

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	47
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b820f2048iq64-br

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.8.4 Capacitive Sense (CSEN)

The CSEN module is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a switches and sliders. The CSEN module uses a charge ramping measurement technique, which provides robust sensing even in adverse conditions including radiated noise and moisture. The module can be configured to take measurements on a single port pin or scan through multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter, as well as digital threshold comparators to reduce software overhead.

3.8.5 Digital to Analog Current Converter (IDAC)

The Digital to Analog Current Converter can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 μ A and 64 μ A with several ranges consisting of various step sizes.

3.8.6 Digital to Analog Converter (VDAC)

The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500 ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any CPU intervention. The VDAC is available in all energy modes down to and including EM3.

3.8.7 Operational Amplifiers

The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to rail output. They can be used in conjunction with the VDAC module or in stand-alone configurations. The opamps save energy, PCB space, and cost as compared with standalone opamps because they are integrated on-chip.

3.8.8 Liquid Crystal Display Driver (LCD)

The LCD driver is capable of driving a segmented LCD display with up to 8x36 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. A patented charge redistribution driver can reduce the LCD module supply current by up to 40%. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data.

3.9 Reset Management Unit (RMU)

The RMU is responsible for handling reset of the EFM32GG11. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.

3.10 Core and Memory

3.10.1 Processor Core

The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:

- ARM Cortex-M4 RISC processor with FPU achieving 1.25 Dhrystone MIPS/MHz
- Memory Protection Unit (MPU) supporting up to 8 memory segments
- Embedded Trace Macrocell (ETM) for real-time trace and debug
- Up to 2048 kB flash program memory
 - · Dual-bank memory with read-while-write support
- Up to 512 kB RAM data memory
- · Configuration and event handling of all modules
- · 2-pin Serial-Wire or 4-pin JTAG debug interface

0x40024000	ETH	Ņ		8xe0100008	/	PRS	0x400e6000
0x40022400		1	CM4 Peripherals	8xe00fffff	,	RMU	0x400e5400
0x40022000	USB				1	KMIO	0x400e5000
0x40020400		1		8xdfffffff		СМИ	0x400e4400
0x40020000	SMU		QSPI0	8xcfffffff		0.10	0x400e4000
0x4001d400				8×955555555	1	EMU	0x400e3400
0x4001d000	TRNG0	[\	5010 1 0		1		0x400e3000 0x4008f400
0x4001c800			EBI Region 3	8x8c666666		CRYOTIMER	0x4008f000
0x4001c400	QSPI0		EBI Region 2	8x88999999	,		0x4008e400
0x4001c000	GPCRC		EBI Region 1	8x87ffffff	1	CSEN	0x4008e000
0x4001b000			EBI Region 0	8×83ffffff		2C2	0x40089c00
0x4001ac00	WTIMER3		EBI Region 0		1	1202	0x40089800
0x4001a800	WTIMER2	1		8x366f6466	1	2C0	0x40089400
0x4001a400	WTIMER1	1	Bit Set	0x460f03ff		GPIO	0x40089000
0x4001a000	WTIMER0		(Peripherals / CRYPTO0)	0×46000000	/		0x40088000
0x40019c00		1		8×455f6466	/	VDAC0	0x40086400 0x40086000
0x40019800	TIMER6			0x44010400 0x440f03ff			0x40086000
0x40019400	TIMER5	(·	Bit Clear (Peripherals / CRYPTO0)		1	DAC0	0x40084000
0x40019000	TIMER4	۱ ۱	(renpherais) ettir 100)	0x44000000			0x40082800
0x40018c00	TIMER3			8x43£46666		ADC1	0x40082400
0x40018800	TIMER2	1	Bit-Band	0x43e3ffff	1	ADC0	0x40082000
0x40018800	TIMER1] \	(Peripherals / CRYPTO0 / SDI	O) _{0×42000000}		ACMP3	0x40081000
0x40018400	TIMERO			8×40146666	' '	ACMP2	0x40080c00
0x40018000) \	USB	8×48135555	1	ACMP1	0x40080800
0x40014800 0x40014400	UART1	1 \	058			ACMP0	0x40080400
0x40014400 0x40014000	UART0			8×488‡£555	'		0x40080000
0x40014000 0x40011800		1 \	SDIO	8×488f1666	1	PCNT2	0x4006ec00 0x4006e800
	USART5	1 \			1	PCNT1	0x4006e400
0x40011400 0x40011000	USART4	1		8×488f8455	1	PCNT0	0x4006e000
	USART3	1 \	CRYPTO0	8×488‡8355	/		0x4006a800
0x40010c00	USART2	1	Peripherals 1	8×48845555		LEUART1 LEUART0	0x4006a400
0x40010800	USART1		Desigh and a O			LEUARTO	0x4006a000
0x40010400	USART0	1	Peripherals 0	8×48835555	1	LETIMER1	0x40066800
0x40010000		1		8×3£££££££		LETIMERO	0x40066400
0x4000b400	EBI	1 /	SRAM (bit-band)	8x22666666	`		0×40066000
0x4000b000		1 /			Λ.	RTCC	0x40062400 0x40062000
0x40004800	CAN1			8x21656666	\ \		0x40062000
0x40004400	CAN0		RAM2 (data space)	8x28846666	`	RTC	0x40060000
0x40004000		1 /	RAM1 (data space)	8×28835555	\		0x40055400
0x40003000	LDMA				\mathbf{i}	LESENSE	0x40055000
0x40002000			RAM0 (data space)	8x28816666	N.	LCD	0x40054400
0x40001400	FPUEH	1 /		0x1fffffff	\		0x40054000
0x40001000		1 /	Code		Λ.	WDOG1	0x40052800
0×40000800	MSC	/		0×00000000	\ \	WD0G1 WD0G0	0x40052400
0x40000000		r			i '		0x40052000

