


Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

E·XF

| Product Status             | Active                                                                                                        |
|----------------------------|---------------------------------------------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M4                                                                                               |
| Core Size                  | 32-Bit Single-Core                                                                                            |
| Speed                      | 72MHz                                                                                                         |
| Connectivity               | CANbus, EBI/EMI, Ethernet, I <sup>2</sup> C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SmartCard, SPI, UART/USART, USB |
| Peripherals                | Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT                                                               |
| Number of I/O              | 50                                                                                                            |
| Program Memory Size        | 2MB (2M x 8)                                                                                                  |
| Program Memory Type        | FLASH                                                                                                         |
| EEPROM Size                | -                                                                                                             |
| RAM Size                   | 512K x 8                                                                                                      |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.8V                                                                                                   |
| Data Converters            | A/D 16x12b SAR; D/A 2x12b                                                                                     |
| Oscillator Type            | Internal                                                                                                      |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                                             |
| Mounting Type              | Surface Mount                                                                                                 |
| Package / Case             | 64-VFQFN Exposed Pad                                                                                          |
| Supplier Device Package    | 64-QFN (9x9)                                                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b820f2048gm64-br                                   |
|                            |                                                                                                               |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### 3.10.2 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep.

### 3.10.3 Linked Direct Memory Access Controller (LDMA)

The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling so-phisticated operations to be implemented.

#### 3.10.4 Bootloader

All devices come pre-programmed with a UART bootloader. This bootloader resides in flash and can be erased if it is not needed. More information about the bootloader protocol and usage can be found in *AN0003: UART Bootloader*. Application notes can be found on the Silicon Labs website (www.silabs.com/32bit-appnotes) or within Simplicity Studio in the [**Documentation**] area.

| Parameter                                       | Symbol                | Test Condition                                                 | Min | Тур | Max | Unit |
|-------------------------------------------------|-----------------------|----------------------------------------------------------------|-----|-----|-----|------|
| Max load current                                | I <sub>LOAD_MAX</sub> | Low noise (LN) mode, Heavy Drive <sup>2</sup> , T $\leq$ 85 °C | _   | -   | 200 | mA   |
|                                                 |                       | Low noise (LN) mode, Heavy<br>Drive <sup>2</sup> , T > 85 °C   | _   | -   | 100 | mA   |
|                                                 |                       | Low noise (LN) mode, Medium Drive <sup>2</sup>                 | _   | -   | 100 | mA   |
|                                                 |                       | Low noise (LN) mode, Light Drive <sup>2</sup>                  | _   | -   | 50  | mA   |
|                                                 |                       | Low power (LP) mode,<br>LPCMPBIASEMxx <sup>3</sup> = 0         | _   | -   | 75  | μA   |
|                                                 |                       | Low power (LP) mode,<br>LPCMPBIASEMxx <sup>3</sup> = 3         | _   | -   | 10  | mA   |
| DCDC nominal output ca-<br>pacitor <sup>5</sup> | C <sub>DCDC</sub>     | 25% tolerance                                                  | 1   | 4.7 | 4.7 | μF   |
| DCDC nominal output induc-<br>tor               | L <sub>DCDC</sub>     | 20% tolerance                                                  | 4.7 | 4.7 | 4.7 | μH   |
| Resistance in Bypass mode                       | R <sub>BYP</sub>      |                                                                | -   | 1.2 | 2.5 | Ω    |

### Note:

1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, V<sub>VREGVDD</sub>.

- 2. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=15.
- 3. LPCMPBIASEMxx refers to either LPCMPBIASEM234H in the EMU\_DCDCMISCCTRL register or LPCMPBIASEM01 in the EMU\_DCDCLOEM01CFG register, depending on the energy mode.

4. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits.

5. Output voltage under/over-shoot and regulation are specified with C<sub>DCDC</sub> 4.7 μF. Different settings for DCDCLNCOMPCTRL must be used if C<sub>DCDC</sub> is lower than 4.7 μF. See Application Note AN0948 for details.

## 4.1.7 Current Consumption

# 4.1.7.1 Current Consumption 3.3 V without DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 3.3 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.

