODIV}.

2. The figure shows a write operation. For a multiplexed read operation the address hold time is controlled via the RDSETUP state instead of via the ADDRHOLD state.

EBI Read Enable Output Timing

Timing applies to both EBI_REn and EBI_NANDREn for all addressing modes and both polarities. Output timing for EBI_AD applies only to multiplexed addressing modes D8A24ALE and D16A16ALE. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
EBI_AD, EBI_A, EBI_CSn, EBI_BLn valid to leading	t _{OH_REn}	IOVDD ≥ 1.62 V	-23 + (RDHOLD * ^t HFCOR- ECLK)	_	_	ns
		IOVDD ≥ 3.0 V	-13 + (RDHOLD * ^t HFCOR- ECLK)	_	_	ns
Output setup time, from EBI_AD, EBI_A, EBI_CSn, EBI_BLn valid to leading EBI_REn / EBI_NANDREn	t _{OSU_REn}	IOVDD ≥ 1.62 V	-12 + (RDSETUP * t _{HFCOR-} ECLK)	_	_	ns
euge ·		IOVDD ≥ 3.0 V	-11 + (RDSETUP ^{* t} HFCOR- ECLK)	_	_	ns
EBI_REn pulse width ^{1 2}	twiDTH_REn	IOVDD ≥ 1.62 V	-6 + (MAX(1, RDSTRB) * t _{HFCOR-} ECLK)	_	_	ns
		IOVDD ≥ 3.0 V	-4 + (MAX(1, RDSTRB) * t _{HFCOR-} ECLK)	—	_	ns

Table 4.38. EBI Read Enable Output Timing

Note:

1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFRE=0. The leading edge of EBI_REn can be moved to the right by setting HALFRE=1. This decreases the length of t_{WIDTH_REn} and increases the length of t_{OSU_REn} by 1/2 * t_{HFCLKNODIV}.

2. When page mode is used, RDSTRB is replaced by RDPA for page hits.

SDIO MMC DDR Mode Timing at 1.8 V

Timing is specified for route location 0 at 1.8 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 25 pF on all pins.

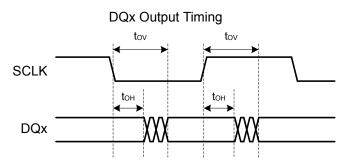

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Clock frequency during data transfer	F _{SD_CLK}	Using HFRCO, AUXHFRCO, or USHFRCO	_	_	18	MHz
		Using HFXO	_	_	TBD	MHz
Clock low time	t _{WL}	Using HFRCO, AUXHFRCO, or USHFRCO	25.1	—		ns
		Using HFXO	TBD	_	_	ns
Clock high time	t _{WH}	Using HFRCO, AUXHFRCO, or USHFRCO	25.1			ns
		Using HFXO	TBD	_	_	ns
Clock rise time	t _R		1.13	5.21	_	ns
Clock fall time	t _F		1.01	4.10	_	ns
Input setup time, CMD valid to SD_CLK	t _{ISU}		5.3			ns
Input hold time, SD_CLK to CMD change	t _{IH}		2.5		_	ns
Output delay time, SD_CLK to CMD valid	t _{ODLY}		0		16	ns
Output hold time, SD_CLK to CMD change	t _{OH}		3			ns
Input setup time, DAT[0:7] valid to SD_CLK	t _{ISU2X}		5.3			ns
Input hold time, SD_CLK to DAT[0:7] change	t _{IH2X}		2.5			ns
Output delay time, SD_CLK to DAT[0:7] valid	t _{ODLY2X}		0	_	16	ns
Output hold time, SD_CLK to DAT[0:7] change	t _{OH2X}		3	—	—	ns

Table 4.52. SDIO MMC DDR Mode Timing (Location 0, 1.8V I/O)

QSPI DDR Mode Timing (Locations 1, 2)

Timing is specified with voltage scaling disabled, PHY-mode, route locations other than 0, TX DLL = 53, RX DLL = 88, 20-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Half SCLK period	T/2	HFXO	(1/F _{SCLK}) * 0.4 - 0.4	—	_	ns
		HFRCO, AUXHFRCO, USHFRCO	(1/F _{SCLK}) * 0.44	—	_	ns
Output valid	t _{OV}		—	—	T/2 - 6.6	ns
Output hold	t _{OH}		T/2 - 52.2	—	—	ns
Input setup	t _{SU}		44.8	—	_	ns
Input hold	t _H		-2.4	_	_	ns