Figure 3.3. EFM32GG11 Memory Map — Peripherals

4.1.10.6 USB High-Frequency RC Oscillator (USHFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Frequency accuracy	fushfrco_acc	At production calibrated frequen- cies, across supply voltage and temperature	TBD	_	TBD	%
		USB clock recovery enabled, Ac- tive connection as device, FINE- TUNINGEN ¹ = 1	-0.25	_	0.25	%
Start-up time	t _{USHFRCO}		_	300	_	ns
Current consumption on all supplies	IUSHFRCO	f _{USHFRCO} = 48 MHz, FINETUNIN- GEN ¹ = 1	_	340	TBD	μA
		f _{USHFRCO} = 50 MHz, FINETUNIN- GEN ¹ = 0	—	342	TBD	μA
		f _{USHFRCO} = 48 MHz, FINETUNIN- GEN ¹ = 0	_	292	TBD	μA
		f _{USHFRCO} = 32 MHz, FINETUNIN- GEN ¹ = 0	_	223	TBD	μA
		f _{USHFRCO} = 16 MHz, FINETUNIN- GEN ¹ = 0	—	132	TBD	μA
Period jitter	PJUSHERCO		_	0.2	_	% RMS

Table 4.17.	USB High-Frequency RC Oscillator	(USHFRCO)
-------------	----------------------------------	-----------

4.1.10.7 Ultra-low Frequency RC Oscillator (ULFRCO)

Table 4.18. Ultra-low Frequency RC Oscillator (ULFRCO)

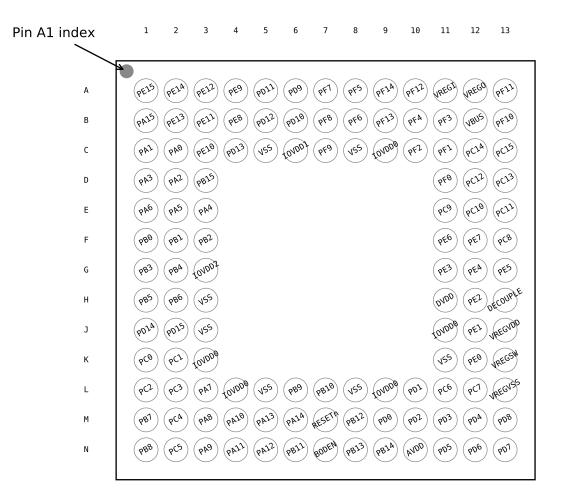
Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Oscillation frequency	f _{ULFRCO}		TBD	1	TBD	kHz

