

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b840f1024gm64-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Timers/Counters

- 7× 16-bit Timer/Counter
 - 3 + 4 Compare/Capture/PWM channels (4 + 4 on one timer instance)
 - Dead-Time Insertion on several timer instances
- 4× 32-bit Timer/Counter
- 32-bit Real Time Counter and Calendar (RTCC)
- 24-bit Real Time Counter (RTC)
- 32-bit Ultra Low Energy CRYOTIMER for periodic wakeup from any Energy Mode
- 2× 16-bit Low Energy Timer for waveform generation
- 3× 16-bit Pulse Counter with asynchronous operation
- 2× Watchdog Timer with dedicated RC oscillator

Low Energy Sensor Interface (LESENSE)

- Autonomous sensor monitoring in Deep Sleep Mode
- Wide range of sensors supported, including LC sensors and capacitive buttons
- Up to 16 inputs
- Ultra efficient Power-on Reset and Brown-Out Detector
- Debug Interface
 - 2-pin Serial Wire Debug interface
 - 1-pin Serial Wire Viewer
 - 4-pin JTAG interface
 - Embedded Trace Macrocell (ETM)

Pre-Programmed USB/UART Bootloader

Wide Operating Range

- 1.8 V to 3.8 V single power supply
- Integrated DC-DC, down to 1.8 V output with up to 200 mA load current for system
- Standard (-40 $^\circ C$ to 85 $^\circ C$ $T_{AMB})$ and Extended (-40 $^\circ C$ to 125 $^\circ C$ $T_J)$ temperature grades available
- Packages
 - QFN64 (9x9 mm)
 - TQFP64 (10x10 mm)
 - TQFP100 (14x14 mm)
 - BGA112 (10x10 mm)
 - BGA120 (7x7 mm)
 - BGA152 (8x8 mm)
 - BGA192 (7x7mm)

5.	Pin Definitions	115
	5.1 EFM32GG11B8xx in BGA192 Device Pinout	.115
	5.2 EFM32GG11B8xx in BGA152 Device Pinout	.119
	5.3 EFM32GG11B8xx in BGA120 Device Pinout	.123
	5.4 EFM32GG11B5xx in BGA120 Device Pinout	.126
	5.5 EFM32GG11B4xx in BGA120 Device Pinout	129
	5.6 EFM32GG11B4xx in BGA112 Device Pinout	.132
	5.7 EFM32GG11B3xx in BGA112 Device Pinout	.135
	5.8 EFM32GG11B8xx in QFP100 Device Pinout	138
	5.9 EFM32GG11B5xx in QFP100 Device Pinout	141
	5.10 EFM32GG11B4xx in QFP100 Device Pinout	144
	5.11 EFM32GG11B3xx in QFP100 Device Pinout	147
	5.12 EFM32GG11B8xx in QFP64 Device Pinout	150
	5.13 EFM32GG11B5xx in QFP64 Device Pinout	152
	5.14 EFM32GG11B4xx in QFP64 Device Pinout	154
	5.15 EFM32GG11B1xx in QFP64 Device Pinout	156
	5.16 EFM32GG11B8xx in QFN64 Device Pinout	158
	5.17 EFM32GG11B5xx in QFN64 Device Pinout	.160
	5.18 EFM32GG11B4xx in QFN64 Device Pinout	.162
	5.19 EFM32GG11B1xx in QFN64 Device Pinout	164
	5.20 GPIO Functionality Table	166
	5.21 Alternate Functionality Overview	178
	5.22 Analog Port (APORT) Client Maps	211
6.	BGA192 Package Specifications	224
	6.1 BGA192 Package Dimensions	.224
	6.2 BGA192 PCB Land Pattern	226
	6.3 BGA192 Package Marking	228
7.	BGA152 Package Specifications	229
	7.1 BGA152 Package Dimensions	.229
	7.2 BGA152 PCB Land Pattern	231
	7.3 BGA152 Package Marking	233
8.	BGA120 Package Specifications	234
	8.1 BGA120 Package Dimensions	.234
		236
		238
9.	BGA112 Package Specifications	239
		.239

3.7 Security Features

3.7.1 GPCRC (General Purpose Cyclic Redundancy Check)

The GPCRC module implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the needs of the application.

