

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	95
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	120-VFBGA
Supplier Device Package	120-BGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b840f1024il120-br

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.7 Security Features

3.7.1 GPCRC (General Purpose Cyclic Redundancy Check)

The GPCRC module implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the needs of the application.

3.7.2 Crypto Accelerator (CRYPTO)

The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. Giant Gecko Series 1 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2^m), and SHA-1 and SHA-2 (SHA-224 and SHA-256).

Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.

Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.

The CRYPTO module allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations.

3.7.3 True Random Number Generator (TRNG)

The TRNG module is a non-deterministic random number generator based on a full hardware solution. The TRNG is validated with NIST800-22 and AIS-31 test suites as well as being suitable for FIPS 140-2 certification (for the purposes of cryptographic key generation).

3.7.4 Security Management Unit (SMU)

The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and can optionally generate an interrupt.

3.8 Analog

3.8.1 Analog Port (APORT)

The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog modules on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs.

3.8.2 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold.

3.8.3 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential.

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:

- Typical values are based on T_{AMB} =25 °C and V_{DD} = 3.3 V, by production test and/or technology characterization.
- Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise.

Refer to 4.1.2.1 General Operating Conditions for more details about operational supply and temperature limits.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current consumption in EM2 mode, with voltage scaling	I _{EM2_VS}	2_VS Full 512 kB RAM retention and RTCC running from LFXO		3.9	_	μA
enabled		Full 512 kB RAM retention and RTCC running from LFRCO	—	4.3	_	μA
		16 kB (1 bank) RAM retention and RTCC running from LFRCO ²	_	2.8	TBD	μA
Current consumption in EM3 mode, with voltage scaling enabled	I _{EM3_VS}	Full 512 kB RAM retention and CRYOTIMER running from ULFR- CO	_	3.6	TBD	μA
Current consumption in EM4H mode, with voltage	I _{EM4H_VS}	128 byte RAM retention, RTCC running from LFXO	_	1.08	_	μA
scaling enabled		128 byte RAM retention, CRYO- TIMER running from ULFRCO	—	0.69	_	μA
		128 byte RAM retention, no RTCC	_	0.69	TBD	μA
Current consumption in EM4S mode	I _{EM4S}	No RAM retention, no RTCC	_	0.16	TBD	μA
ripheral power domain 1, EM2/3		Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled ¹	_	0.68	_	μA
Current consumption of pe- ripheral power domain 2, with voltage scaling enabled	I _{PD2_VS}	Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled ¹	_	0.28	_	μA

Note:

1. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.4 EM2 and EM3 Power Domains for a list of the peripherals in each power domain.

2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
ADC clock frequency	f _{ADCCLK}		—	—	16	MHz
Throughput rate	f ADCRATE		_	_	1	Msps
Conversion time ¹	t _{ADCCONV}	6 bit	—	7	_	cycles
		8 bit	_	9	_	cycles
		12 bit	—	13		cycles
Startup time of reference generator and ADC core	t _{ADCSTART}	WARMUPMODE ⁴ = NORMAL	—	_	5	μs
		WARMUPMODE ⁴ = KEEPIN- STANDBY	_	_	2	μs
		WARMUPMODE ⁴ = KEEPINSLO- WACC	_	_	1	μs
SNDR at 1Msps and f _{IN} = 10kHz	SNDR _{ADC}	Internal reference ⁷ , differential measurement	TBD	67	_	dB
		External reference ⁶ , differential measurement	_	68	_	dB
Spurious-free dynamic range (SFDR)	SFDR _{ADC}	1 MSamples/s, 10 kHz full-scale sine wave	_	75	_	dB
Differential non-linearity (DNL)	DNL _{ADC}	12 bit resolution, No missing co- des	TBD		TBD	LSB
Integral non-linearity (INL), End point method	INL _{ADC}	12 bit resolution	TBD		TBD	LSB
Offset error	VADCOFFSETERR		TBD	0	TBD	LSB
Gain error in ADC	VADCGAIN	Using internal reference	_	-0.2	TBD	%
		Using external reference	_	-1	—	%
Temperature sensor slope	V _{TS_SLOPE}		_	-1.84	_	mV/°C

Note:

1. Derived from ADCCLK.

2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL.