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Signal to noise and distortion ratio (1 kHz sine wave),	SNDR _{DAC}	500 ksps, single-ended, internal 1.25V reference	_	60.4	_	dB
Noise band limited to 250 kHz		500 ksps, single-ended, internal 2.5V reference	—	61.6	_	dB
		500 ksps, single-ended, 3.3V VDD reference	_	64.0	_	dB
		500 ksps, differential, internal 1.25V reference	_	63.3	_	dB
		500 ksps, differential, internal 2.5V reference	_	64.4	_	dB
		500 ksps, differential, 3.3V VDD reference	_	65.8	_	dB
Signal to noise and distortion ratio (1 kHz sine wave),	SNDR _{DAC_BAND}	500 ksps, single-ended, internal 1.25V reference	—	65.3	_	dB
Noise band limited to 22 kHz		500 ksps, single-ended, internal 2.5V reference	—	66.7	_	dB
		500 ksps, differential, 3.3V VDD reference	_	68.5	_	dB
		500 ksps, differential, internal 1.25V reference	_	67.8	_	dB
		500 ksps, differential, internal 2.5V reference	_	69.0	_	dB
		500 ksps, single-ended, 3.3V VDD reference		70.0	_	dB
Total harmonic distortion	THD		_	70.2	_	dB
Differential non-linearity ³	DNL _{DAC}		TBD	_	TBD	LSB
Intergral non-linearity	INL _{DAC}		TBD		TBD	LSB
Offset error ⁵	V _{OFFSET}	T = 25 °C	TBD	_	TBD	mV
		Across operating temperature range	TBD		TBD	mV
Gain error ⁵	V _{GAIN}	T = 25 °C, Low-noise internal ref- erence (REFSEL = 1V25LN or 2V5LN)	TBD	_	TBD	%
		Across operating temperature range, Low-noise internal refer- ence (REFSEL = 1V25LN or 2V5LN)	TBD		TBD	%
External load capactiance, OUTSCALE=0	C _{LOAD}		_	_	75	pF

SDIO DDR Mode Timing

Timing is specified for route location 0 at 1.8 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 6, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 30 pF on all pins.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Clock frequency during data transfer	F _{SD_CLK}	Using HFRCO, AUXHFRCO, or USHFRCO	_		20	MHz
		Using HFXO	_	_	TBD	MHz
Clock low time	t _{WL}	Using HFRCO, AUXHFRCO, or USHFRCO	22.6	—	_	ns
		Using HFXO	TBD	_	_	ns
Clock high time	t _{WH}	Using HFRCO, AUXHFRCO, or USHFRCO	22.6	_	_	ns
		Using HFXO	TBD	_	_	ns
Clock rise time	t _R		1.69	6.52	_	ns
Clock fall time	t _F		1.42	4.96	_	ns
Input setup time, CMD valid to SD_CLK	t _{ISU}		6		_	ns
Input hold time, SD_CLK to CMD change	t _{IH}		1.8		_	ns
Output delay time, SD_CLK to CMD valid	t _{ODLY}		0		16	ns
Output hold time, SD_CLK to CMD change	t _{OH}		0.8	_	_	ns
Input setup time, DAT[0:3] valid to SD_CLK	t _{ISU2X}		6	_	_	ns
Input hold time, SD_CLK to DAT[0:3] change	t _{IH2X}		1.5	_	_	ns
Output delay time, SD_CLK to DAT[0:3] valid	t _{ODLY2X}		0	_	16	ns
Output hold time, SD_CLK to DAT[0:3] change	t _{OH2X}		0.8		—	ns


Table 4.49. SDIO DS Mode Timing (Location 0)

SDIO MMC DDR Mode Timing at 1.8 V

Timing is specified for route location 0 at 1.8 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 25 pF on all pins.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Clock frequency during data transfer	F _{SD_CLK}	Using HFRCO, AUXHFRCO, or USHFRCO	_	_	18	MHz
		Using HFXO	_	_	TBD	MHz
Clock low time	t _{WL}	Using HFRCO, AUXHFRCO, or USHFRCO	25.1	—		ns
		Using HFXO	TBD	_	_	ns
Clock high time	t _{WH}	Using HFRCO, AUXHFRCO, or USHFRCO	25.1			ns
		Using HFXO	TBD	_	_	ns
Clock rise time	t _R		1.13	5.21	_	ns
Clock fall time	t _F		1.01	4.10	_	ns
Input setup time, CMD valid to SD_CLK	t _{ISU}		5.3			ns
Input hold time, SD_CLK to CMD change	t _{IH}		2.5		_	ns
Output delay time, SD_CLK to CMD valid	t _{ODLY}		0		16	ns
Output hold time, SD_CLK to CMD change	t _{OH}		3		_	ns
Input setup time, DAT[0:7] valid to SD_CLK	t _{ISU2X}		5.3			ns
Input hold time, SD_CLK to DAT[0:7] change	t _{IH2X}		2.5			ns
Output delay time, SD_CLK to DAT[0:7] valid	t _{ODLY2X}		0	_	16	ns
Output hold time, SD_CLK to DAT[0:7] change	t _{OH2X}		3	—	—	ns