# Table 4.7. Current Consumption 3.3 V without DC-DC Converter

| Parameter                                                              | Symbol              | Test Condition                                     | Min | Тур | Max | Unit   |
|------------------------------------------------------------------------|---------------------|----------------------------------------------------|-----|-----|-----|--------|
| Current consumption in EM0 mode with all peripherals dis-              | I <sub>ACTIVE</sub> | 72 MHz HFRCO, CPU running<br>Prime from flash      | _   | 120 | _   | µA/MHz |
| abled                                                                  |                     | 72 MHz HFRCO, CPU running while loop from flash    | _   | 120 | TBD | µA/MHz |
|                                                                        |                     | 72 MHz HFRCO, CPU running CoreMark loop from flash | _   | 140 |     | µA/MHz |
|                                                                        |                     | 50 MHz crystal, CPU running while loop from flash  | _   | 123 | _   | µA/MHz |
|                                                                        |                     | 48 MHz HFRCO, CPU running while loop from flash    | _   | 122 | TBD | µA/MHz |
|                                                                        |                     | 32 MHz HFRCO, CPU running while loop from flash    | _   | 124 | _   | µA/MHz |
|                                                                        |                     | 26 MHz HFRCO, CPU running while loop from flash    | _   | 126 | TBD | µA/MHz |
|                                                                        |                     | 16 MHz HFRCO, CPU running while loop from flash    | _   | 131 | _   | µA/MHz |
|                                                                        |                     | 1 MHz HFRCO, CPU running while loop from flash     | _   | 319 | TBD | µA/MHz |
| Current consumption in EM0<br>mode with all peripherals dis-           | IACTIVE_VS          | 19 MHz HFRCO, CPU running while loop from flash    | _   | 107 | _   | µA/MHz |
| abled and voltage scaling enabled                                      |                     | 1 MHz HFRCO, CPU running while loop from flash     | _   | 262 | _   | µA/MHz |
| Current consumption in EM1                                             | I <sub>EM1</sub>    | 72 MHz HFRCO                                       | —   | 57  | TBD | µA/MHz |
| mode with all peripherals disabled                                     |                     | 50 MHz crystal                                     | _   | 60  | _   | µA/MHz |
|                                                                        |                     | 48 MHz HFRCO                                       | _   | 59  | TBD | µA/MHz |
|                                                                        |                     | 32 MHz HFRCO                                       | _   | 61  |     | µA/MHz |
|                                                                        |                     | 26 MHz HFRCO                                       |     | 63  | TBD | µA/MHz |
|                                                                        |                     | 16 MHz HFRCO                                       |     | 68  | _   | µA/MHz |
|                                                                        |                     | 1 MHz HFRCO                                        | _   | 255 | TBD | µA/MHz |
| Current consumption in EM1                                             | I <sub>EM1_VS</sub> | 19 MHz HFRCO                                       | _   | 55  | _   | µA/MHz |
| mode with all peripherals dis-<br>abled and voltage scaling<br>enabled |                     | 1 MHz HFRCO                                        | _   | 210 | _   | µA/MHz |

| Parameter                                         | Symbol                | Test Condition                                             | Min | Тур   | Мах | Unit   |
|---------------------------------------------------|-----------------------|------------------------------------------------------------|-----|-------|-----|--------|
| ADC clock frequency                               | f <sub>ADCCLK</sub>   |                                                            | —   | —     | 16  | MHz    |
| Throughput rate                                   | <b>f</b> ADCRATE      |                                                            | _   | _     | 1   | Msps   |
| Conversion time <sup>1</sup>                      | t <sub>ADCCONV</sub>  | 6 bit                                                      | —   | 7     | _   | cycles |
|                                                   |                       | 8 bit                                                      | _   | 9     | _   | cycles |
|                                                   |                       | 12 bit                                                     | —   | 13    |     | cycles |
| Startup time of reference generator and ADC core  | t <sub>ADCSTART</sub> | WARMUPMODE <sup>4</sup> = NORMAL                           | —   | _     | 5   | μs     |
|                                                   |                       | WARMUPMODE <sup>4</sup> = KEEPIN-<br>STANDBY               | _   | _     | 2   | μs     |
|                                                   |                       | WARMUPMODE <sup>4</sup> = KEEPINSLO-<br>WACC               | _   | _     | 1   | μs     |
| SNDR at 1Msps and f <sub>IN</sub> =<br>10kHz      | SNDR <sub>ADC</sub>   | Internal reference <sup>7</sup> , differential measurement | TBD | 67    | _   | dB     |
|                                                   |                       | External reference <sup>6</sup> , differential measurement | _   | 68    | _   | dB     |
| Spurious-free dynamic range<br>(SFDR)             | SFDR <sub>ADC</sub>   | 1 MSamples/s, 10 kHz full-scale sine wave                  | _   | 75    | _   | dB     |
| Differential non-linearity<br>(DNL)               | DNL <sub>ADC</sub>    | 12 bit resolution, No missing co-<br>des                   | TBD |       | TBD | LSB    |
| Integral non-linearity (INL),<br>End point method | INL <sub>ADC</sub>    | 12 bit resolution                                          | TBD |       | TBD | LSB    |
| Offset error                                      | VADCOFFSETERR         |                                                            | TBD | 0     | TBD | LSB    |
| Gain error in ADC                                 | VADCGAIN              | Using internal reference                                   | _   | -0.2  | TBD | %      |
|                                                   |                       | Using external reference                                   | _   | -1    | —   | %      |
| Temperature sensor slope                          | V <sub>TS_SLOPE</sub> |                                                            | _   | -1.84 | _   | mV/°C  |

Note:

1. Derived from ADCCLK.

2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU\_PWRCTRL.

