

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	144
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	192-VFBGA
Supplier Device Package	192-BGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b840f1024gl192-br

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

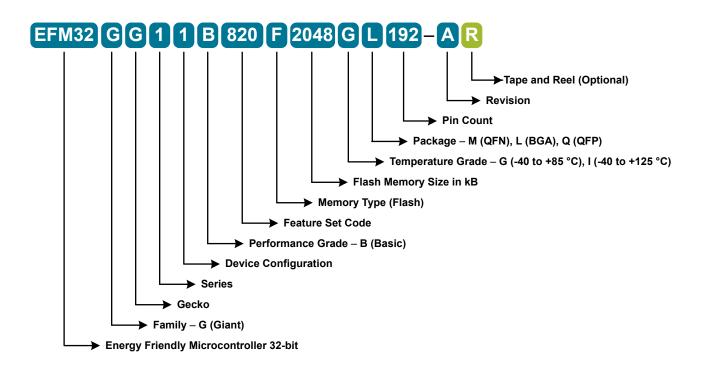


Figure 2.1. Ordering Code Key

3. System Overview

3.1 Introduction

The Giant Gecko Series 1 product family is well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the MCU system. The detailed functional description can be found in the Giant Gecko Series 1 Reference Manual.

A block diagram of the Giant Gecko Series 1 family is shown in Figure 3.1 Detailed EFM32GG11 Block Diagram on page 11. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.

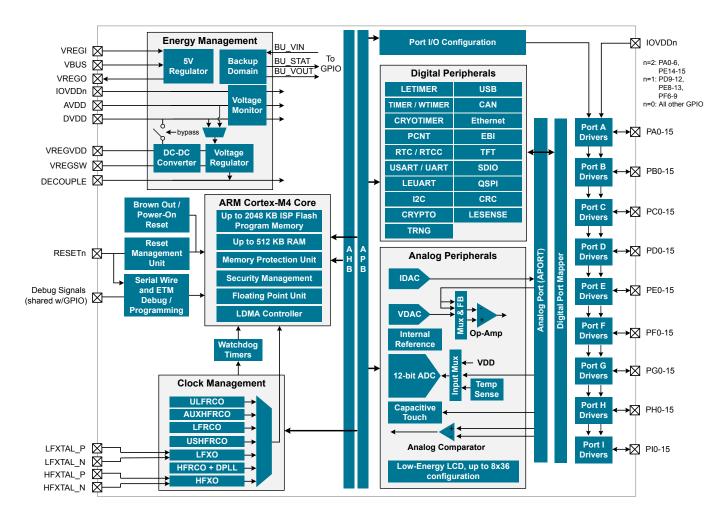


Figure 3.1. Detailed EFM32GG11 Block Diagram

3.2 Power

The EFM32GG11 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. A 5 V regulator is available on some OPNs, allowing the device to be powered directly from 5 V power sources, such as USB. An optional integrated DC-DC buck regulator can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor.

The EFM32GG11 device family includes support for internal supply voltage scaling, as well as two different power domain groups for peripherals. These enhancements allow for further supply current reductions and lower overall power consumption.

AVDD and VREGVDD need to be 1.8 V or higher for the MCU to operate across all conditions; however the rest of the system will operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components. Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA.

3.2.1 Energy Management Unit (EMU)

The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold.

3.2.2 DC-DC Converter

The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.

3.2.3 5 V Regulator

A 5 V input regulator is available, allowing the device to be powered directly from 5 V power sources such as the USB VBUS line. The regulator is available in all energy modes, and outputs 3.3 V to be used to power the USB PHY and other 3.3 V systems. Two inputs to the regulator allow for seamless switching between local and external power sources.