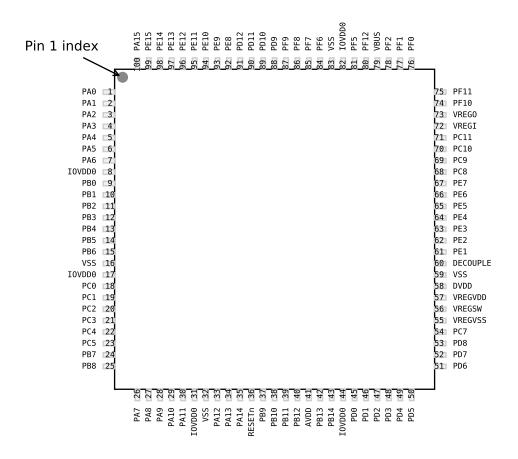
Table 4.52. SDIO MMC DDR Mode Timing (Location 0, 1.8V I/O)

Figure 5.3. EFM32GG11B8xx in BGA120 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Table 5.3. EFM32GG11B8xx in BGA120 Device Pinout
--

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PE15	A1	GPIO	PE14	A2	GPIO
PE12	A3	GPIO	PE9	A4	GPIO
PD11	A5	GPIO	PD9	A6	GPIO
PF7	A7	GPIO	PF5	A8	GPIO
PF14	A9	GPIO (5V)	PF12	A10	GPIO
VREGI	A11	Input to 5 V regulator.	VREGO	A12	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs


Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PE8	B4	GPIO	PD11	B5	GPIO
PF8	B6	GPIO	PF6	B7	GPIO
PF3	B8	GPIO	PE5	B9	GPIO
PC12	B10	GPIO (5V)	PC13	B11	GPIO (5V)
PA1	C1	GPIO	PA0	C2	GPIO
PE10	C3	GPIO	PD13	C4	GPIO (5V)
PD12	C5	GPIO	PF9	C6	GPIO
VSS	C7 D4 F9 G3 G9 H6 K4 K7 K10 L7	Ground	PF2	C8	GPIO
PE6	C9	GPIO	PC10	C10	GPIO (5V)
PC11	C11	GPIO (5V)	PA3	D1	GPIO
PA2	D2	GPIO	PB15	D3	GPIO (5V)
IOVDD1	D5	Digital IO power supply 1.	PD9	D6	GPIO
IOVDD0	D7 G8 H7 L4	Digital IO power supply 0.	PF1	D8	GPIO (5V)
PE7	D9	GPIO	PC8	D10	GPIO (5V)
PC9	D11	GPIO (5V)	PA6	E1	GPIO
PA5	E2	GPIO	PA4	E3	GPIO
PB0	E4	GPIO	PF0	E8	GPIO (5V)
PE0	E9	GPIO (5V)	PE1	E10	GPIO (5V)
PE3	E11	GPIO	PB1	F1	GPIO
PB2	F2	GPIO	PB3	F3	GPIO
PB4	F4	GPIO	DVDD	F8	Digital power supply.
PE2	F10	GPIO	DECOUPLE	F11	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PB5	G1	GPIO	PB6	G2	GPIO
IOVDD2	G4	Digital IO power supply 2.	PC6	G10	GPIO
PC7	G11	GPIO	PC0	H1	GPIO (5V)
PC2	H2	GPIO (5V)	PD14	H3	GPIO (5V)
PA7	H4	GPIO	PA8	H5	GPIO
PD8	H8	GPIO	PD5	H9	GPIO
PD6	H10	GPIO	PD7	H11	GPIO