3. In ADCn\_BIASPROG register.

4. In ADCn CNTL register.

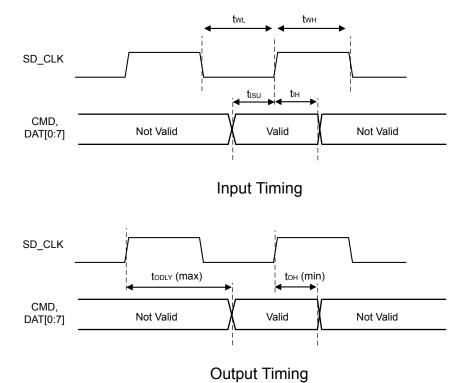
5. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on EMU PWRCTRL ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin.

6. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL\_REF or SCANCTRL\_REF register field and VREFP in the SINGLECTRLX\_VREFSEL or SCANCTRLX\_VREFSEL field. The differential input range with this configuration is ± 1.25 V.

7. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL\_REF or SCANCTRL\_REF register field. The differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum value is production-tested using sine wave input at 1.5 dB lower than full scale.

# 4.1.23.2 I2C Fast-mode (Fm)<sup>1</sup>

| Parameter                                        | Symbol              | Test Condition | Min | Тур | Max | Unit |
|--------------------------------------------------|---------------------|----------------|-----|-----|-----|------|
| SCL clock frequency <sup>2</sup>                 | f <sub>SCL</sub>    |                | 0   | _   | 400 | kHz  |
| SCL clock low time                               | t <sub>LOW</sub>    |                | 1.3 | _   | _   | μs   |
| SCL clock high time                              | t <sub>HIGH</sub>   |                | 0.6 | _   | _   | μs   |
| SDA set-up time                                  | t <sub>SU_DAT</sub> |                | 100 | _   | _   | ns   |
| SDA hold time <sup>3</sup>                       | t <sub>HD_DAT</sub> |                | 100 | _   | 900 | ns   |
| Repeated START condition set-up time             | t <sub>SU_STA</sub> |                | 0.6 | _   | _   | μs   |
| (Repeated) START condition hold time             | t <sub>HD_STA</sub> |                | 0.6 | _   | _   | μs   |
| STOP condition set-up time                       | t <sub>SU_STO</sub> |                | 0.6 | _   |     | μs   |
| Bus free time between a STOP and START condition | t <sub>BUF</sub>    |                | 1.3 | —   | _   | μs   |


# Table 4.32. I2C Fast-mode (Fm)<sup>1</sup>

Note:

1. For CLHR set to 1 in the I2Cn\_CTRL register.

2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual.

3. The maximum SDA hold time (t<sub>HD,DAT</sub>) needs to be met only when the device does not stretch the low time of SCL (t<sub>LOW</sub>).



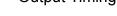
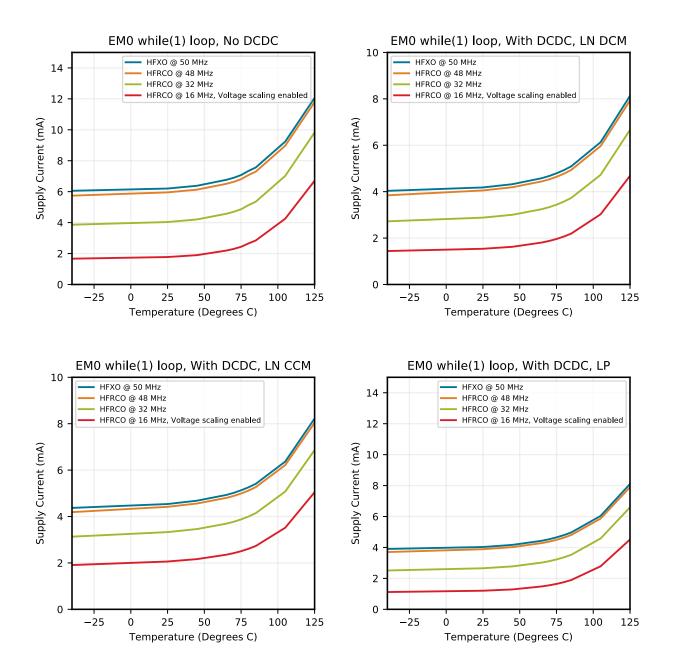
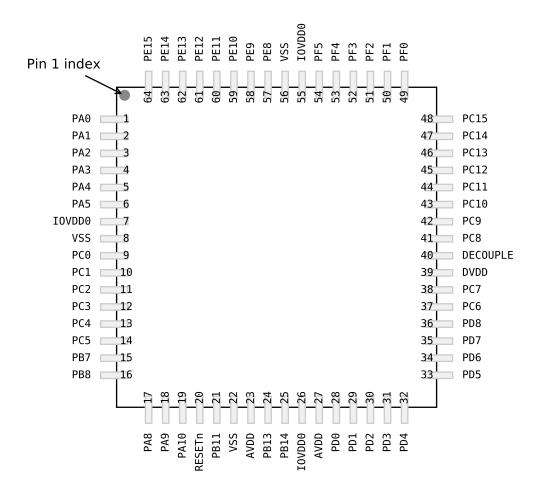