0x40024000	ETH	Ņ		8xe0100008	/	PRS	0x400e6000
0x40022400		1	CM4 Peripherals	8xe00fffff	,	RMU	0x400e5400
0x40022000	USB				1	KMIO	0x400e5000
0x40020400		1		8xdfffffff		СМИ	0x400e4400
0x40020000	SMU		QSPI0	8xcfffffff		0.10	0x400e4000
0x4001d400				8×955555555	1	EMU	0x400e3400
0x4001d000	TRNG0	[\	5010 1 0		1		0x400e3000 0x4008f400
0x4001c800			EBI Region 3	8x8c666666		CRYOTIMER	0x4008f000
0x4001c400	QSPI0		EBI Region 2	8x88999999	,		0x4008e400
0x4001c000	GPCRC		EBI Region 1	8x87ffffff	1	CSEN	0x4008e000
0x4001b000			EBI Region 0	8×83ffffff		2C2	0x40089c00
0x4001ac00	WTIMER3		EBI Region 0		1	202	0x40089800
0x4001a800	WTIMER2	1		8x366f6466	1	2C0	0x40089400
0x4001a400	WTIMER1	1	Bit Set	0x460f03ff		GPIO	0x40089000
0x4001a000	WTIMER0		(Peripherals / CRYPTO0)	0×46000000	/		0x40088000
0x40019c00		1		8×455f6466	/	VDAC0	0x40086400 0x40086000
0x40019800	TIMER6			0x44010400 0x440f03ff			0x40086000
0x40019400	TIMER5	(·	Bit Clear (Peripherals / CRYPTO0)		1	DAC0	0x40084000
0x40019000	TIMER4	۱ ۱	(renpherals / ettir roo)	0x44000000			0x40082800
0x40018c00	TIMER3			8x43£46666		ADC1	0x40082400
0x40018800	TIMER2	1	Bit-Band	0x43e3ffff	1	ADC0	0x40082000
0x40018800	TIMER1] \	(Peripherals / CRYPTO0 / SDI	O) _{0×42000000}		ACMP3	0x40081000
0x40018400	TIMERO			8×40146666	' '	ACMP2	0x40080c00
0x40018000) \	USB	8×48135555	1	ACMP1	0x40080800
0x40014800 0x40014400	UART1	1 \	058			ACMP0	0x40080400
0x40014400 0x40014000	UART0			8×488‡£555	'		0x40080000
0x40014000 0x40011800		1 \	SDIO	8×488f1666	1	PCNT2	0x4006ec00 0x4006e800
	USART5	1 \			1	PCNT1	0x4006e400
0x40011400 0x40011000	USART4	1		8×488f8455	/	PCNT0	0x4006e000
	USART3	1 \	CRYPTO0	8×488‡8355	/		0x4006a800
0x40010c00	USART2	1	Peripherals 1	8×48845555		LEUART1 LEUART0	0x4006a400
0x40010800	USART1		Desigh and a O			LEUARTO	0x4006a000
0x40010400	USART0	1	Peripherals 0	8×48835555	1	LETIMER1	0x40066800
0x40010000		1 .		8×3£££££££		LETIMERO	0x40066400
0x4000b400	EBI	1 /	SRAM (bit-band)	8x22666666	`		0×40066000
0x4000b000		1 /			Λ.	RTCC	0x40062400 0x40062000
0x40004800	CAN1			8x21656666	\ \		0x40062000
0x40004400	CAN0		RAM2 (data space)	8x28846666	`	RTC	0x40060000
0x40004000		1 /	RAM1 (data space)	8×28835555	\		0x40055400
0x40003000	LDMA				\mathbf{i}	LESENSE	0x40055000
0x40002000			RAM0 (data space)	8x28816666	N.	LCD	0x40054400
0x40001400	FPUEH	1 /		0x1fffffff	\		0x40054000
0x40001000		1 /	Code		Λ.	WDOG1	0x40052800
0×40000800	MSC	/		0×00000000	\ \	WDOG1 WDOG0	0x40052400
0x40000000		r			i '		0x40052000

Figure 3.3. EFM32GG11 Memory Map — Peripherals

4.1.7.2 Current Consumption 3.3 V using DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V DC-DC output. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.

Table 4.8.	Current Consumption 3.3	V using DC-DC Converter
------------	--------------------------------	-------------------------

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_DCM	72 MHz HFRCO, CPU running Prime from flash	_	80	-	µA/MHz
abled, DCDC in Low Noise DCM mode ²		72 MHz HFRCO, CPU running while loop from flash	_	80	_	µA/MHz
		72 MHz HFRCO, CPU running CoreMark loop from flash	_	92	_	µA/MHz
		50 MHz crystal, CPU running while loop from flash	_	84	_	µA/MHz
		48 MHz HFRCO, CPU running while loop from flash	_	84	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	_	90	-	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	_	94	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash	_	109	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	_	698	_	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_CCM	72 MHz HFRCO, CPU running Prime from flash	_	84	_	µA/MHz
abled, DCDC in Low Noise CCM mode ¹		72 MHz HFRCO, CPU running while loop from flash	_	84	-	µA/MHz
		72 MHz HFRCO, CPU running CoreMark loop from flash	_	95	_	µA/MHz
		50 MHz crystal, CPU running while loop from flash	_	91	_	µA/MHz
		48 MHz HFRCO, CPU running while loop from flash	_	92	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	_	104	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	_	113	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash	_	142	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	_	1264	_	µA/MHz