3.7.2 Crypto Accelerator (CRYPTO)

The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. Giant Gecko Series 1 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2^m), and SHA-1 and SHA-2 (SHA-224 and SHA-256).

Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.

Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.

The CRYPTO module allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations.

3.7.3 True Random Number Generator (TRNG)

The TRNG module is a non-deterministic random number generator based on a full hardware solution. The TRNG is validated with NIST800-22 and AIS-31 test suites as well as being suitable for FIPS 140-2 certification (for the purposes of cryptographic key generation).

3.7.4 Security Management Unit (SMU)

The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and can optionally generate an interrupt.

3.8 Analog

3.8.1 Analog Port (APORT)

The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog modules on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs.

3.8.2 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold.

3.8.3 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential.

4.1.2.1 General Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating ambient tempera-	T _A	-G temperature grade	-40	25	85	°C
ture range ⁶		-I temperature grade	-40	25	125	°C
AVDD supply voltage ²	V _{AVDD}		1.8	3.3	3.8	V
VREGVDD operating supply	V _{VREGVDD}	DCDC in regulation	2.4	3.3	3.8	V
voltage ^{2 1}		DCDC in bypass, 50mA load	1.8	3.3	3.8	V
		DCDC not in use. DVDD external- ly shorted to VREGVDD	1.8	3.3	3.8	V
VREGVDD current	I _{VREGVDD}	DCDC in bypass, T ≤ 85 °C	_	_	200	mA
		DCDC in bypass, T > 85 °C	_	_	100	mA
DVDD operating supply volt- age	V _{DVDD}		1.62	_	V _{VREGVDD}	V
IOVDD operating supply volt- age	VIOVDD	All IOVDD pins ⁵	1.62	_	V _{VREGVDD}	V
DECOUPLE output capaci- tor ^{3 4}	C _{DECOUPLE}		0.75	1.0	2.75	μF
HFCORECLK frequency	f _{CORE}	VSCALE2, MODE = WS3	_	_	72	MHz
		VSCALE2, MODE = WS2	_	_	54	MHz
		VSCALE2, MODE = WS1	_	_	36	MHz
		VSCALE2, MODE = WS0	_	_	18	MHz
		VSCALE0, MODE = WS2	_	_	20	MHz
		VSCALE0, MODE = WS1	_	_	14	MHz
		VSCALE0, MODE = WS0	_	—	7	MHz
HFCLK frequency	f _{HFCLK}	VSCALE2	_	_	72	MHz
		VSCALE0	_	_	20	MHz
HFSRCCLK frequency	f _{HFSRCCLK}	VSCALE2	—	—	72	MHz
		VSCALE0	_	_	20	MHz
HFBUSCLK frequency	f _{HFBUSCLK}	VSCALE2	_	_	50	MHz
		VSCALE0	—	_	20	MHz
HFPERCLK frequency	f HFPERCLK	VSCALE2	—	_	50	MHz
		VSCALE0	—	_	20	MHz
HFPERBCLK frequency	fHFPERBCLK	VSCALE2	—	—	72	MHz
		VSCALE0	—	_	20	MHz
HFPERCCLK frequency	fHFPERCCLK	VSCALE2	—	_	50	MHz
		VSCALE0	_		20	MHz

Table 4.2. General Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Max load current	I _{LOAD_MAX}	Low noise (LN) mode, Heavy Drive ² , T \leq 85 °C	_	-	200	mA
		Low noise (LN) mode, Heavy Drive ² , T > 85 °C	_	-	100	mA
		Low noise (LN) mode, Medium Drive ²	_	-	100	mA
		Low noise (LN) mode, Light Drive ²	_	-	50	mA
		Low power (LP) mode, LPCMPBIASEMxx ³ = 0	_	-	75	μA
		Low power (LP) mode, LPCMPBIASEMxx ³ = 3		10	mA	
DCDC nominal output ca- pacitor ⁵	C _{DCDC}	25% tolerance	1	4.7	4.7	μF
DCDC nominal output induc- tor	L _{DCDC}	20% tolerance	4.7	4.7	4.7	μH
Resistance in Bypass mode	R _{BYP}		-	1.2	2.5	Ω

Note:

1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, V_{VREGVDD}.