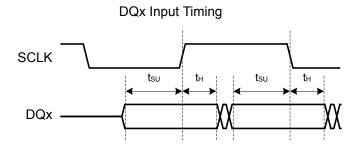


Figure 4.22. QSPI DDR Timing Diagrams

QSPI DDR Flash Timing Example

This example uses timing values for location 0 (DDR mode) to demonstrate the calculation of allowable flash timing using the QSPI in DDR mode.

- Using a configured SCLK frequency ($\mathrm{F}_{\mathrm{SCLK}}$) of 8 MHz from the HFXO clock source:
- The resulting minimum half-period, T/2(min) = (1/F_{SCLK}) * 0.4 0.4 = 49.6 ns.
- Flash will see a minimum setup time of T/2 t_{OV} = T/2 (T/2 5.0) = 5.0 ns.
- Flash will see a minimum hold time of t_{OH} = T/2 39.4 = 49.6 39.4 = 10.2 ns.
- Flash can have a maximum output valid time of T/2 t_{SU} = T/2 33.1 = 49.6 33.1 = 16.5 ns.
- Flash can have a minimum output hold time of $t_{\rm H}$ = 0.9 ns.

5. Pin Definitions

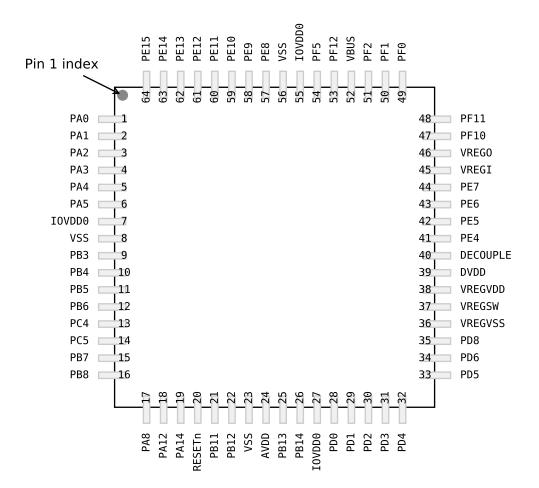
5.1 EFM32GG11B8xx in BGA192 Device Pinout

Pin A1 index	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	*															
А	PALS	PE15	PE14	PE13	PE12	PE1	PE10	PE9	PE8	619	610	PE14	BUS	PET]	PE70	PF0
В	PAG	101	1010	609	PF9	PF8	PFT	640	PII)	618	PF5	PF13	PF3	PF2	PF1	VREGO
С	(Ag	1012	1014	1013	PI13	PI14	PI13	PI12	PI19	(TI)	PF15	PF12	PFA	PC15	PC14	VREGI
D	PAZ	609	1015											PC13	¢C12	PC17
E	PA3	602	pGI											PC70	609	e ^{C8}
F	PA9	pGA	PG3			TONDS;	I OVDD'	159	(NC).	LOVDDC	tovobe)		619	PIA	P13
G	PAS	609	605							LOVODE				612	PIL	P10
н	PAG	PG8	PGT			(159)	159 (159)	(155)	(159)	(159)	(159)			PES	PEO	PET
J	pG1}	PG19	PG9			(155)	155	(155)	(155)	159	(159)			PE3	PEA.	ECOUPLE
к	pG14	pG13	PG13			TONDOG	Lovopo	(159)	(15 ⁵).	LOVDDe	LOVDDe)		PEL	PE2	ende
L	613	BIJ	, p80			TONDOG.	revoge	(59)	(159).	rovode.	ronde)		PEO	(¹)	REGUDD
м	PB1	682	PB3			\$C	y	\bigcirc	\bigcirc	y	y			609	FOVS	REGSW
Ν	pBA)	PB5	P89											605	pDA.	TEGNES
Р	() (0)q	603	603	849	627	6213	689	B12	642	PHS	PH8	0H1]	PH13	009	603	1908) 141-
R	() (PBT)	63	(C)	() (PA9)	RODEN	ET CET	6819	640	(H3)	6H6	PH9	6417	6H14	PH15	602	(TOG)
т	683	60	(FAG	P. PAL	BOP .	RES 14	pB1	PHJ	pHA	PH)	e.	10. 1813	100 B14	ku b	603	609
,	60	60	(h)	PK-	PK-	PK-	60.	W ¹	<u>N</u>	<u>en</u>	642	60.	60.	Pur	60	60