3. In ADCn_BIASPROG register.

4. In ADCn CNTL register.

5. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on EMU PWRCTRL ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin.

6. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential input range with this configuration is ± 1.25 V.

7. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum value is production-tested using sine wave input at 1.5 dB lower than full scale.

4.1.17 Current Digital to Analog Converter (IDAC)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Number of ranges	N _{IDAC_RANGES}		_	4	_	ranges
Output current	I _{IDAC_OUT}	RANGSEL ¹ = RANGE0	0.05	_	1.6	μA
		RANGSEL ¹ = RANGE1	1.6	_	4.7	μA
		RANGSEL ¹ = RANGE2	0.5	_	16	μA
		RANGSEL ¹ = RANGE3	2	_	64	μA
Linear steps within each range	N _{IDAC_STEPS}		_	32	_	steps
Step size	SS _{IDAC}	RANGSEL ¹ = RANGE0	_	50	_	nA
		RANGSEL ¹ = RANGE1	_	100	_	nA
		RANGSEL ¹ = RANGE2	_	500	_	nA
		RANGSEL ¹ = RANGE3	_	2	_	μA
Total accuracy, STEPSEL ¹ = 0x10	ACCIDAC	EM0 or EM1, AVDD=3.3 V, T = 25 °C	TBD	_	TBD	%
		EM0 or EM1, Across operating temperature range	TBD	_	TBD	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE0, AVDD=3.3 V, T = 25 °C	_	-2.7	_	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE1, AVDD=3.3 V, T = 25 °C	_	-2.5	_	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE2, AVDD=3.3 V, T = 25 °C	_	-1.5	_	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE3, AVDD=3.3 V, T = 25 °C	_	-1.0	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE0, AVDD=3.3 V, T = 25 °C	_	-1.1	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE1, AVDD=3.3 V, T = 25 °C	_	-1.1	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE2, AVDD=3.3 V, T = 25 °C	_	-0.9	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE3, AVDD=3.3 V, T = 25 °C	_	-0.9	-	%

Table 4.25. Current Digital to Analog Converter (IDAC)

4.1.19 Operational Amplifier (OPAMP)

Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAIN-OUTEN = 1, C_{LOAD} = 75 pF with OUTSCALE = 0, or C_{LOAD} = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as specified in table footnotes^{8 1}.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply voltage (from AVDD)	V _{OPA}	HCMDIS = 0, Rail-to-rail input range	2	_	3.8	V
		HCMDIS = 1	1.62	_	3.8	V
Input voltage	V _{IN}	HCMDIS = 0, Rail-to-rail input range	V _{VSS}	_	V _{OPA}	V
		HCMDIS = 1	V _{VSS}		V _{OPA} -1.2	V
Input impedance	R _{IN}		100		_	MΩ
Output voltage	V _{OUT}		V _{VSS}		V _{OPA}	V
Load capacitance ²	C _{LOAD}	OUTSCALE = 0	_		75	pF
		OUTSCALE = 1	_		37.5	pF
Output impedance	R _{OUT}	DRIVESTRENGTH = 2 or 3, 0.4 V \leq V _{OUT} \leq V _{OPA} - 0.4 V, -8 mA < I _{OUT} < 8 mA, Buffer connection, Full supply range	_	0.25	-	Ω
		DRIVESTRENGTH = 0 or 1, 0.4 V \leq V _{OUT} \leq V _{OPA} - 0.4 V, -400 µA $<$ I _{OUT} $<$ 400 µA, Buffer connection, Full supply range	_	0.6	_	Ω
		DRIVESTRENGTH = 2 or 3, 0.1 V $\leq V_{OUT} \leq V_{OPA}$ - 0.1 V, -2 mA < $I_{OUT} < 2$ mA, Buffer connection, Full supply range	_	0.4	-	Ω
		DRIVESTRENGTH = 0 or 1, 0.1 V \leq V _{OUT} \leq V _{OPA} - 0.1 V, -100 µA $<$ I _{OUT} $<$ 100 µA, Buffer connection, Full supply range	_	1	_	Ω
Internal closed-loop gain	G _{CL}	Buffer connection	TBD	1	TBD	-
		3x Gain connection	TBD	2.99	TBD	-
		16x Gain connection	TBD	15.7	TBD	-
Active current ⁴	I _{OPA}	DRIVESTRENGTH = 3, OUT- SCALE = 0	_	580	_	μA
		DRIVESTRENGTH = 2, OUT- SCALE = 0	_	176	_	μA
		DRIVESTRENGTH = 1, OUT- SCALE = 0	_	13	—	μA
		DRIVESTRENGTH = 0, OUT- SCALE = 0	_	4.7	_	μA