- 2. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=15.
- 3. LPCMPBIASEMxx refers to either LPCMPBIASEM234H in the EMU_DCDCMISCCTRL register or LPCMPBIASEM01 in the EMU_DCDCLOEM01CFG register, depending on the energy mode.

4. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits.

5. Output voltage under/over-shoot and regulation are specified with C_{DCDC} 4.7 μF. Different settings for DCDCLNCOMPCTRL must be used if C_{DCDC} is lower than 4.7 μF. See Application Note AN0948 for details.

4.1.13 Voltage Monitor (VMON)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Supply current (including I_SENSE)	I _{VMON}	In EM0 or EM1, 1 supply moni- tored, T \leq 85 °C	_	6.0	TBD	μA
		In EM0 or EM1, 4 supplies monitored, T \leq 85 °C	—	14.9	TBD	μA
		In EM2, EM3 or EM4, 1 supply monitored and above threshold	—	62		nA
		In EM2, EM3 or EM4, 1 supply monitored and below threshold	—	62		nA
		In EM2, EM3 or EM4, 4 supplies monitored and all above threshold	_	99		nA
		In EM2, EM3 or EM4, 4 supplies monitored and all below threshold	—	99	_	nA
Loading of monitored supply	I _{SENSE}	In EM0 or EM1	_	2	_	μA
		In EM2, EM3 or EM4	_	2	_	nA
Threshold range	V _{VMON_RANGE}		1.62	_	3.4	V
Threshold step size	N _{VMON_STESP}	Coarse	_	200		mV
		Fine	_	20	_	mV
Response time	t _{VMON_RES}	Supply drops at 1V/µs rate	—	460	_	ns
Hysteresis	V _{VMON_HYST}		_	26	_	mV

Table 4.21. Voltage Monitor (VMON)

4.1.23 I2C

4.1.23.1 I2C Standard-mode (Sm)¹

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCL clock frequency ²	f _{SCL}		0	_	100	kHz
SCL clock low time	t _{LOW}		4.7	_	_	μs
SCL clock high time	t _{HIGH}		4	_	_	μs
SDA set-up time	t _{SU_DAT}		250	_	_	ns
SDA hold time ³	t _{HD_DAT}		100	_	3450	ns
Repeated START condition set-up time	t _{SU_STA}		4.7	_	_	μs
(Repeated) START condition hold time	t _{HD_STA}		4	_		μs
STOP condition set-up time	t _{SU_STO}		4	_		μs
Bus free time between a STOP and START condition	t _{BUF}		4.7	_	_	μs

Table 4.31. I2C Standard-mode (Sm)¹

Note:

1. For CLHR set to 0 in the I2Cn_CTRL register.

2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual.

3. The maximum SDA hold time (t_{HD DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW}).

EBI Read Enable Output Timing

Timing applies to both EBI_REn and EBI_NANDREn for all addressing modes and both polarities. Output timing for EBI_AD applies only to multiplexed addressing modes D8A24ALE and D16A16ALE. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output hold time, from trail- ing EBI_REn / EBI_NAN- DREn edge to EBI_AD, EBI_A, EBI_CSn, EBI_BLn invalid	t _{OH_REn}	IOVDD ≥ 1.62 V	-23 + (RDHOLD * ^t HFCOR- ECLK)	_	_	ns
		IOVDD ≥ 3.0 V	-13 + (RDHOLD * ^t HFCOR- ECLK)	_	_	ns
Output setup time, from EBI_AD, EBI_A, EBI_CSn, EBI_BLn valid to leading EBI_REn / EBI_NANDREn edge ¹	t _{OSU_REn}	IOVDD ≥ 1.62 V	-12 + (RDSETUP * t _{HFCOR-} ECLK)	_	_	ns
euge ·		IOVDD ≥ 3.0 V	-11 + (RDSETUP ^{* t} HFCOR- ECLK)	_	_	ns
EBI_REn pulse width ^{1 2}	twiDTH_REn	IOVDD ≥ 1.62 V	-6 + (MAX(1, RDSTRB) * t _{HFCOR-} ECLK)	_	_	ns
		IOVDD ≥ 3.0 V	-4 + (MAX(1, RDSTRB) * t _{HFCOR-} ECLK)	—	_	ns