4.1.10.5 Auxiliary High-Frequency RC Oscillator (AUXHFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Frequency accuracy	f _{AUXHFRCO_ACC}	At production calibrated frequen- cies, across supply voltage and temperature	TBD	_	TBD	%
Start-up time	t _{AUXHFRCO}	f _{AUXHFRCO} ≥ 19 MHz	_	400	_	ns
		4 < f _{AUXHFRCO} < 19 MHz	_	1.4	_	μs
		f _{AUXHFRCO} ≤ 4 MHz	_	2.5	_	μs
Current consumption on all	IAUXHFRCO	f _{AUXHFRCO} = 50 MHz	_	289	TBD	μA
supplies		f _{AUXHFRCO} = 48 MHz	_	276	TBD	μA
		f _{AUXHFRCO} = 38 MHz	_	227	TBD	μA
		f _{AUXHFRCO} = 32 MHz	_	186	TBD	μA
		f _{AUXHFRCO} = 26 MHz	_	158	TBD	μA
		f _{AUXHFRCO} = 19 MHz	_	126	TBD	μA
		f _{AUXHFRCO} = 16 MHz	_	114	TBD	μA
		f _{AUXHFRCO} = 13 MHz	—	88	TBD	μA
		f _{AUXHFRCO} = 7 MHz	—	59	TBD	μA
		f _{AUXHFRCO} = 4 MHz	_	33	TBD	μA
		f _{AUXHFRCO} = 2 MHz	_	28	TBD	μA
		f _{AUXHFRCO} = 1 MHz	—	26	TBD	μA
Coarse trim step size (% of period)	SS _{AUXHFR-} CO_COARSE		—	0.8	_	%
Fine trim step size (% of pe- riod)	SS _{AUXHFR-} CO_FINE		—	0.1	_	%
Period jitter	PJ _{AUXHFRCO}		—	0.2	_	% RMS

Table 4.16. Auxiliary High-Frequency RC Oscillator (AUXHFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Note:						
1. Specified configurate V. Nominal voltage		figuration is: INCBW = 1, HCMDIS = 1,	, RESINSEL =	VSS, V _{INPUT} =	= 0.5 V, V _{OUT}	_{FPUT} = 1.5
2. If the maximum C_{LC}	AD is exceeded, an	isolation resistor is required for stability	y. See AN0038	for more infor	mation.	
3. When INCBW is se or the OPAMP may		indwidth is increased. This is allowed o	only when the r	non-inverting c	lose-loop ga	in is ≥ 3,
drive the resistor fe	edback network. The	d. When the OPAMP is connected with e internal resistor feedback network has IP drives 1.5 V between output and groups of the state	s total resistan			
5. Step between 0.2V	and V _{OPA} -0.2V, 10%	6-90% rising/falling range.				
6. From enable to out	out settled. In sample	e-and-off mode, RC network after OPA	MP will contrib	oute extra dela	y. Settling er	ror < 1mV
		-bandwidth product of the OPAMP. In 3 ion of the feedback network.	3x Gain conne	ction, UGF is t	he gain-band	dwidth
8. Specified configuration V _{OUTPUT} = 0.5 V.	ion for Unit gain buff	fer configuration is: INCBW = 0, HCME	DIS = 0, RESIN	ISEL = DISAB	LE. V _{INPUT} =	0.5 V,
9 When HCMDIS=1 a	nd input common m	ode transitions the region from V _{OPA} -1 o this transition region.	.4V to V _{OPA} -1	V, input offset	will change.	PSRR

4.1.20 LCD Driver

Table 4.28. LCD Driver

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Frame rate	f _{LCDFR}		TBD	—	TBD	Hz
LCD supply range ²	V _{LCDIN}		1.8		3.8	V
LCD output voltage range	V _{LCD}	Current source mode, No external LCD capacitor	2.0	_	V _{LCDIN} -0.4	V
		Step-down mode with external LCD capacitor	2.0		V _{LCDIN}	V
		Charge pump mode with external LCD capacitor	2.0	_	1.9 * V _{LCDIN}	V
Contrast control step size	STEP _{CONTRAST}	Current source mode	_	64	_	mV
		Charge pump or Step-down mode	_	43	_	mV
Contrast control step accura- cy ¹	ACC _{CONTRAST}		_	+/-4	—	%
Noto		1			· · ·	