Figure 4.14. SDIO HS Mode Timing





Figure 4.24. EM0 Active Mode Typical Supply Current vs. Temperature

| Pin Name | Pin(s) | Description                                                                         | Pin Name | Pin(s)     | Description                                                                                                                                                                                                 |
|----------|--------|-------------------------------------------------------------------------------------|----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PB2      | M2     | GPIO                                                                                | PB3      | M3         | GPIO                                                                                                                                                                                                        |
| PC6      | M14    | GPIO                                                                                | VREGVSS  | M15<br>N16 | Voltage regulator VSS                                                                                                                                                                                       |
| VREGSW   | M16    | DCDC regulator switching node                                                       | PB4      | N1         | GPIO                                                                                                                                                                                                        |
| PB5      | N2     | GPIO                                                                                | PB6      | N3         | GPIO                                                                                                                                                                                                        |
| PD5      | N14    | GPIO                                                                                | PD4      | N15        | GPIO                                                                                                                                                                                                        |
| PC0      | P1     | GPIO (5V)                                                                           | PC1      | P2         | GPIO (5V)                                                                                                                                                                                                   |
| PC2      | P3     | GPIO (5V)                                                                           | PA8      | P4         | GPIO                                                                                                                                                                                                        |
| PA11     | P5     | GPIO                                                                                | PA13     | P6         | GPIO (5V)                                                                                                                                                                                                   |
| PB9      | P7     | GPIO (5V)                                                                           | PB12     | P8         | GPIO                                                                                                                                                                                                        |
| PH2      | P9     | GPIO (5V)                                                                           | PH5      | P10        | GPIO                                                                                                                                                                                                        |
| PH8      | P11    | GPIO (5V)                                                                           | PH11     | P12        | GPIO (5V)                                                                                                                                                                                                   |
| PH13     | P13    | GPIO (5V)                                                                           | PD0      | P14        | GPIO (5V)                                                                                                                                                                                                   |
| PD3      | P15    | GPIO                                                                                | PD8      | P16        | GPIO                                                                                                                                                                                                        |
| PB7      | R1     | GPIO                                                                                | PC3      | R2         | GPIO (5V)                                                                                                                                                                                                   |
| PC5      | R3     | GPIO                                                                                | PA9      | R4         | GPIO                                                                                                                                                                                                        |
| BODEN    | R5     | Brown-Out Detector Enable. This pin<br>may be left disconnected or tied to<br>AVDD. | RESETn   | R6         | Reset input, active low. To apply an ex-<br>ternal reset source to this pin, it is re-<br>quired to only drive this pin low during<br>reset, and let the internal pull-up ensure<br>that reset is released. |
| PB10     | R7     | GPIO (5V)                                                                           | PH0      | R8         | GPIO (5V)                                                                                                                                                                                                   |
| PH3      | R9     | GPIO (5V)                                                                           | PH6      | R10        | GPIO                                                                                                                                                                                                        |
| PH9      | R11    | GPIO (5V)                                                                           | PH12     | R12        | GPIO (5V)                                                                                                                                                                                                   |
| PH14     | R13    | GPIO (5V)                                                                           | PH15     | R14        | GPIO (5V)                                                                                                                                                                                                   |
| PD2      | R15    | GPIO (5V)                                                                           | PD7      | R16        | GPIO                                                                                                                                                                                                        |
| PB8      | T1     | GPIO                                                                                | PC4      | T2         | GPIO                                                                                                                                                                                                        |
| PA7      | Т3     | GPIO                                                                                | PA10     | T4         | GPIO                                                                                                                                                                                                        |
| PA12     | T5     | GPIO (5V)                                                                           | PA14     | Т6         | GPIO                                                                                                                                                                                                        |
| PB11     | T7     | GPIO                                                                                | PH1      | Т8         | GPIO (5V)                                                                                                                                                                                                   |
| PH4      | Т9     | GPIO                                                                                | PH7      | T10        | GPIO (5V)                                                                                                                                                                                                   |
| PH10     | T11    | GPIO (5V)                                                                           | PB13     | T12        | GPIO                                                                                                                                                                                                        |
| PB14     | T13    | GPIO                                                                                | AVDD     | T14        | Analog power supply.                                                                                                                                                                                        |
| PD1      | T15    | GPIO                                                                                | PD6      | T16        | GPIO                                                                                                                                                                                                        |

Note:

1. GPIO with 5V tolerance are indicated by (5V).

2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.