Table 4.27. Operational Amplifier (OPAMP)

4.1.21 Pulse Counter (PCNT)

Table 4.29. Pulse Counter (PCNT)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input frequency	F _{IN}	Asynchronous Single and Quad- rature Modes	—	—	20	MHz
		Sampled Modes with Debounce filter set to 0.			8	kHz

4.1.22 Analog Port (APORT)

Table 4.30. Analog Port (APORT)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Supply current ^{2 1}	I _{APORT}	Operation in EM0/EM1	—	7	—	μA
		Operation in EM2/EM3	—	915	_	nA

Note:

1. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. periodic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of the requests by the specified continuous current number.

2. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in reported module currents. Additional peripherals requesting access to APORT do not incur further current.

EBI Ready/Wait Timing Requirements

Timing applies to both EBI_REn and EBI_WEn for all addressing modes and both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.

Table 4.41.	EBI Ready/Wait	Timing Re	equirements
-------------	----------------	-----------	-------------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Setup time, from EBI_ARDY valid to trailing EBI_REn, EBI_WEn edge	tsu_ardy	IOVDD ≥ 1.62 V	55 + (3 * t _{HFCOR-} ЕСLК)	_	_	ns
		IOVDD ≥ 3.0 V	36 + (3 * t _{HFCOR-} _{ECLK})	_	_	ns
Hold time, from trailing EBI_REn, EBI_WEn edge to EBI_ARDY invalid	th_ardy	IOVDD ≥ 1.62 V	-9	_	_	ns