Note:

1. Step size accuracy is measured relative to the typical step size, and typ value represents one standard deviation.

2. V_{LCDIN} is selectable between the AVDD or DVDD supply pins, depending on EMU_PWRCTRL_ANASW.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
SCLK period ^{1 3 2}	t _{SCLK}		6 * ^t HFPERCLK	_	—	ns
SCLK high time ^{1 3 2}	t _{SCLK_HI}		2.5 * ^t HFPERCLK	—	_	ns
SCLK low time ^{1 3 2}	t _{SCLK_LO}		2.5 * ^t HFPERCLK	—	_	ns
CS active to MISO ^{1 3}	t _{cs_аст_мі}		24	—	69	ns
CS disable to MISO ^{1 3}	t _{CS_DIS_MI}		19	_	175	ns
MOSI setup time ^{1 3}	t _{SU_MO}		7	—	—	ns
MOSI hold time ^{1 3 2}	t _{H_MO}		6	_	—	ns
SCLK to MISO ^{1 3 2}	t _{SCLK_MI}		16 + 1.5 * ^t HFPERCLK	_	43 + 2.5 * t _{HFPERCLK}	ns

Table 4.35. SPI Slave Timing

Note:

1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).

2. t_{HFPERCLK} is one period of the selected HFPERCLK.

3. Measurement done with 8 pF output loading at 10% and 90% of V_{DD} (figure shows 50% of V_{DD}).

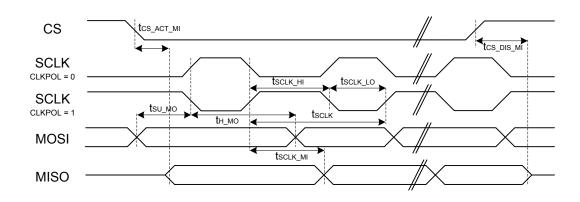


Figure 4.2. SPI Slave Timing Diagram

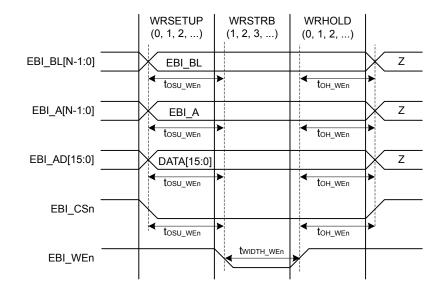
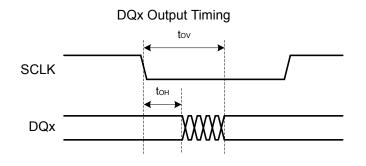


Figure 4.3. EBI Write Enable Output Timing Diagram

SDIO MMC SDR Mode Timing at 1.8 V

Timing is specified for route location 0 at 1.8 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 20 pF on all pins.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Clock frequency during data transfer	F _{SD_CLK}	Using HFRCO, AUXHFRCO, or USHFRCO	_	_	25	MHz
		Using HFXO	_	_	TBD	MHz
Clock low time	t _{WL}	Using HFRCO, AUXHFRCO, or USHFRCO	18.1	_	_	ns
		Using HFXO	TBD	_	_	ns
Clock high time	t _{WH}	Using HFRCO, AUXHFRCO, or USHFRCO	18.1	_	_	ns
		Using HFXO	TBD	_	_	ns
Clock rise time	t _R		1.96	8.27	_	ns
Clock fall time	t _F		1.67	6.90	_	ns
Input setup time, CMD, DAT[0:7] valid to SD_CLK	t _{ISU}		5.3	_	_	ns
Input hold time, SD_CLK to CMD, DAT[0:7] change	tiH		2.5	_	_	ns
Output delay time, SD_CLK to CMD, DAT[0:7] valid	t _{ODLY}		0	_	16	ns
Output hold time, SD_CLK to CMD, DAT[0:7] change	t _{OH}		3	_	_	ns


Table 4.50. SDIO MMC SDR Mode Timing (Location 0, 1.8V I/O)

QSPI SDR Mode Timing (Locations 1, 2)

Timing is specified with voltage scaling disabled, PHY-mode, route locations other than 0, TX DLL = 34, RX DLL = 59, 20-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG.