Table 4.38. EBI Read Enable Output Timing

Note:

1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFRE=0. The leading edge of EBI_REn can be moved to the right by setting HALFRE=1. This decreases the length of t_{WIDTH_REn} and increases the length of t_{OSU_REn} by 1/2 * t_{HFCLKNODIV}.

2. When page mode is used, RDSTRB is replaced by RDPA for page hits.

EBI Ready/Wait Timing Requirements

Timing applies to both EBI_REn and EBI_WEn for all addressing modes and both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.

Table 4.41.	EBI Ready/Wait	Timing Re	equirements
-------------	----------------	-----------	-------------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Setup time, from EBI_ARDY valid to trailing EBI_REn, EBI_WEn edge	tsu_ardy	IOVDD ≥ 1.62 V	55 + (3 * t _{HFCOR-} ЕСLК)	_	_	ns
		IOVDD ≥ 3.0 V	36 + (3 * t _{HFCOR-} _{ECLK})	_	_	ns
Hold time, from trailing EBI_REn, EBI_WEn edge to EBI_ARDY invalid	th_ardy	IOVDD ≥ 1.62 V	-9	_	_	ns

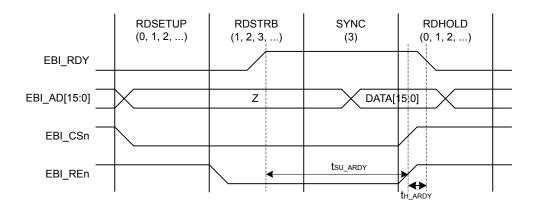


Figure 4.8. EBI Ready/Wait Timing Requirements

RMII Receive Timing

Timing is specified with 3.0 V \leq IOVDD \leq 3.8 V, 25 pF external loading, and slew rate for all GPIO set to 6 unless otherwise indicated.

Table 4.45.	Ethernet	RMII	Receive	Timing
-------------	----------	------	---------	--------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
REF_CLK frequency	F _{REF_CLK}	Output slew rate set to 7	—	50	—	MHz
REF_CLK duty cycle	DC _{REF_CLK}		35	—	65	%
Setup time, RXD[1:0], CRS_DV, RX_ER valid to REF_CLK	t _{SU}		4	_	_	ns
Hold time, REF_CLK to RXD[1:0], CRS_DV, RX_ER change	t _{HD}		2	_	_	ns

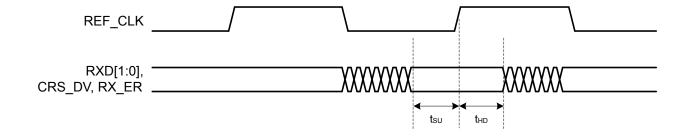


Figure 4.12. Ethernet RMII Receive Timing

4.2.2 DC-DC Converter

Default test conditions: CCM mode, LDCDC = 4.7 µH, CDCDC = 4.7 µF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz