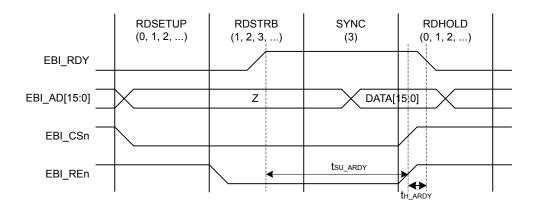


Figure 4.8. EBI Ready/Wait Timing Requirements

5. Pin Definitions

5.1 EFM32GG11B8xx in BGA192 Device Pinout

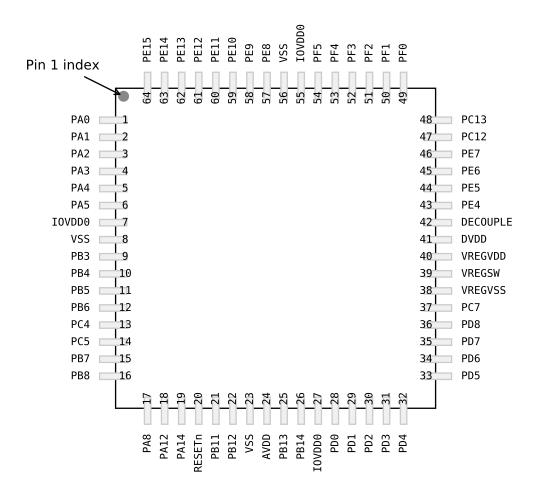

Pin A1 index	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	*															
А	PALS	PE15	PE14	PE13	PE12	PE1	PE10	PE9	PE8	619	610	PE14	BUS	PET]	PEJ0	PF0
В	049	601)	1010	609	PF9	PF8	PFT	640	PII)	618	PF5	PF13	PF3	PF2	667	VREGO
С	(Ag	1012	P014	1013	PI13	PI14	PI13	PI12	PI19	(TI)	PF15	PF12	PFA	PC15	¢C14	VREGI
D	PAZ	609	P015											PC13	PC12	PC17
E	PA3	602	pGI											PC70	603	e ^{C8}
F	PA9	PGA	663			TONDS;	I OVDD'	159	(NC).	LOVDDe	tovobe)		619	pIA	P13
G	PAS	609	605							LOVODE				612	PI	P10
н	PAG	609	pGT			(159)	159 (159)	(155)	(155)	(159)	(159)			PES	PE0	PET
J	pG1}	PG19	PG9			(155)	155	(155)	(155)	155	(159)			PE3	PEA	ECOUPLE
к	pG14	pG13	pG12			TONDOG	Lovopo	(159)	(15 ⁵).	LOVDDe	LOVDDe)		PEL	PE2	E DVDD
L	613	BIJ	PB0			TONDOG.	revoge	(59)	(IS).	rovode.	ronde)		PEO	(T)	REGUDD
м	() (PBJ)	682	PB3			\$C	y	\bigcirc	\bigcirc	y	y			609	FONS	REGSW
Ν	pB4	PB5	689											605	pDA	TEGNES
Р	() (0)q	603	603	849	617	6213	689	B12	042	PHS	PH8	0H1]	PH13	009	603	1908) 141-
R	() (PBT)	63	(C)	() (PA9)	RODEN	ET CET	6819	640	(H3)	6H6	PH9	6417	6H14	PH15	602	(TOG)
т	683	6CA	(FAG)	P. PAL	BOP .	RES 14	pB1	PHJ	pHA	PH)	e.	10. 1813	B14	ku b	607	609
	60	QC)	9r	PK-	PK-	PK-	60.	W .	<u>N</u>	<u>en</u>	642	60.	60.	Pur	60	60

Figure 5.1. EFM32GG11B8xx in BGA192 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA15	A1	GPIO	PE15	A2	GPIO
PE14	A3	GPIO	PE13	A4	GPIO
PE12	A5	GPIO	PE11	A6	GPIO
PE10	A7	GPIO	PE9	A8	GPIO
PE8	A9	GPIO	PI9	A10	GPIO (5V)
PI6	A11	GPIO (5V)	PF14	A12	GPIO (5V)

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB2	11	GPIO	PB3	12	GPIO
PB4	13	GPIO	PB5	14	GPIO
PB6	15	GPIO	VSS	16 32 59 83	Ground
PC0	18	GPIO (5V)	PC1	19	GPIO (5V)
PC2	20	GPIO (5V)	PC3	21	GPIO (5V)
PC4	22	GPIO	PC5	23	GPIO
PB7	24	GPIO	PB8	25	GPIO
PA7	26	GPIO	PA8	27	GPIO
PA9	28	GPIO	PA10	29	GPIO
PA11	30	GPIO	PA12	33	GPIO (5V)
PA13	34	GPIO (5V)	PA14	35	GPIO
RESETn	36	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB9	37	GPIO (5V)
PB10	38	GPIO (5V)	PB11	39	GPIO
PB12	40	GPIO	AVDD	41	Analog power supply.
PB13	42	GPIO	PB14	43	GPIO
PD0	45	GPIO (5V)	PD1	46	GPIO
PD2	47	GPIO (5V)	PD3	48	GPIO
PD4	49	GPIO	PD5	50	GPIO
PD6	51	GPIO	PD7	52	GPIO
PD8	53	GPIO	PC7	54	GPIO
VREGVSS	55	Voltage regulator VSS	VREGSW	56	DCDC regulator switching node
VREGVDD	57	Voltage regulator VDD input	DVDD	58	Digital power supply.
DECOUPLE	60	Decouple output for on-chip voltage regulator. An external decoupling ca- pacitor is required at this pin.	PE1	61	GPIO (5V)
PE2	62	GPIO	PE3	63	GPIO
PE4	64	GPIO	PE5	65	GPIO
PE6	66	GPIO	PE7	67	GPIO
PC8	68	GPIO (5V)	PC9	69	GPIO (5V)
PC10	70	GPIO (5V)	PC11	71	GPIO (5V)
VREGI	72	Input to 5 V regulator.	VREGO	73	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs
PF10	74	GPIO (5V)	PF11	75	GPIO (5V)
PF0	76	GPIO (5V)	PF1	77	GPIO (5V)