Table 4.55. QSPI SDR Mode Timing (Locations 1, 2)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Full SCLK period	Т		(1/F _{SCLK}) * 0.95	_	_	ns
Output valid	t _{OV}		—	—	T/2 - 2.1	ns
Output hold	t _{OH}		T/2 - 42.3	_	_	ns
Input setup	t _{SU}		48.2 - T/2	—	_	ns
Input hold	t _H		T/2 - 5.1	_	_	ns

DQx Input Timing

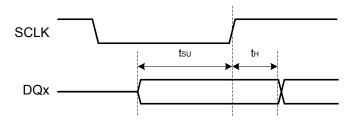


Figure 4.21. QSPI SDR Timing Diagrams

QSPI SDR Flash Timing Example

This example uses timing values for location 0 (SDR mode) to demonstrate the calculation of allowable flash timing using the QSPI in SDR mode.

- Using a configured SCLK frequency (F_{SCLK}) of 19 MHz:
- The resulting minimum period, T(min) = (1/F_{SCLK}) * 0.95 = 50.0 ns.
- Flash will see a minimum setup time of T/2 t_{OV} = T/2 (T/2 2.4) = 2.4 ns.
- Flash will see a minimum hold time of T/2 + t_{OH} = T/2 + (T/2 32.9) = T 32.9 = 50.0 32.9 = 17.1 ns.
- Flash can have a maximum output valid time of T/2 t_{SU} = T/2 (36.2 T/2) = T 36.2 = 50.0 36.2 = 13.8 ns.
- Flash can have a minimum output hold time of $t_H T/2 = (T/2 3.3) T/2 = -3.3$ ns.

4.2.2 DC-DC Converter

Default test conditions: CCM mode, LDCDC = 4.7 µH, CDCDC = 4.7 µF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz

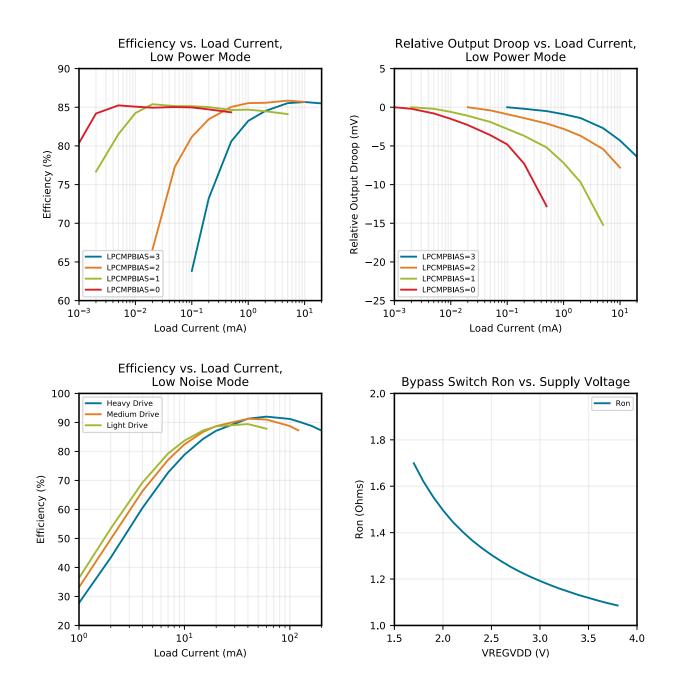
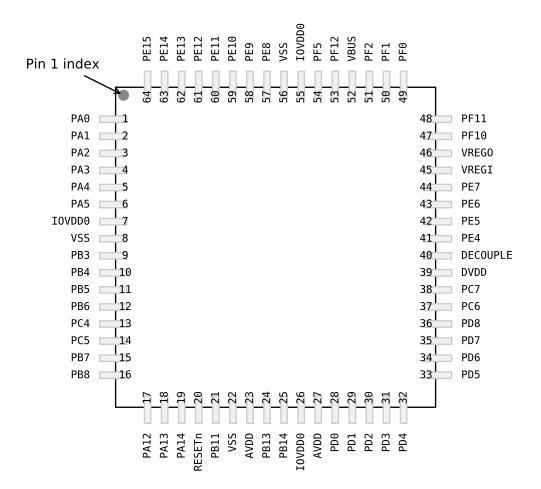