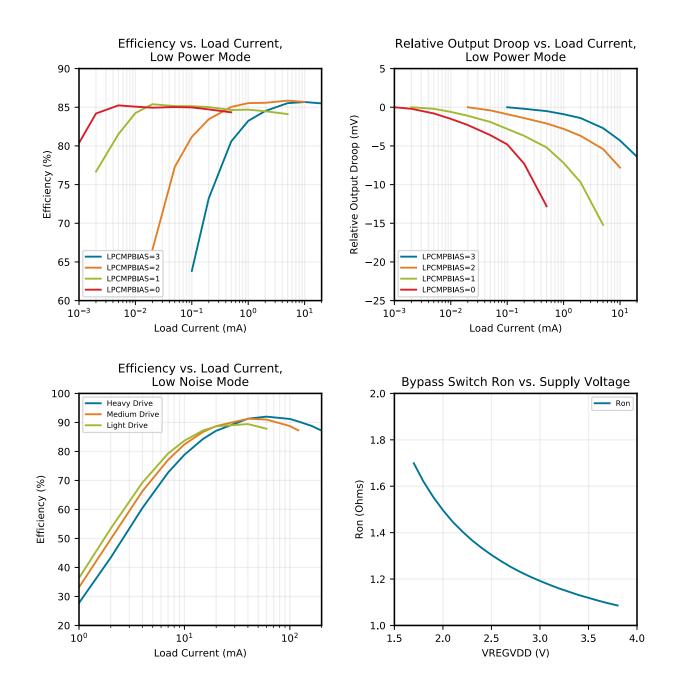


Figure 4.29. DC-DC Converter Typical Performance Characteristics

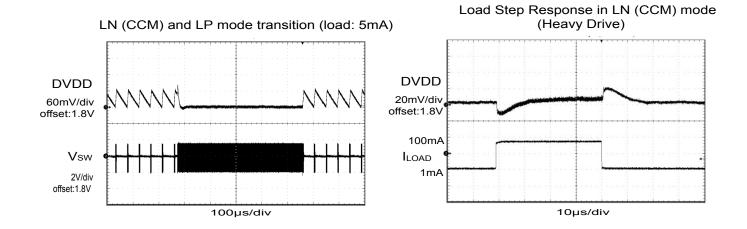
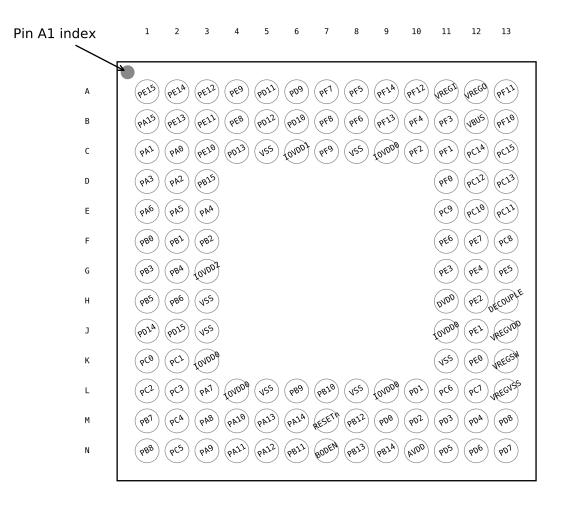



Figure 4.30. DC-DC Converter Transition Waveforms

Figure 5.3. EFM32GG11B8xx in BGA120 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Table 5.3. EFM32GG11B8xx in BGA120 Device Pinout
--