## Figure 5.15. EFM32GG11B1xx in QFP64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

| Pin Name | Pin(s)        | Description                | Pin Name | Pin(s)        | Description |
|----------|---------------|----------------------------|----------|---------------|-------------|
| PA0      | 1             | GPIO                       | PA1      | 2             | GPIO        |
| PA2      | 3             | GPIO                       | PA3      | 4             | GPIO        |
| PA4      | 5             | GPIO                       | PA5      | 6             | GPIO        |
| IOVDD0   | 7<br>26<br>55 | Digital IO power supply 0. | VSS      | 8<br>22<br>56 | Ground      |
| PC0      | 9             | GPIO (5V)                  | PC1      | 10            | GPIO (5V)   |
| PC2      | 11            | GPIO (5V)                  | PC3      | 12            | GPIO (5V)   |

| GPIO Name | Pin Alternate Functionality / Description                               |                          |                                                                                                   |                                                                                 |                                                                     |  |
|-----------|-------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------|--|
|           | Analog                                                                  | EBI                      | Timers                                                                                            | Communication                                                                   | Other                                                               |  |
| PB13      | BUSAY BUSBX<br>HFXTAL_P                                                 |                          | TIM6_CC0 #5<br>WTIM1_CC0 #0<br>PCNT2_S0IN #2                                                      | US0_CLK #4<br>US1_CTS #5<br>US5_CS #0<br>LEU0_TX #1                             | CMU_CLKI0 #3<br>PRS_CH7 #0                                          |  |
| PB14      | BUSBY BUSAX<br>HFXTAL_N                                                 |                          | TIM6_CC1 #5<br>WTIM1_CC1 #0<br>PCNT2_S1IN #2                                                      | US0_CS #4<br>US1_RTS #5<br>US5_CTS #0<br>LEU0_RX #1                             | PRS_CH6 #1                                                          |  |
| PD1       | VDAC0_OUT1ALT /<br>OPA1_OUTALT #4<br>BUSADC0Y BU-<br>SADC0X OPA3_OUT    | EBI_A05 #1 EBI_A14<br>#3 | TIM4_CDTI1<br>TIM0_CC0 #2<br>TIM6_CC0 #6<br>WTIM1_CC3 #0<br>PCNT2_S1IN #0                         | CAN0_TX #2<br>US1_RX #1                                                         | DBG_SWO #2                                                          |  |
| PD6       | BUSADC0Y BU-<br>SADC0X<br>ADC0_EXTP<br>VDAC0_EXT<br>ADC1_EXTP<br>OPA1_P | EBI_A10 #1 EBI_A19<br>#3 | TIM1_CC0 #4<br>TIM6_CC2 #7<br>WTIM0_CDTI2 #4<br>WTIM1_CC0 #2 LE-<br>TIM0_OUT0 #0<br>PCNT0_S0IN #3 | US0_RTS #5<br>US1_RX #2<br>US2_CTS #5<br>US3_CTS #2<br>U0_RTS #5<br>I2C0_SDA #1 | CMU_CLK2 #2<br>LES_ALTEX0<br>PRS_CH5 #2<br>ACMP0_O #2<br>ETM_TD0 #0 |  |

| Alternate     | LOCATION                               |                    |                                                                      |
|---------------|----------------------------------------|--------------------|----------------------------------------------------------------------|
| Functionality | 0 - 3                                  | 4 - 7              | Description                                                          |
| EBI_AD08      | 0: PA15<br>1: PC1<br>2: PG8            |                    | External Bus Interface (EBI) address and data input / output pin 08. |
| EBI_AD09      | 0: PA0<br>1: PC2<br>2: PG9             |                    | External Bus Interface (EBI) address and data input / output pin 09. |
| EBI_AD10      | 0: PA1<br>1: PC3<br>2: PG10            |                    | External Bus Interface (EBI) address and data input / output pin 10. |
| EBI_AD11      | 0: PA2<br>1: PC4<br>2: PG11            |                    | External Bus Interface (EBI) address and data input / output pin 11. |
| EBI_AD12      | 0: PA3<br>1: PC5<br>2: PG12            |                    | External Bus Interface (EBI) address and data input / output pin 12. |
| EBI_AD13      | 0: PA4<br>1: PA7<br>2: PG13            |                    | External Bus Interface (EBI) address and data input / output pin 13. |
| EBI_AD14      | 0: PA5<br>1: PA8<br>2: PG14            |                    | External Bus Interface (EBI) address and data input / output pin 14. |
| EBI_AD15      | 0: PA6<br>1: PA9<br>2: PG15            |                    | External Bus Interface (EBI) address and data input / output pin 15. |
| EBI_ALE       | 0: PF3<br>1: PB9<br>2: PC4<br>3: PB5   | 4: PC11<br>5: PC11 | External Bus Interface (EBI) Address Latch Enable output.            |
| EBI_ARDY      | 0: PF2<br>1: PD13<br>2: PB15<br>3: PB4 | 4: PC13<br>5: PF10 | External Bus Interface (EBI) Hardware Ready Control input.           |
| EBI_BL0       | 0: PF6<br>1: PF8<br>2: PB10<br>3: PC1  | 4: PF6<br>5: PF6   | External Bus Interface (EBI) Byte Lane/Enable pin 0.                 |
| EBI_BL1       | 0: PF7<br>1: PF9<br>2: PB11<br>3: PC3  | 4: PF7<br>5: PF7   | External Bus Interface (EBI) Byte Lane/Enable pin 1.                 |
| EBI_CS0       | 0: PD9<br>1: PA10<br>2: PC0<br>3: PB0  | 4: PE8             | External Bus Interface (EBI) Chip Select output 0.                   |