Figure 4.29. DC-DC Converter Typical Performance Characteristics


Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PD15	J2	GPIO (5V)	PC6	J12	GPIO
DECOUPLE	J13	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PC0	K1	GPIO (5V)
PC1	K2	GPIO (5V)	PD8	K13	GPIO
PC2	L1	GPIO (5V)	PC3	L2	GPIO (5V)
PA7	L3	GPIO	PB9	L15	GPIO (5V)
PB10	L16	GPIO (5V)	PD0	L17	GPIO (5V)
PD1	L18	GPIO	PD4	L19	GPIO
PD7	L20	GPIO	PB7	M1	GPIO
PC4	M2	GPIO	PA8	M3	GPIO
PA10	M4	GPIO	PA13	M5	GPIO (5V)
PA14	M6	GPIO	RESETn	М7	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
AVDD	M9 M10 N11	Analog power supply.	PD3	M12	GPIO
PD6	M13	GPIO	PB8	N1	GPIO
PC5	N2	GPIO	PA9	N3	GPIO
PA11	N4	GPIO	PA12	N5	GPIO (5V)
PB11	N6	GPIO	PB12	N7	GPIO
PB13	N9	GPIO	PB14	N10	GPIO
PD2	N12	GPIO (5V)	PD5	N13	GPIO

Note:

1. GPIO with 5V tolerance are indicated by (5V).

2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB2	11	GPIO	PB3	12	GPIO
PB4	13	GPIO	PB5	14	GPIO
PB6	15	GPIO	VSS	16 32 59 83	Ground
PC0	18	GPIO (5V)	PC1	19	GPIO (5V)
PC2	20	GPIO (5V)	PC3	21	GPIO (5V)
PC4	22	GPIO	PC5	23	GPIO
PB7	24	GPIO	PB8	25	GPIO
PA7	26	GPIO	PA8	27	GPIO
PA9	28	GPIO	PA10	29	GPIO
PA11	30	GPIO	PA12	33	GPIO (5V)
PA13	34	GPIO (5V)	PA14	35	GPIO
RESETn	36	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB9	37	GPIO (5V)
PB10	38	GPIO (5V)	PB11	39	GPIO
PB12	40	GPIO	AVDD	41	Analog power supply.
PB13	42	GPIO	PB14	43	GPIO
PD0	45	GPIO (5V)	PD1	46	GPIO
PD2	47	GPIO (5V)	PD3	48	GPIO
PD4	49	GPIO	PD5	50	GPIO
PD6	51	GPIO	PD7	52	GPIO
PD8	53	GPIO	PC7	54	GPIO
VREGVSS	55	Voltage regulator VSS	VREGSW	56	DCDC regulator switching node
VREGVDD	57	Voltage regulator VDD input	DVDD	58	Digital power supply.
DECOUPLE	60	Decouple output for on-chip voltage regulator. An external decoupling ca- pacitor is required at this pin.	PE1	61	GPIO (5V)
PE2	62	GPIO	PE3	63	GPIO
PE4	64	GPIO	PE5	65	GPIO
PE6	66	GPIO	PE7	67	GPIO
PC8	68	GPIO (5V)	PC9	69	GPIO (5V)
PC10	70	GPIO (5V)	PC11	71	GPIO (5V)
VREGI	72	Input to 5 V regulator.	VREGO	73	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs
PF10	74	GPIO (5V)	PF11	75	GPIO (5V)
PF0	76	GPIO (5V)	PF1	77	GPIO (5V)

Figure 5.14. EFM32GG11B4xx in QFP64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Table 5.14. EFM32GG11B4xx in QFP64 Device Pinout
--

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	PA3	4	GPIO
PA4	5	GPIO	PA5	6	GPIO
IOVDD0	7 26 55	Digital IO power supply 0.	VSS	8 22 56	Ground
PB3	9	GPIO	PB4	10	GPIO
PB5	11	GPIO	PB6	12	GPIO