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PE15	A1	GPIO	PE14	A2	GPIO
PE12	A3	GPIO	PE9	A4	GPIO
PD11	A5	GPIO	PD9	A6	GPIO
PF7	A7	GPIO	PF5	A8	GPIO
PF14	A9	GPIO (5V)	PF12	A10	GPIO
VREGI	A11	Input to 5 V regulator.	VREGO	A12	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description	
PB2	11	GPIO	PB3	12	GPIO	
PB4	13	GPIO	PB5	14	GPIO	
PB6	15	GPIO	VSS	16 32 58 83	Ground	
PC0	18	GPIO (5V)	PC1	19	GPIO (5V)	
PC2	20	GPIO (5V)	PC3	21	GPIO (5V)	
PC4	22	GPIO	PC5	23	GPIO	
PB7	24	GPIO	PB8	25	GPIO	
PA7	26	GPIO	PA8	27	GPIO	
PA9	28	GPIO	PA10	29	GPIO	
PA11	30	GPIO	PA12	33	GPIO (5V)	
PA13	34	GPIO (5V)	PA14	35	GPIO	
RESETn	36	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB9	37	GPIO (5V)	
PB10	38	GPIO (5V)	PB11	39	GPIO	
PB12	40	GPIO	AVDD	41 45	Analog power supply.	
PB13	42	GPIO	PB14	43	GPIO	
PD0	46	GPIO (5V)	PD1	47	GPIO	
PD2	48	GPIO (5V)	PD3	49	GPIO	
PD4	50	GPIO	PD5	51	GPIO	
PD6	52	GPIO	PD7	53	GPIO	
PD8	54	GPIO	PC6	55	GPIO	
PC7	56	GPIO	DVDD	57	Digital power supply.	
DECOUPLE	59	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PE0	60	GPIO (5V)	
PE1	61	GPIO (5V)	PE2	62	GPIO	
PE3	63	GPIO	PE4	64	GPIO	
PE5	65	GPIO	PE6	66	GPIO	
PE7	67	GPIO	PC8	68	GPIO (5V)	
PC9	69	GPIO (5V)	PC10	70	GPIO (5V)	
PC11	71	GPIO (5V)	PC12	72	GPIO (5V)	
PC13	73	GPIO (5V)	PC14	74	GPIO (5V)	
PC15	75	GPIO (5V)	PF0	76	GPIO (5V)	
PF1	77	GPIO (5V)	PF2	78	GPIO	

Alternate LOCATION		TION			
Functionality	0 - 3	4 - 7	Description		
	0: PF2		Debug-interface Serial Wire viewer Output.		
DBG_SWO	1: PC15 2: PD1 3: PD2		Note that this function is not enabled after reset, and must be enabled by software to be used.		
	0: PF5		Debug-interface JTAG Test Data In.		
DBG_TDI			Note that this function becomes available after the first valid JTAG command is received, and has a built-in pull up when JTAG is active.		
	0: PF2		Debug-interface JTAG Test Data Out.		
DBG_TDO			Note that this function becomes available after the first valid JTAG command is received.		
EBI_A00	0: PA12 1: PB9 2: PE0 3: PC5		External Bus Interface (EBI) address output pin 00.		
EBI_A01	0: PA13 1: PB10 2: PE1 3: PA7		External Bus Interface (EBI) address output pin 01.		
EBI_A02	0: PA14 1: PB11 2: PI0 3: PA8		External Bus Interface (EBI) address output pin 02.		
EBI_A03	0: PB9 1: PB12 2: PI1 3: PA9		External Bus Interface (EBI) address output pin 03.		
EBI_A04	0: PB10 1: PD0 2: PI2 3: PA10		External Bus Interface (EBI) address output pin 04.		
EBI_A05	0: PC6 1: PD1 2: PI3 3: PA11		External Bus Interface (EBI) address output pin 05.		
EBI_A06	0: PC7 1: PD2 2: PI4 3: PA12		External Bus Interface (EBI) address output pin 06.		
EBI_A07	0: PE0 1: PD3 2: PI5 3: PA13		External Bus Interface (EBI) address output pin 07.		
EBI_A08	0: PE1 1: PD4 2: PC8 3: PA14		External Bus Interface (EBI) address output pin 08.		
EBI_A09	0: PE2 1: PD5 2: PC9 3: PB9		External Bus Interface (EBI) address output pin 09.		