Figure 5.1. EFM32GG11B8xx in BGA192 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA15	A1	GPIO	PE15	A2	GPIO
PE14	A3	GPIO	PE13	A4	GPIO
PE12	A5	GPIO	PE11	A6	GPIO
PE10	A7	GPIO	PE9	A8	GPIO
PE8	A9	GPIO	PI9	A10	GPIO (5V)
PI6	A11	GPIO (5V)	PF14	A12	GPIO (5V)


Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB2	M2	GPIO	PB3	M3	GPIO
PC6	M14	GPIO	VREGVSS	M15 N16	Voltage regulator VSS
VREGSW	M16	DCDC regulator switching node	PB4	N1	GPIO
PB5	N2	GPIO	PB6	N3	GPIO
PD5	N14	GPIO	PD4	N15	GPIO
PC0	P1	GPIO (5V)	PC1	P2	GPIO (5V)
PC2	P3	GPIO (5V)	PA8	P4	GPIO
PA11	P5	GPIO	PA13	P6	GPIO (5V)
PB9	P7	GPIO (5V)	PB12	P8	GPIO
PH2	P9	GPIO (5V)	PH5	P10	GPIO
PH8	P11	GPIO (5V)	PH11	P12	GPIO (5V)
PH13	P13	GPIO (5V)	PD0	P14	GPIO (5V)
PD3	P15	GPIO	PD8	P16	GPIO
PB7	R1	GPIO	PC3	R2	GPIO (5V)
PC5	R3	GPIO	PA9	R4	GPIO
BODEN	R5	Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD.	RESETn	R6	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB10	R7	GPIO (5V)	PH0	R8	GPIO (5V)
PH3	R9	GPIO (5V)	PH6	R10	GPIO
PH9	R11	GPIO (5V)	PH12	R12	GPIO (5V)
PH14	R13	GPIO (5V)	PH15	R14	GPIO (5V)
PD2	R15	GPIO (5V)	PD7	R16	GPIO
PB8	T1	GPIO	PC4	T2	GPIO
PA7	Т3	GPIO	PA10	T4	GPIO
PA12	T5	GPIO (5V)	PA14	Т6	GPIO
PB11	T7	GPIO	PH1	Т8	GPIO (5V)
PH4	Т9	GPIO	PH7	T10	GPIO (5V)
PH10	T11	GPIO (5V)	PB13	T12	GPIO
PB14	T13	GPIO	AVDD	T14	Analog power supply.
PD1	T15	GPIO	PD6	T16	GPIO

Note:

1. GPIO with 5V tolerance are indicated by (5V).

2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB2	11	GPIO	PB3	12	GPIO
PB4	13	GPIO	PB5	14	GPIO
PB6	15	GPIO	VSS	16 32 58 83	Ground
PC0	18	GPIO (5V)	PC1	19	GPIO (5V)
PC2	20	GPIO (5V)	PC3	21	GPIO (5V)
PC4	22	GPIO	PC5	23	GPIO
PB7	24	GPIO	PB8	25	GPIO
PA7	26	GPIO	PA8	27	GPIO
PA9	28	GPIO	PA10	29	GPIO
PA11	30	GPIO	PA12	33	GPIO (5V)
PA13	34	GPIO (5V)	PA14	35	GPIO
RESETn	36	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB9	37	GPIO (5V)
PB10	38	GPIO (5V)	PB11	39	GPIO
PB12	40	GPIO	AVDD	41 45	Analog power supply.
PB13	42	GPIO	PB14	43	GPIO
PD0	46	GPIO (5V)	PD1	47	GPIO
PD2	48	GPIO (5V)	PD3	49	GPIO
PD4	50	GPIO	PD5	51	GPIO
PD6	52	GPIO	PD7	53	GPIO
PD8	54	GPIO	PC6	55	GPIO
PC7	56	GPIO	DVDD	57	Digital power supply.
DECOUPLE	59	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PE0	60	GPIO (5V)
PE1	61	GPIO (5V)	PE2	62	GPIO
PE3	63	GPIO	PE4	64	GPIO
PE5	65	GPIO	PE6	66	GPIO
PE7	67	GPIO	PC8	68	GPIO (5V)
PC9	69	GPIO (5V)	PC10	70	GPIO (5V)
PC11	71	GPIO (5V)	PC12	72	GPIO (5V)
PC13	73	GPIO (5V)	PC14	74	GPIO (5V)
PC15	75	GPIO (5V)	PF0	76	GPIO (5V)
PF1	77	GPIO (5V)	PF2	78	GPIO