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PC1	J1	GPIO (5V)	PC3	J2	GPIO (5V)
PD15	J3	GPIO (5V)	PA12	J4	GPIO (5V)
PA9	J5	GPIO	PA10	J6	GPIO
PB9	J7	GPIO (5V)	PB10	J8	GPIO (5V)
PD2	J9	GPIO (5V)	PD3	J10	GPIO
PD4	J11	GPIO	PB7	K1	GPIO
PC4	K2	GPIO	PA13	K3	GPIO (5V)
PA11	К5	GPIO	RESETn	K6	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
AVDD	K8 K9 L10	Analog power supply.	PD1	K11	GPIO
PB8	L1	GPIO	PC5	L2	GPIO
PA14	L3	GPIO	PB11	L5	GPIO
PB12	L6	GPIO	PB13	L8	GPIO
PB14	L9	GPIO	PD0	L11	GPIO (5V)

Note:

1. GPIO with 5V tolerance are indicated by (5V).

2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.

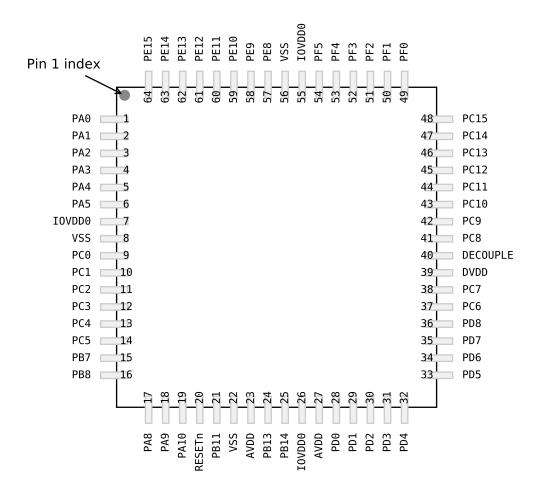


Figure 5.8. EFM32GG11B8xx in QFP100 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Table 5.8.	EFM32GG11B8xx in QFP100 Device Pinout
------------	---------------------------------------

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	PA3	4	GPIO
PA4	5	GPIO	PA5	6	GPIO
PA6	7	GPIO	IOVDD0	8 17 31 44 82	Digital IO power supply 0.
PB0	9	GPIO	PB1	10	GPIO

Figure 5.15. EFM32GG11B1xx in QFP64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	PA3	4	GPIO
PA4	5	GPIO	PA5	6	GPIO
IOVDD0	7 26 55	Digital IO power supply 0.	VSS	8 22 56	Ground
PC0	9	GPIO (5V)	PC1	10	GPIO (5V)
PC2	11	GPIO (5V)	PC3	12	GPIO (5V)

GPIO Name	Pin Alternate Functionality / Description					
	Analog	EBI	Timers	Communication	Other	
PD13		EBI_ARDY #1	TIM2_CDTI0 #1 TIM3_CC1 #6 WTIM0_CC1 #1	ETH_MDIO #1 US4_CTS #1 US5_CLK #1	ETM_TD1 #1	
PI15				CAN1_TX #7 US3_CS #5		
PI14				CAN1_RX #7 US3_CLK #5		
PI13				CAN0_TX #7 US3_RX #5		
PI12				CAN0_RX #7 US3_TX #5		
PI10		EBI_A15 #2	TIM4_CC2 #3	US4_CTS #3		
PI7		EBI_A12 #2	TIM1_CC1 #7 TIM4_CC2 #2 WTIM3_CC1 #5	US4_RX #3		
PF15	BUSCY BUSDX		TIM1_CC2 #6 TIM4_CC2 #1 WTIM3_CC2 #7	US5_TX #2 I2C2_SDA #5		
PF12	BUSDY BUSCX	EBI_NANDREn #5	TIM4_CC2 #0 TIM1_CC3 #5 TIM5_CC0 #7 WTIM3_CC2 #6	US5_CS #2 I2C2_SCL #3 USB_ID		
PF4	BUSDY BUSCX LCD_SEG2	EBI_WEn #0 EBI_WEn #5	TIM4_CC1 #0 TIM0_CDTI1 #2 TIM1_CC2 #5 WTIM3_CC1 #6	US1_RTS #2 I2C2_SDA #3	PRS_CH1 #1	
PC15	VDAC0_OUT1ALT / OPA1_OUTALT #3 BUSACMP1Y BU- SACMP1X	EBI_NANDREn #4	TIM0_CDTI2 #1 TIM1_CC2 #0 WTIM0_CC0 #4 LE- TIM0_OUT1 #5	US0_CLK #3 US1_CLK #3 US3_RTS #3 U0_RX #3 U1_RTS #0 LEU0_RX #5 I2C2_SCL #1	LES_CH15 PRS_CH1 #2 ACMP3_O #1 DBG_SWO #1	
PC14	VDAC0_OUT1ALT / OPA1_OUTALT #2 BUSACMP1Y BU- SACMP1X	EBI_NANDWEn #4	TIM0_CDTI1 #1 TIM1_CC1 #0 TIM1_CC3 #4 TIM5_CC0 #6 WTIM3_CC0 #3 LE- TIM0_OUT0 #5 PCNT0_S1IN #0	US0_CS #3 US1_CS #3 US2_RTS #3 US3_CS #2 U0_TX #3 U1_CTS #0 LEU0_TX #5 I2C2_SDA #1	LES_CH14 PRS_CH0 #2 ACMP3_O #2	
PA2	BUSBY BUSAX LCD_SEG15	EBI_AD11 #0 EBI_DTEN #3	TIM0_CC2 #0 TIM3_CC2 #4	ETH_RMIIRXD0 #0 ETH_MIITXD2 #0 SDIO_DAT2 #1 US1_RX #6 US3_CLK #0 QSPI0_DQ0 #1	CMU_CLK0 #0 PRS_CH8 #1 ETM_TD0 #3	
PG0	BUSACMP2Y BU- SACMP2X	EBI_AD00 #2	TIM6_CC0 #0 TIM2_CDTI0 #3 WTIM0_CDTI1 #1 LETIM1_OUT0 #6	ETH_MIITXCLK #1 US3_TX #4 QSPI0_SCLK #2	CMU_CLK2 #3	