Figure 5.13. EFM32GG11B5xx in QFP64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	PA3	4	GPIO
PA4	5	GPIO	PA5	6	GPIO
IOVDD0	7 27 55	Digital IO power supply 0.	VSS	8 23 56	Ground
PB3	9	GPIO	PB4	10	GPIO
PB5	11	GPIO	PB6	12	GPIO

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PC4	13	GPIO	PC5	14	GPIO
PB7	15	GPIO	PB8	16	GPIO
PA8	17	GPIO	PA9	18	GPIO
PA10	19	GPIO	RESETn	20	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	21	GPIO	AVDD	23 27	Analog power supply.
PB13	24	GPIO	PB14	25	GPIO
PD0	28	GPIO (5V)	PD1	29	GPIO
PD2	30	GPIO (5V)	PD3	31	GPIO
PD4	32	GPIO	PD5	33	GPIO
PD6	34	GPIO	PD7	35	GPIO
PD8	36	GPIO	PC6	37	GPIO
PC7	38	GPIO	DVDD	39	Digital power supply.
DECOUPLE	40	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PC8	41	GPIO (5V)
PC9	42	GPIO (5V)	PC10	43	GPIO (5V)
PC11	44	GPIO (5V)	PC12	45	GPIO (5V)
PC13	46	GPIO (5V)	PC14	47	GPIO (5V)
PC15	48	GPIO (5V)	PF0	49	GPIO (5V)
PF1	50	GPIO (5V)	PF2	51	GPIO
PF3	52	GPIO	PF4	53	GPIO
PF5	54	GPIO	PE8	57	GPIO
PE9	58	GPIO	PE10	59	GPIO
PE11	60	GPIO	PE12	61	GPIO
PE13	62	GPIO	PE14	63	GPIO
PE15	64	GPIO			

1. GPIO with 5V tolerance are indicated by (5V).

Alternate	LOCA	TION	
Functionality	0 - 3	4 - 7	Description
	0: PF2		Debug-interface Serial Wire viewer Output.
DBG_SWO	1: PC15 2: PD1 3: PD2		Note that this function is not enabled after reset, and must be enabled by software to be used.
	0: PF5		Debug-interface JTAG Test Data In.
DBG_TDI			Note that this function becomes available after the first valid JTAG command is received, and has a built-in pull up when JTAG is active.
	0: PF2		Debug-interface JTAG Test Data Out.
DBG_TDO			Note that this function becomes available after the first valid JTAG command is received.
EBI_A00	0: PA12 1: PB9 2: PE0 3: PC5		External Bus Interface (EBI) address output pin 00.
EBI_A01	0: PA13 1: PB10 2: PE1 3: PA7		External Bus Interface (EBI) address output pin 01.
EBI_A02	0: PA14 1: PB11 2: PI0 3: PA8		External Bus Interface (EBI) address output pin 02.
EBI_A03	0: PB9 1: PB12 2: PI1 3: PA9		External Bus Interface (EBI) address output pin 03.
EBI_A04	0: PB10 1: PD0 2: PI2 3: PA10		External Bus Interface (EBI) address output pin 04.
EBI_A05	0: PC6 1: PD1 2: PI3 3: PA11		External Bus Interface (EBI) address output pin 05.
EBI_A06	0: PC7 1: PD2 2: PI4 3: PA12		External Bus Interface (EBI) address output pin 06.
EBI_A07	0: PE0 1: PD3 2: PI5 3: PA13		External Bus Interface (EBI) address output pin 07.
EBI_A08	0: PE1 1: PD4 2: PC8 3: PA14		External Bus Interface (EBI) address output pin 08.
EBI_A09	0: PE2 1: PD5 2: PC9 3: PB9		External Bus Interface (EBI) address output pin 09.