| Alternate     | LOCATION                               |                    |                                                                  |
|---------------|----------------------------------------|--------------------|------------------------------------------------------------------|
| Functionality | 0 - 3                                  | 4 - 7              | Description                                                      |
| EBI_CS1       | 0: PD10<br>1: PA11<br>2: PC1<br>3: PB1 | 4: PE9             | External Bus Interface (EBI) Chip Select output 1.               |
| EBI_CS2       | 0: PD11<br>1: PA12<br>2: PC2<br>3: PB2 | 4: PE10            | External Bus Interface (EBI) Chip Select output 2.               |
| EBI_CS3       | 0: PD12<br>1: PB15<br>2: PC3<br>3: PB3 | 4: PE11            | External Bus Interface (EBI) Chip Select output 3.               |
| EBI_CSTFT     | 0: PA7<br>1: PF6<br>2: PB12<br>3: PA0  |                    | External Bus Interface (EBI) Chip Select output TFT.             |
| EBI_DCLK      | 0: PA8<br>1: PF7<br>2: PH0<br>3: PA1   |                    | External Bus Interface (EBI) TFT Dot Clock pin.                  |
| EBI_DTEN      | 0: PA9<br>1: PD9<br>2: PH1<br>3: PA2   |                    | External Bus Interface (EBI) TFT Data Enable pin.                |
| EBI_HSNC      | 0: PA11<br>1: PD11<br>2: PH3<br>3: PA4 |                    | External Bus Interface (EBI) TFT Horizontal Synchronization pin. |
| EBI_NANDREn   | 0: PC3<br>1: PD15<br>2: PB9<br>3: PC4  | 4: PC15<br>5: PF12 | External Bus Interface (EBI) NAND Read Enable output.            |
| EBI_NANDWEn   | 0: PC5<br>1: PD14<br>2: PA13<br>3: PC2 | 4: PC14<br>5: PF11 | External Bus Interface (EBI) NAND Write Enable output.           |
| EBI_REn       | 0: PF5<br>1: PA14<br>2: PA12<br>3: PC0 | 4: PF9<br>5: PF5   | External Bus Interface (EBI) Read Enable output.                 |
| EBI_VSNC      | 0: PA10<br>1: PD10<br>2: PH2<br>3: PA3 |                    | External Bus Interface (EBI) TFT Vertical Synchronization pin.   |
| EBI_WEn       | 0: PF4<br>1: PA13<br>2: PC5<br>3: PB6  | 4: PF8<br>5: PF4   | External Bus Interface (EBI) Write Enable output.                |
| ETH_MDC       | 0: PB4<br>1: PD14<br>2: PC1<br>3: PA6  |                    | Ethernet Management Data Clock.                                  |

| Alternate     | LOCA                                   | TION  |                                   |
|---------------|----------------------------------------|-------|-----------------------------------|
| Functionality | 0 - 3                                  | 4 - 7 | Description                       |
| ETH_MDIO      | 0: PB3<br>1: PD13<br>2: PC0<br>3: PA15 |       | Ethernet Management Data I/O.     |
| ETH_MIICOL    | 0: PB2<br>1: PG15<br>2: PB4            |       | Ethernet MII Collision Detect.    |
| ETH_MIICRS    | 0: PB1<br>1: PG14<br>2: PB3            |       | Ethernet MII Carrier Sense.       |
| ETH_MIIRXCLK  | 0: PA15<br>1: PG7<br>2: PD12           |       | Ethernet MII Receive Clock.       |
| ETH_MIIRXD0   | 0: PE12<br>1: PG11<br>2: PF9           |       | Ethernet MII Receive Data Bit 0.  |
| ETH_MIIRXD1   | 0: PE13<br>1: PG10<br>2: PD9           |       | Ethernet MII Receive Data Bit 1.  |
| ETH_MIIRXD2   | 0: PE14<br>1: PG9<br>2: PD10           |       | Ethernet MII Receive Data Bit 2.  |
| ETH_MIIRXD3   | 0: PE15<br>1: PG8<br>2: PD11           |       | Ethernet MII Receive Data Bit 3.  |
| ETH_MIIRXDV   | 0: PE11<br>1: PG12<br>2: PF8           |       | Ethernet MII Receive Data Valid.  |
| ETH_MIIRXER   | 0: PE10<br>1: PG13<br>2: PF7           |       | Ethernet MII Receive Error.       |
| ETH_MIITXCLK  | 0: PA0<br>1: PG0                       |       | Ethernet MII Transmit Clock.      |
| ETH_MIITXD0   | 0: PA4<br>1: PG4                       |       | Ethernet MII Transmit Data Bit 0. |
| ETH_MIITXD1   | 0: PA3<br>1: PG3                       |       | Ethernet MII Transmit Data Bit 1. |