Alternate LOCATION		ATION			
Functionality	0 - 3	4 - 7	Description		
BU_STAT	0: PE3		Backup Power Domain status, whether or not the system is in backup mode.		
BU_VIN	0: PD8		Battery input for Backup Power Domain.		
BU_VOUT	0: PE2		Power output for Backup Power Domain.		
CAN0_RX	0: PC0 1: PF0 2: PD0 3: PB9	4: PG8 5: PD14 6: PE0 7: PI12	CAN0 RX.		
CAN0_TX	0: PC1 1: PF2 2: PD1 3: PB10	4: PG9 5: PD15 6: PE1 7: PI13	CAN0 TX.		
CAN1_RX	0: PC2 1: PF1 2: PD3 3: PC9	4: PC12 5: PA12 6: PG10 7: PI14	CAN1 RX.		
CAN1_TX	0: PC3 1: PF3 2: PD4 3: PC10	4: PC11 5: PA13 6: PG11 7: PI15	CAN1 TX.		
CMU_CLK0	0: PA2 1: PC12 2: PD7 3: PG2	4: PF2 5: PA12	Clock Management Unit, clock output number 0.		
CMU_CLK1	0: PA1 1: PD8 2: PE12 3: PG1	4: PF3 5: PB11	Clock Management Unit, clock output number 1.		
CMU_CLK2	0: PA0 1: PA3 2: PD6 3: PG0	4: PA3 5: PD10	Clock Management Unit, clock output number 2.		
CMU_CLKI0	0: PD4 1: PA3 2: PB8 3: PB13	4: PE1 5: PD10 6: PE12 7: PB11	Clock Management Unit, clock input number 0.		
DBG_SWCLKTCK	0: PF0		Debug-interface Serial Wire clock input and JTAG Test Clock. Note that this function is enabled to the pin out of reset, and has a built-in pull down.		
DBG_SWDIOTMS	0: PF1		Debug-interface Serial Wire data input / output and JTAG Test Mode Select. Note that this function is enabled to the pin out of reset, and has a built-in pull up.		