Alternate	LOC	ATION	
Functionality	0 - 3	4 - 7	Description
GPIO_EM4WU7	0: PB11		Pin can be used to wake the system up from EM4
GPIO_EM4WU8	0: PF8		Pin can be used to wake the system up from EM4
GPIO_EM4WU9	0: PE10		Pin can be used to wake the system up from EM4
HFXTAL_N	0: PB14		High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	0: PB13		High Frequency Crystal positive pin.
I2C0_SCL	0: PA1 1: PD7 2: PC7 3: PD15	4: PC1 5: PF1 6: PE13 7: PE5	I2C0 Serial Clock Line input / output.
I2C0_SDA	0: PA0 1: PD6 2: PC6 3: PD14	4: PC0 5: PF0 6: PE12 7: PE4	I2C0 Serial Data input / output.
I2C1_SCL	0: PC5 1: PB12 2: PE1 3: PD5	4: PF2 5: PH12 6: PH14 7: PI3	I2C1 Serial Clock Line input / output.
I2C1_SDA	0: PC4 1: PB11 2: PE0 3: PD4	4: PC11 5: PH11 6: PH13 7: PI2	I2C1 Serial Data input / output.
I2C2_SCL	0: PF5 1: PC15 2: PF11 3: PF12	4: PF14 5: PF3 6: PC13 7: PI5	I2C2 Serial Clock Line input / output.
I2C2_SDA	0: PE8 1: PC14 2: PF10 3: PF4	4: PF13 5: PF15 6: PC12 7: PI4	I2C2 Serial Data input / output.
IDAC0_OUT	0: PB11		IDAC0 output.

Alternate	LOCA		
Functionality	0 - 3	4 - 7	Description
PRS_CH7	0: PB13 1: PA7 2: PE7		Peripheral Reflex System PRS, channel 7.
PRS_CH8	0: PA8 1: PA2 2: PE9		Peripheral Reflex System PRS, channel 8.
PRS_CH9	0: PA9 1: PA3 2: PB10		Peripheral Reflex System PRS, channel 9.
PRS_CH10	0: PA10 1: PC2 2: PD4		Peripheral Reflex System PRS, channel 10.
PRS_CH11	0: PA11 1: PC3 2: PD5		Peripheral Reflex System PRS, channel 11.
PRS_CH12	0: PA12 1: PB6 2: PD8		Peripheral Reflex System PRS, channel 12.
PRS_CH13	0: PA13 1: PB9 2: PE14		Peripheral Reflex System PRS, channel 13.
PRS_CH14	0: PA14 1: PC6 2: PE15		Peripheral Reflex System PRS, channel 14.
PRS_CH15	0: PA15 1: PC7 2: PF0		Peripheral Reflex System PRS, channel 15.
PRS_CH16	0: PA4 1: PB12 2: PE4		Peripheral Reflex System PRS, channel 16.
PRS_CH17	0: PA5 1: PB15 2: PE5		Peripheral Reflex System PRS, channel 17.
PRS_CH18	0: PB2 1: PC10 2: PC4		Peripheral Reflex System PRS, channel 18.
PRS_CH19	0: PB3 1: PC11 2: PC5		Peripheral Reflex System PRS, channel 19.

EFM32GG11 Family Data Sheet Pin Definitions

		_												_									_		_				_		_		
Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8	CH7	CH6	CH5	CH4	СНЗ	CH2	CH1	СНО
OP	DPA2_OUT																																
APORT1Y	BUSAY	PB15		PB13		PB11		PB9				PB5		PB3		PB1		PA15		PA13		PA11		PA9		PA7		PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12		PB10				PB6		PB4		PB2		PB0		PA14		PA12		PA10		PA8		PA6		PA4		PA2		PA0
APORT3Y	BUSCY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1		PE15		PE13		PE11		63d		PE7		PE5				PE1	
APORT4Y	BUSDY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				PEO
OP	A2_	P																															
APORT1X	BUSAX		PB14		PB12		PB10				PB6		PB4		PB2		PBO		PA14		PA12		PA10		PA8		PA6		PA4		PA2		PA0
APORT2X	BUSBX	PB15		PB13		PB11		PB9				PB5		PB3		PB1		PA15		PA13		PA11		PA9		PA7		PA5		PA3		PA1	
APORT3X	BUSCX		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				PEO
APORT4X	BUSDX	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5				PE1	
OP	A3_	N																															
APORT1Y	BUSAY	PB15		PB13		PB11		PB9				PB5		PB3		PB1		PA15		PA13		PA11		6A9		PA7		PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12		PB10				PB6		PB4		PB2		PB0		PA14		PA12		PA10		PA8		PA6		PA4		PA2		PA0
APORT3Y	BUSCY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1		PE15		PE13		PE11		63d		PE7		PE5				PE1	
APORT4Y	BUSDY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				PEO