| Alternate      | LOCATION                              |       |                                             |  |
|----------------|---------------------------------------|-------|---------------------------------------------|--|
| Functionality  | 0 - 3                                 | 4 - 7 | Description                                 |  |
| ETH_MIITXD2    | 0: PA2<br>1: PG2                      |       | Ethernet MII Transmit Data Bit 2.           |  |
| ETH_MIITXD3    | 0: PA1<br>1: PG1                      |       | Ethernet MII Transmit Data Bit 3.           |  |
| ETH_MIITXEN    | 0: PA5<br>1: PG5                      |       | Ethernet MII Transmit Enable.               |  |
| ETH_MIITXER    | 0: PA6<br>1: PG6                      |       | Ethernet MII Transmit Error.                |  |
| ETH_RMIICRSDV  | 0: PA4<br>1: PD11                     |       | Ethernet RMII Carrier Sense / Data Valid.   |  |
| ETH_RMIIREFCLK | 0: PA3<br>1: PD10                     |       | Ethernet RMII Reference Clock.              |  |
| ETH_RMIIRXD0   | 0: PA2<br>1: PD9                      |       | Ethernet RMII Receive Data Bit 0.           |  |
| ETH_RMIIRXD1   | 0: PA1<br>1: PF9                      |       | Ethernet RMII Receive Data Bit 1.           |  |
| ETH_RMIIRXER   | 0: PA5<br>1: PD12                     |       | Ethernet RMII Receive Error.                |  |
| ETH_RMIITXD0   | 0: PE15<br>1: PF7                     |       | Ethernet RMII Transmit Data Bit 0.          |  |
| ETH_RMIITXD1   | 0: PE14<br>1: PF6                     |       | Ethernet RMII Transmit Data Bit 1.          |  |
| ETH_RMIITXEN   | 0: PA0<br>1: PF8                      |       | Ethernet RMII Transmit Enable.              |  |
| ETH_TSUEXTCLK  | 0: PB5<br>1: PD15<br>2: PC2<br>3: PF8 |       | Ethernet IEEE1588 External Reference Clock. |  |

| Alternate Functionality | Location | Priority         |  |  |
|-------------------------|----------|------------------|--|--|
| QSPI0_DQS               | 0: PF9   | High Speed       |  |  |
| QSPI0_SCLK              | 0: PF6   | High Speed       |  |  |
| SDIO_CLK                | 0: PE13  | High Speed       |  |  |
| SDIO_CMD                | 0: PE12  | High Speed       |  |  |
| SDIO_DAT0               | 0: PE11  | High Speed       |  |  |
| SDIO_DAT1               | 0: PE10  | High Speed       |  |  |
| SDIO_DAT2               | 0: PE9   | High Speed       |  |  |
| SDIO_DAT3               | 0: PE8   | High Speed       |  |  |
| SDIO_DAT4               | 0: PD12  | High Speed       |  |  |
| SDIO_DAT5               | 0: PD11  | High Speed       |  |  |
| SDIO_DAT6               | 0: PD10  | High Speed       |  |  |
| SDIO_DAT7               | 0: PD9   | High Speed       |  |  |
| TIM0_CC0                | 3: PB6   | Non-interference |  |  |
| TIM0_CC1                | 3: PC0   | Non-interference |  |  |
| TIM0_CC2                | 3: PC1   | Non-interference |  |  |
| TIM0_CDTI0              | 1: PC13  | Non-interference |  |  |
| TIM0_CDTI1              | 1: PC14  | Non-interference |  |  |
| TIM0_CDTI2              | 1: PC15  | Non-interference |  |  |
| TIM2_CC0                | 0: PA8   | Non-interference |  |  |
| TIM2_CC1                | 0: PA9   | Non-interference |  |  |
| TIM2_CC2                | 0: PA10  | Non-interference |  |  |
| TIM2_CDTI0              | 0: PB0   | Non-interference |  |  |
| TIM2_CDTI1              | 0: PB1   | Non-interference |  |  |
| TIM2_CDTI2              | 0: PB2   | Non-interference |  |  |
| TIM4_CC0                | 0: PF3   | Non-interference |  |  |
| TIM4_CC1                | 0: PF4   | Non-interference |  |  |
| TIM4_CC2                | 0: PF12  | Non-interference |  |  |
| TIM4_CDTI0              | 0: PD0   | Non-interference |  |  |
| TIM4_CDTI1              | 0: PD1   | Non-interference |  |  |
| TIM4_CDTI2              | 0: PD3   | Non-interference |  |  |
| TIM6_CC0                | 0: PG0   | Non-interference |  |  |
| TIM6_CC1                | 0: PG1   | Non-interference |  |  |
| TIM6_CC2                | 0: PG2   | Non-interference |  |  |
| TIM6_CDTI0              | 0: PG3   | Non-interference |  |  |
| TIM6_CDTI1              | 0: PG4   | Non-interference |  |  |
| TIM6_CDTI2              | 0: PG5   | Non-interference |  |  |