Figure 5.12. EFM32GG11B8xx in QFP64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Table 5.12. EFM32GG11B8xx in QFP64 Device Pinou	Table 5.12.	2GG11B8xx in QFP64 Device Pinout
---	-------------	----------------------------------

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	PA3	4	GPIO
PA4	5	GPIO	PA5	6	GPIO
IOVDD0	7 27 55	Digital IO power supply 0.	VSS	8 23 56	Ground
PB3	9	GPIO	PB4	10	GPIO
PB5	11	GPIO	PB6	12	GPIO

GPIO Name		Pin Alter	nate Functionality / De	escription	
	Analog	EBI	Timers	Communication	Other
PF14	BUSDY BUSCX		TIM1_CC1 #6 TIM4_CC1 #1 TIM5_CC2 #7 WTIM3_CC1 #7	12C2_SCL #4	
PF11	BUSCY BUSDX	EBI_NANDWEn #5	TIM5_CC2 #6 WTIM3_CC2 #3 PCNT2_S1IN #3	US5_CTS #2 U1_RX #1 I2C2_SCL #2 USB_DP	
PF10	BUSDY BUSCX	EBI_ARDY #5	TIM5_CC1 #6 WTIM3_CC1 #3 PCNT2_S0IN #3	US5_RTS #2 U1_TX #1 I2C2_SDA #2 USB_DM	
PF0	BUSDY BUSCX	EBI_A24 #1	TIM0_CC0 #4 WTIM0_CC1 #4 LE- TIM0_OUT0 #2	US2_TX #5 CAN0_RX #1 US1_CLK #2 LEU0_TX #3 I2C0_SDA #5	PRS_CH15 #2 ACMP3_O #0 DBG_SWCLKTCK BOOT_TX
PA0	BUSBY BUSAX LCD_SEG13	EBI_AD09 #0 EBI_CSTFT #3	TIM0_CC0 #0 TIM0_CC1 #7 TIM3_CC0 #4 PCNT0_S0IN #4	ETH_RMIITXEN #0 ETH_MIITXCLK #0 SDIO_DAT0 #1 US1_RX #5 US3_TX #0 QSPI0_CS0 #1 LEU0_RX #4 I2C0_SDA #0	CMU_CLK2 #0 PRS_CH0 #0 PRS_CH3 #3 GPIO_EM4WU0
PD11	LCD_SEG30	EBI_CS2 #0 EBI_HSNC #1	TIM4_CC0 #6 WTIM3_CC2 #0	ETH_RMIICRSDV #1 SDIO_DAT5 #0 QSPI0_DQ2 #0 ETH_MIIRXD3 #2 US4_CLK #1	
PD10	LCD_SEG29	EBI_CS1 #0 EBI_VSNC #1	TIM4_CC2 #5 WTIM3_CC1 #0	ETH_RMIIREFCLK #1 SDIO_DAT6 #0 QSPI0_DQ1 #0 ETH_MIIRXD2 #2 US4_RX #1	CMU_CLK2 #5 CMU_CLKI0 #5
PD9	LCD_SEG28	EBI_CS0 #0 EBI_DTEN #1	TIM4_CC1 #5 WTIM3_CC0 #0	ETH_RMIIRXD0 #1 SDIO_DAT7 #0 QSPI0_DQ0 #0 ETH_MIIRXD1 #2 US4_TX #1	
PF9	BUSCY BUSDX LCD_SEG27	EBI_REn #4 EBI_BL1 #1	TIM4_CC0 #5	ETH_RMIIRXD1 #1 US2_CS #4 QSPI0_DQS #0 ETH_MIIRXD0 #2 ETH_TSUTMRTOG #3 SDIO_WP #0 U0_RTS #0 U1_CTS #1	ETM_TD0 #1
PF8	BUSDY BUSCX LCD_SEG26	EBI_WEn #4 EBI_BL0 #1	TIM0_CC2 #1 TIM4_CC2 #4	ETH_RMIITXEN #1 US2_CLK #4 QSPI0_CS1 #0 ETH_MIIRXDV #2 ETH_TSUEXTCLK #3 SDIO_CD #0 U0_CTS #0 U1_RTS #1	ETM_TCLK #1 GPIO_EM4WU8