GPIO Name	Pin Alternate Functionality / Description					
	Analog	EBI	Timers	Communication	Other	
PB13	BUSAY BUSBX HFXTAL_P		TIM6_CC0 #5 WTIM1_CC0 #0 PCNT2_S0IN #2	US0_CLK #4 US1_CTS #5 US5_CS #0 LEU0_TX #1	CMU_CLKI0 #3 PRS_CH7 #0	
PB14	BUSBY BUSAX HFXTAL_N		TIM6_CC1 #5 WTIM1_CC1 #0 PCNT2_S1IN #2	US0_CS #4 US1_RTS #5 US5_CTS #0 LEU0_RX #1	PRS_CH6 #1	
PD1	VDAC0_OUT1ALT / OPA1_OUTALT #4 BUSADC0Y BU- SADC0X OPA3_OUT	EBI_A05 #1 EBI_A14 #3	TIM4_CDTI1 TIM0_CC0 #2 TIM6_CC0 #6 WTIM1_CC3 #0 PCNT2_S1IN #0	CAN0_TX #2 US1_RX #1	DBG_SWO #2	
PD6	BUSADC0Y BU- SADC0X ADC0_EXTP VDAC0_EXT ADC1_EXTP OPA1_P	EBI_A10 #1 EBI_A19 #3	TIM1_CC0 #4 TIM6_CC2 #7 WTIM0_CDTI2 #4 WTIM1_CC0 #2 LE- TIM0_OUT0 #0 PCNT0_S0IN #3	US0_RTS #5 US1_RX #2 US2_CTS #5 US3_CTS #2 U0_RTS #5 I2C0_SDA #1	CMU_CLK2 #2 LES_ALTEX0 PRS_CH5 #2 ACMP0_O #2 ETM_TD0 #0	

8. BGA120 Package Specifications

8.1 BGA120 Package Dimensions

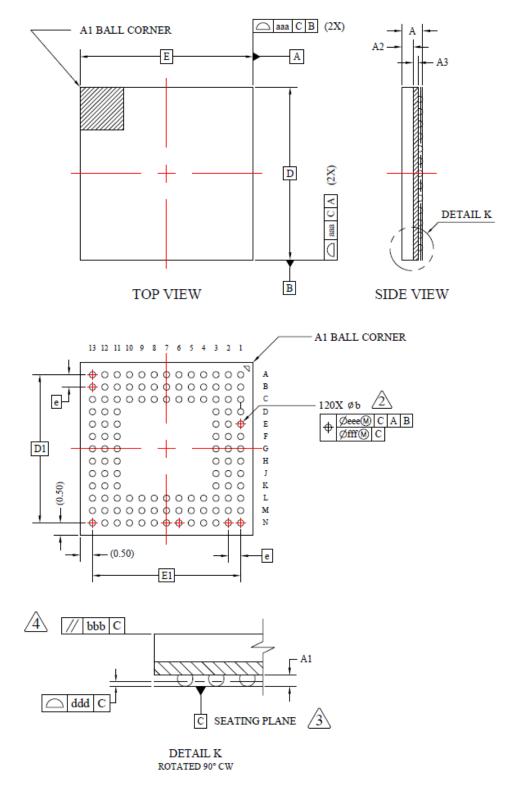


Figure 8.1. BGA120 Package Drawing

Figure 8.3. BGA120 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

11. TQFP64 Package Specifications

11.1 TQFP64 Package Dimensions

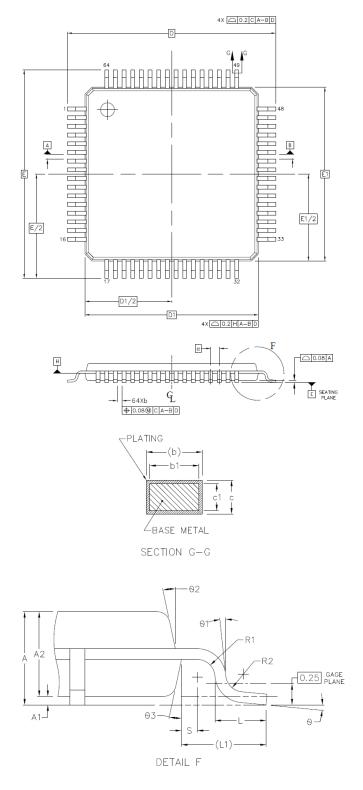


Figure 11.1. TQFP64 Package Drawing

Dimension	Min	Тур	Мах		
A	0.70	0.75	0.80		
A1	0.00	_	0.05		
b	0.20	0.25	0.30		
A3	0.203 REF				
D	9.00 BSC				
е	0.50 BSC				
E	9.00 BSC				
D2	7.10		7.30		
E2	7.10	7.20	7.30		
L	0.40	0.45	0.50		
L1	0.00	_	0.10		
ааа	0.10				
bbb	0.10				
ссс	0.10				
ddd	0.05				
еее	0.08				
Note:					

Table 12.1. QFN64 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.