Alternate	LOCA	TION				
Functionality	0 - 3	4 - 7	Description			
ETH_MIITXD2	0: PA2 1: PG2		Ethernet MII Transmit Data Bit 2.			
ETH_MIITXD3	0: PA1 1: PG1		Ethernet MII Transmit Data Bit 3.			
ETH_MIITXEN	0: PA5 1: PG5		Ethernet MII Transmit Enable.			
ETH_MIITXER	0: PA6 1: PG6		Ethernet MII Transmit Error.			
ETH_RMIICRSDV	0: PA4 1: PD11		Ethernet RMII Carrier Sense / Data Valid.			
ETH_RMIIREFCLK	0: PA3 1: PD10		Ethernet RMII Reference Clock.			
ETH_RMIIRXD0	0: PA2 1: PD9		Ethernet RMII Receive Data Bit 0.			
ETH_RMIIRXD1	0: PA1 1: PF9		Ethernet RMII Receive Data Bit 1.			
ETH_RMIIRXER	0: PA5 1: PD12		Ethernet RMII Receive Error.			
ETH_RMIITXD0	0: PE15 1: PF7		Ethernet RMII Transmit Data Bit 0.			
ETH_RMIITXD1	0: PE14 1: PF6		Ethernet RMII Transmit Data Bit 1.			
ETH_RMIITXEN	0: PA0 1: PF8		Ethernet RMII Transmit Enable.			
ETH_TSUEXTCLK	0: PB5 1: PD15 2: PC2 3: PF8		Ethernet IEEE1588 External Reference Clock.			

Alternate LOCATION		TION				
Functionality	0 - 3	4 - 7	Description			
LFXTAL_N	0: PB8		Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional ex- ternal clock input pin.			
LFXTAL_P	0: PB7		Low Frequency Crystal (typically 32.768 kHz) positive pin.			
OPA0_N	0: PC5		Operational Amplifier 0 external negative input.			
OPA0_P	0: PC4		Operational Amplifier 0 external positive input.			
OPA1_N	0: PD7		Operational Amplifier 1 external negative input.			
OPA1_P	0: PD6		Operational Amplifier 1 external positive input.			
OPA2_N	0: PD3		Operational Amplifier 2 external negative input.			
OPA2_OUT	0: PD5		Operational Amplifier 2 output.			
OPA2_OUTALT	0: PD0		Operational Amplifier 2 alternative output.			
OPA2_P	0: PD4		Operational Amplifier 2 external positive input.			
OPA3_N	0: PC7		Operational Amplifier 3 external negative input.			
OPA3_OUT	0: PD1		Operational Amplifier 3 output.			
OPA3_P	0: PC6		Operational Amplifier 3 external positive input.			

Alternate	LOCATION		
Functionality	0 - 3	4 - 7	Description
SDIO_DAT7	0: PD9 1: PB4		SDIO Data 7.
SDIO_WP	0: PF9 1: PC5 2: PB15 3: PB9		SDIO Write Protect.
ТІМ0_ССО	0: PA0 1: PF6 2: PD1 3: PB6	4: PF0 5: PC4 6: PA8 7: PA1	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	0: PA1 1: PF7 2: PD2 3: PC0	4: PF1 5: PC5 6: PA9 7: PA0	Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	0: PA2 1: PF8 2: PD3 3: PC1	4: PF2 5: PA7 6: PA10 7: PA13	Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0	0: PA3 1: PC13 2: PF3 3: PC2	4: PB7	Timer 0 Complimentary Dead Time Insertion channel 0.
TIM0_CDTI1	0: PA4 1: PC14 2: PF4 3: PC3	4: PB8	Timer 0 Complimentary Dead Time Insertion channel 1.
TIM0_CDTI2	0: PA5 1: PC15 2: PF5 3: PC4	4: PB11	Timer 0 Complimentary Dead Time Insertion channel 2.
TIM1_CC0	0: PC13 1: PE10 2: PB0 3: PB7	4: PD6 5: PF2 6: PF13 7: PI6	Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	0: PC14 1: PE11 2: PB1 3: PB8	4: PD7 5: PF3 6: PF14 7: PI7	Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	0: PC15 1: PE12 2: PB2 3: PB11	4: PC13 5: PF4 6: PF15 7: PI8	Timer 1 Capture Compare input / output channel 2.
TIM1_CC3	0: PC12 1: PE13 2: PB3 3: PB12	4: PC14 5: PF12 6: PF5 7: PI9	Timer 1 Capture Compare input / output channel 3.
TIM2_CC0	0: PA8 1: PA12 2: PC8 3: PF2	4: PB6 5: PC2 6: PG8 7: PG5	Timer 2 Capture Compare input / output channel 0.