Alternate	LOCA	TION	
Functionality	0 - 3	4 - 7	Description
LFXTAL_N	0: PB8		Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional ex- ternal clock input pin.
LFXTAL_P	0: PB7		Low Frequency Crystal (typically 32.768 kHz) positive pin.
OPA0_N	0: PC5		Operational Amplifier 0 external negative input.
OPA0_P	0: PC4		Operational Amplifier 0 external positive input.
OPA1_N	0: PD7		Operational Amplifier 1 external negative input.
OPA1_P	0: PD6		Operational Amplifier 1 external positive input.
OPA2_N	0: PD3		Operational Amplifier 2 external negative input.
OPA2_OUT	0: PD5		Operational Amplifier 2 output.
OPA2_OUTALT	0: PD0		Operational Amplifier 2 alternative output.
OPA2_P	0: PD4		Operational Amplifier 2 external positive input.
OPA3_N	0: PC7		Operational Amplifier 3 external negative input.
OPA3_OUT	0: PD1		Operational Amplifier 3 output.
OPA3_P	0: PC6		Operational Amplifier 3 external positive input.

11.2 TQFP64 PCB Land Pattern

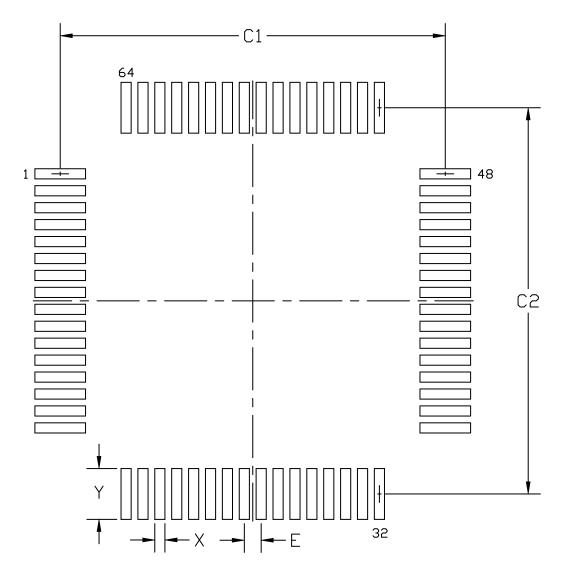


Figure 11.2. TQFP64 PCB Land Pattern Drawing

13. Revision History

Revision 0.6

March, 2018

- Removed "Confindential" watermark.
- Updated 4.1 Electrical Characteristics and 4.2 Typical Performance Curves with latest characterization data.

Revision 0.2

October, 2017

- · Updated memory maps to latest formatting and to include all peripherals.
- Updated all electrical specifications tables with latest characterization results.
- Absolute Maximum Ratings Table:
 - Removed redundant I_{VSSMAX} line.
 - Added footnote to clarify V_{DIGPIN} specification for 5V tolerant GPIO.
- General Operating Conditions Table:
 - Removed dV_{DD} specification and redundant footnote about shorting VREGVDD and AVDD together.
 - Added footnote about IOVDD voltage restriction when CSEN peripheral is used with chopping enabled.
- Flash Memory Characteristics Table: Added timing measurement clarification for Device Erase and Mass Erase.
- · Analog to Digital Converter (ADC) Table:
 - · Added header text for general specification conditions.
 - Added footnote for clarification of input voltage limits.
- · Minor typographical corrections, including capitalization, mis-spellings and punctuation marks, throughout document.
- Minor formatting and styling updates, including table formats, TOC location, and boilerplate information throughout document.

Revision 0.1

April 27th, 2017

Initial release.