# 6. BGA192 Package Specifications

## 6.1 BGA192 Package Dimensions

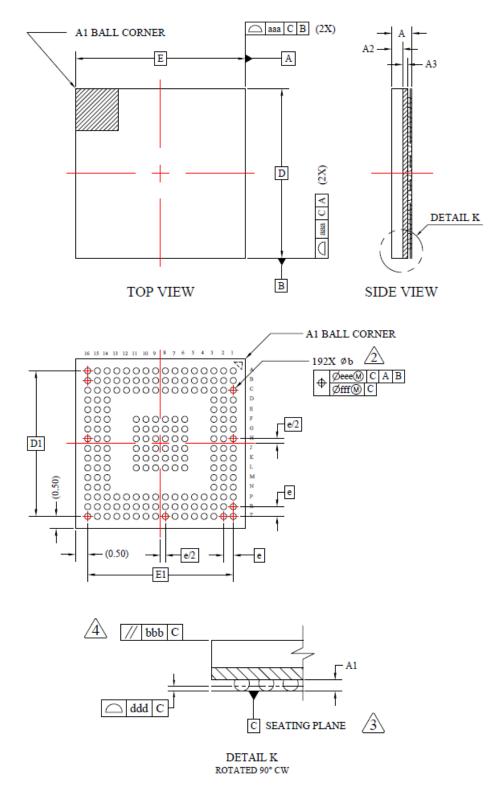



Figure 6.1. BGA192 Package Drawing

## Table 8.2. BGA120 PCB Land Pattern Dimensions

| Min  | Nom | Мах                         |  |
|------|-----|-----------------------------|--|
| 0.20 |     |                             |  |
| 6.00 |     |                             |  |
| 6.00 |     |                             |  |
| 0.5  |     |                             |  |
|      | 0.5 |                             |  |
|      | Min | 0.20<br>6.00<br>6.00<br>0.5 |  |

## Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.

3. This Land Pattern Design is based on the IPC-7351 guidelines.

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

6. The stencil thickness should be 0.125 mm (5 mils).

7. The ratio of stencil aperture to land pad size should be 1:1.

8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

## 9.2 BGA112 PCB Land Pattern

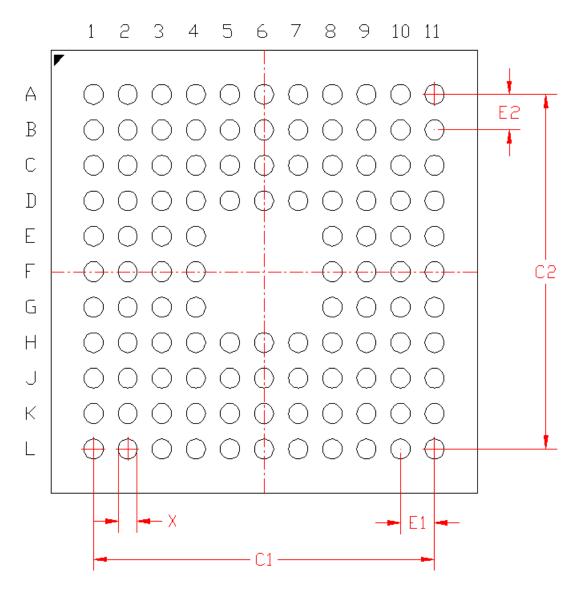



Figure 9.2. BGA112 PCB Land Pattern Drawing



Figure 9.3. BGA112 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

## Table 10.2. TQFP100 PCB Land Pattern Dimensions

| Min      | Nom | Мах                              |  |  |
|----------|-----|----------------------------------|--|--|
| 15.4     |     |                                  |  |  |
| 15.4     |     |                                  |  |  |
| 0.50 BSC |     |                                  |  |  |
| 0.30     |     |                                  |  |  |
| 1.50     |     |                                  |  |  |
|          | Min | 15.4<br>15.4<br>0.50 BSC<br>0.30 |  |  |

## Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

### 10.3 TQFP100 Package Marking



Figure 10.3. TQFP100 Package Marking

The package marking consists of:

- PPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- · WW The 2-digit workweek when the device was assembled.