7. BGA152 Package Specifications

7.1 BGA152 Package Dimensions

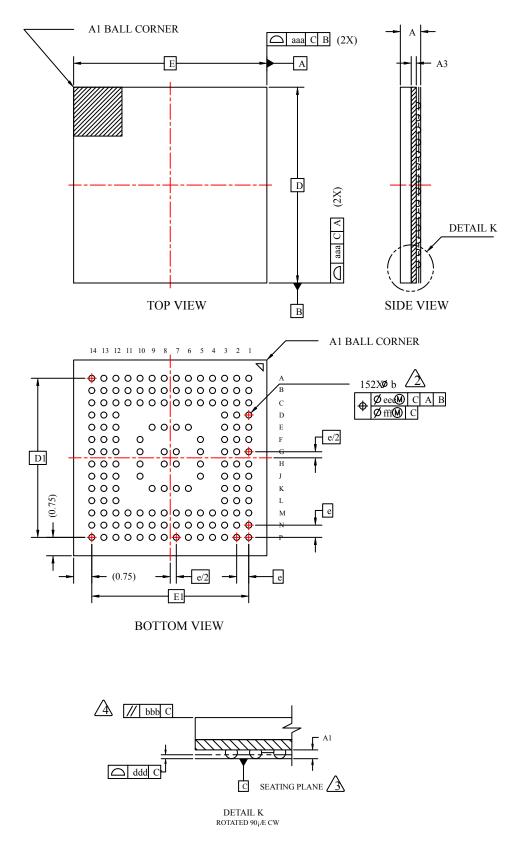


Figure 7.1. BGA152 Package Drawing

Dimension	Min	Тур	Мах		
A	-	-	1.20		
A1	0.05	-	0.15		
A2	0.95	1.00	1.05		
b	0.17	0.22	0.27		
b1	0.17	0.20	0.23		
С	0.09	-	0.20		
c1	0.09	-	0.16		
D		16.0 BSC			
E		16.0 BSC			
D1		14.0 BSC			
E1		14.0 BSC			
е		0.50 BSC			
L1		1 REF			
L	0.45	0.60	0.75		
θ	0	3.5	7		
θ1	0	-	-		
θ2	11	12	13		
θ3	11	12	13		
R1	0.08	-	-		
R2	0.08	-	0.2		
S	0.2	-	-		
ааа	0.2				
bbb	0.2				
ссс	0.08				
ddd	0.08				
eee	0.05				
Noto:					

Table 10.1. TQFP100 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

11. TQFP64 Package Specifications

11.1 TQFP64 Package Dimensions

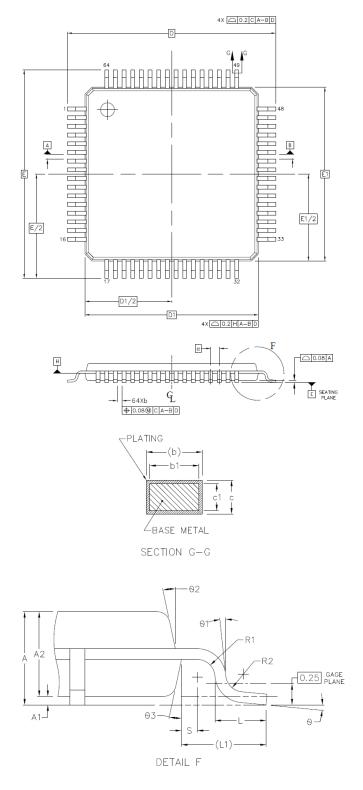


Figure 11.1. TQFP64 Package Drawing

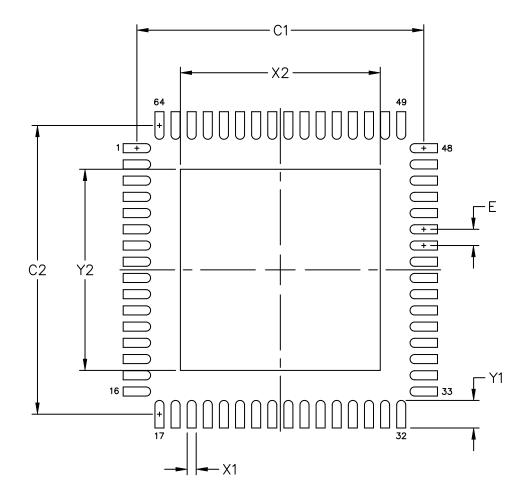


Figure 12.2. QFN64 PCB Land Pattern Drawing