EFM32GG11 Family Data Sheet Pin Definitions

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8	CH7	CH6	CH5	CH4	СНЗ	CH2	CH1	СНО
OP	OPA3_OUT																																
APORT1Y	BUSAY	PB15		PB13		PB11		PB9				PB5		PB3		PB1		PA15		PA13		PA11		PA9		PA7		PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12		PB10				PB6		PB4		PB2		PB0		PA14		PA12		PA10		PA8		PA6		PA4		PA2		PA0
APORT3Y	BUSCY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5				PE1	
APORT4Y	BUSDY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				PEO
OP	A3_	Ρ																															
APORT1X	BUSAX		PB14		PB12		PB10				PB6		PB4		PB2		PB0		PA14		PA12		PA10		PA8		PA6		PA4		PA2		PA0
APORT2X	BUSBX	PB15		PB13		PB11		PB9				PB5		PB3		PB1		PA15		PA13		PA11		PA9		PA7		PA5		PA3		PA1	
APORT3X	BUSCX		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				PEO
APORT4X	BUSDX	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5				PE1	
VD	AC	0_0	UT0	/ 0	PA0	_0L	JT																										
APORT1Y	BUSAY	PB15		PB13		PB11		PB9				PB5		PB3		PB1		PA15		PA13		PA11		PA9		PA7		PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12		PB10				PB6		PB4		PB2		PBO		PA14		PA12		PA10		PA8		PA6		PA4		PA2		PA0
APORT3Y	BUSCY	PF15		PF13		PF11		PF9		PF7		PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5				PE1	
APORT4Y	BUSDY		PF14		PF12		PF10		PF8		PF6		PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				PEO

Table 6.2. BGA192 PCB Land Pattern Dimensions

Min	Nom	Мах
	0.20	
	6.00	
	6.00	
	0.4	
	0.4	
	Min	0.20 6.00 6.00 0.4

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.

3. This Land Pattern Design is based on the IPC-7351 guidelines.

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

6. The stencil thickness should be 0.125 mm (5 mils).

7. The ratio of stencil aperture to land pad size should be 1:1.

8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

7.2 BGA152 PCB Land Pattern

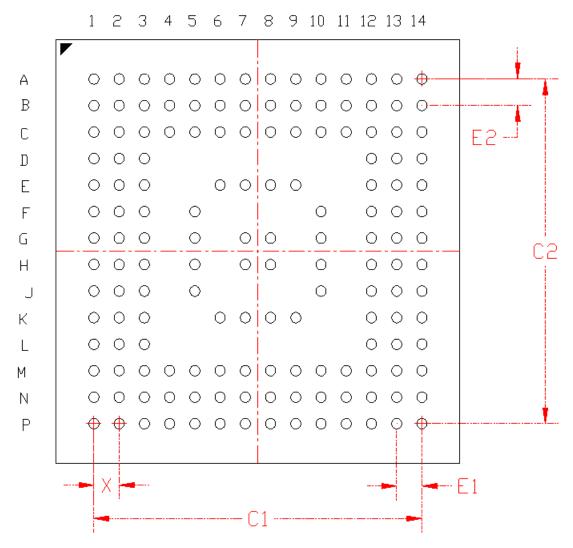


Figure 7.2. BGA152 PCB Land Pattern Drawing

Dimension	Min	Тур	Мах							
A	-	-	1.30							
A1	0.55	0.60	0.65							
A2		0.21 BSC								
A3	0.30	0.35	0.40							
d	0.43	0.48	0.53							
D		10.00 BSC								
D1		8.00 BSC								
E		10.00 BSC								
E1		8.00 BSC								
e1		0.80 BSC								
e2		0.80 BSC								
L1	1.00 REF									
L2		1.00 REF								
Noto										

Table 9.1. BGA112 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.