Alternate	LOCA	TION		
Functionality	0 - 3	4 - 7	Description	
EBI_A10	0: PE3 1: PD6 2: PC10 3: PB10		External Bus Interface (EBI) address output pin 10.	
EBI_A11	0: PE4 1: PD7 2: PI6 3: PB11		External Bus Interface (EBI) address output pin 11.	
EBI_A12	0: PE5 1: PD8 2: PI7 3: PB12		External Bus Interface (EBI) address output pin 12.	
EBI_A13	0: PE6 1: PC7 2: PI8 3: PD0		External Bus Interface (EBI) address output pin 13.	
EBI_A14	0: PE7 1: PE2 2: PI9 3: PD1		External Bus Interface (EBI) address output pin 14.	
EBI_A15	0: PC8 1: PE3 2: PI10 3: PD2		External Bus Interface (EBI) address output pin 15.	
EBI_A16	0: PB0 1: PE4 2: PH4 3: PD3		External Bus Interface (EBI) address output pin 16.	
EBI_A17	0: PB1 1: PE5 2: PH5 3: PD4		External Bus Interface (EBI) address output pin 17.	
EBI_A18	0: PB2 1: PE6 2: PH6 3: PD5		External Bus Interface (EBI) address output pin 18.	
EBI_A19	0: PB3 1: PE7 2: PH7 3: PD6		External Bus Interface (EBI) address output pin 19.	
EBI_A20	0: PB4 1: PC8 2: PH8 3: PD7		External Bus Interface (EBI) address output pin 20.	
EBI_A21	0: PB5 1: PC9 2: PH9 3: PC7		External Bus Interface (EBI) address output pin 21.	
EBI_A22	0: PB6 1: PC10 2: PH10 3: PE4		External Bus Interface (EBI) address output pin 22.	

7. BGA152 Package Specifications

7.1 BGA152 Package Dimensions

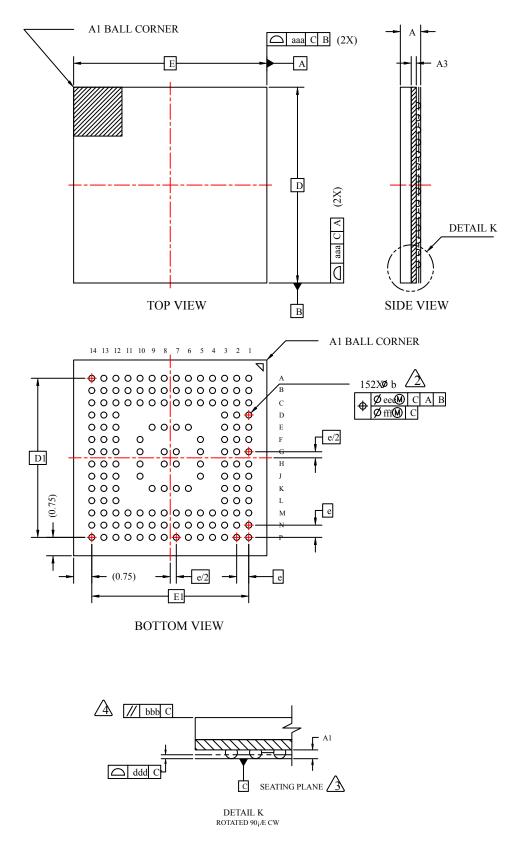


Figure 7.1. BGA152 Package Drawing

Table 9.2. BGA112 PCB Land Pattern Dimensions

Min	Nom	Мах		
	0.45			
8.00				
8.00				
	0.8			
	0.8			
	Min	0.45 8.00 8.00 0.8		

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.

3. This Land Pattern Design is based on the IPC-7351 guidelines.

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

6. The stencil thickness should be 0.125 mm (5 mils).

7. The ratio of stencil aperture to land pad size should be 1:1.

8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

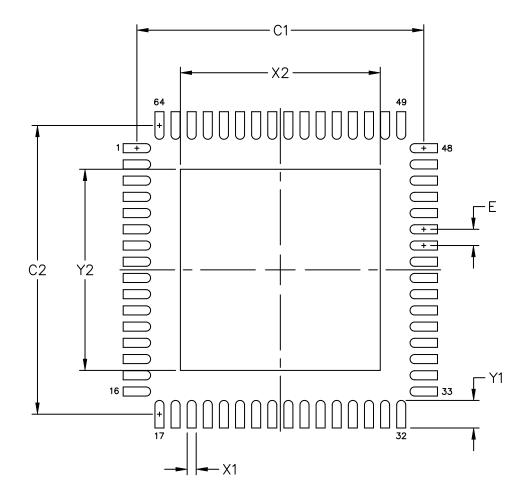


Figure 12.2. QFN64 PCB Land Pattern Drawing

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com