

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	47
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg11b840f1024iq64-ar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 Power

The EFM32GG11 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. A 5 V regulator is available on some OPNs, allowing the device to be powered directly from 5 V power sources, such as USB. An optional integrated DC-DC buck regulator can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor.

The EFM32GG11 device family includes support for internal supply voltage scaling, as well as two different power domain groups for peripherals. These enhancements allow for further supply current reductions and lower overall power consumption.

AVDD and VREGVDD need to be 1.8 V or higher for the MCU to operate across all conditions; however the rest of the system will operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components. Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA.

3.2.1 Energy Management Unit (EMU)

The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold.

3.2.2 DC-DC Converter

The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.

3.2.3 5 V Regulator

A 5 V input regulator is available, allowing the device to be powered directly from 5 V power sources such as the USB VBUS line. The regulator is available in all energy modes, and outputs 3.3 V to be used to power the USB PHY and other 3.3 V systems. Two inputs to the regulator allow for seamless switching between local and external power sources.

3.12 Configuration Summary

The features of the EFM32GG11 are a subset of the feature set described in the device reference manual. The table below describes device specific implementation of the features. Remaining modules support full configuration.

Table 3.2. Configuration Summary

Module	Configuration	Pin Connections
USART0	IrDA, SmartCard	US0_TX, US0_RX, US0_CLK, US0_CS
USART1	I ² S, SmartCard	US1_TX, US1_RX, US1_CLK, US1_CS
USART2	IrDA, SmartCard, High-Speed	US2_TX, US2_RX, US2_CLK, US2_CS
USART3	I ² S, SmartCard	US3_TX, US3_RX, US3_CLK, US3_CS
USART4	I ² S, SmartCard	US4_TX, US4_RX, US4_CLK, US4_CS
USART5	SmartCard	US5_TX, US5_RX, US5_CLK, US5_CS
TIMER0	with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	-	TIM1_CC[3:0]
TIMER2	with DTI	TIM2_CC[2:0], TIM2_CDTI[2:0]
TIMER3	-	TIM3_CC[2:0]
TIMER4	with DTI	TIM4_CC[2:0], TIM4_CDTI[2:0]
TIMER5	-	TIM5_CC[2:0]
TIMER6	with DTI	TIM6_CC[2:0], TIM6_CDTI[2:0]
WTIMER0	with DTI	WTIM0_CC[2:0], WTIM0_CDTI[2:0]
WTIMER1	-	WTIM1_CC[3:0]
WTIMER2	-	WTIM2_CC[2:0]
WTIMER3	-	WTIM3_CC[2:0]

4.1.7.2 Current Consumption 3.3 V using DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V DC-DC output. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.

Table 4.8.	Current Co	nsumption 3.3	V using	DC-DC	Converter
------------	-------------------	---------------	---------	-------	-----------

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_DCM	72 MHz HFRCO, CPU running Prime from flash	_	80	—	µA/MHz
DCM mode ²		72 MHz HFRCO, CPU running while loop from flash	—	80		µA/MHz
		72 MHz HFRCO, CPU running CoreMark loop from flash	—	92		µA/MHz
		50 MHz crystal, CPU running while loop from flash	_	84		µA/MHz
		48 MHz HFRCO, CPU running while loop from flash	—	84		µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	—	90		µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	_	94		µA/MHz
		16 MHz HFRCO, CPU running while loop from flash	_	109		µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	_	698		µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_CCM	72 MHz HFRCO, CPU running Prime from flash	_	84		µA/MHz
CCM mode ¹		72 MHz HFRCO, CPU running while loop from flash	—	84		µA/MHz
		72 MHz HFRCO, CPU running CoreMark loop from flash	_	95		µA/MHz
		50 MHz crystal, CPU running while loop from flash	_	91		µA/MHz
		48 MHz HFRCO, CPU running while loop from flash	—	92		µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	_	104		µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	—	113	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash	_	142	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	—	1264		µA/MHz

4.1.10.6 USB High-Frequency RC Oscillator (USHFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit	
Frequency accuracy	fUSHFRCO_ACC	At production calibrated frequen- cies, across supply voltage and temperature	TBD	_	TBD	%	
		USB clock recovery enabled, Ac- tive connection as device, FINE- TUNINGEN ¹ = 1	-0.25	—	0.25	%	
Start-up time	t _{USHFRCO}		_	300	_	ns	
Current consumption on all supplies	IUSHFRCO	f _{USHFRCO} = 48 MHz, FINETUNIN- GEN ¹ = 1	_	340	TBD	μA	
		f _{USHFRCO} = 50 MHz, FINETUNIN- GEN ¹ = 0	—	342	TBD	μA	
		f _{USHFRCO} = 48 MHz, FINETUNIN- GEN ¹ = 0	—	292	TBD	μA	
		f _{USHFRCO} = 32 MHz, FINETUNIN- GEN ¹ = 0	—	223	TBD	μA	
		$f_{USHFRCO}$ = 16 MHz, FINETUNIN- GEN ¹ = 0	—	132	TBD	μA	
Period jitter	PJ _{USHFRCO}		—	0.2	_	% RMS	
Note: 1. In the CMU_USHFRCOCTRL register.							

4.1.10.7 Ultra-low Frequency RC Oscillator (ULFRCO)

Table 4.18. Ultra-low Frequency RC Oscillator (ULFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Oscillation frequency	f _{ULFRCO}		TBD	1	TBD	kHz

4.1.13 Voltage Monitor (VMON)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply current (including I_SENSE)	I _{VMON}	In EM0 or EM1, 1 supply monitored, $T \le 85 \text{ °C}$	—	6.0	TBD	μA
		In EM0 or EM1, 4 supplies monitored, $T \le 85 \text{ °C}$	—	14.9	TBD	μA
		In EM2, EM3 or EM4, 1 supply monitored and above threshold		62		nA
		In EM2, EM3 or EM4, 1 supply monitored and below threshold	—	62	_	nA
		In EM2, EM3 or EM4, 4 supplies monitored and all above threshold	_	99	_	nA
		In EM2, EM3 or EM4, 4 supplies monitored and all below threshold		99	_	nA
Loading of monitored supply	I _{SENSE}	In EM0 or EM1	_	2	_	μA
		In EM2, EM3 or EM4	—	2	_	nA
Threshold range	V _{VMON_RANGE}		1.62	_	3.4	V
Threshold step size	N _{VMON_STESP}	Coarse	_	200	_	mV
		Fine	_	20	_	mV
Response time	t _{VMON_RES}	Supply drops at 1V/µs rate	_	460	_	ns
Hysteresis	V _{VMON_HYST}			26	_	mV

Table 4.21. Voltage Monitor (VMON)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
ADC clock frequency	f _{ADCCLK}		_	_	16	MHz
Throughput rate	fADCRATE		_	—	1	Msps
Conversion time ¹	t _{ADCCONV}	6 bit	_	7	_	cycles
		8 bit	_	9	_	cycles
		12 bit		13		cycles
Startup time of reference	t _{ADCSTART}	WARMUPMODE ⁴ = NORMAL	_	_	5	μs
generator and ADC core		WARMUPMODE ⁴ = KEEPIN- STANDBY			2	μs
		WARMUPMODE ⁴ = KEEPINSLO- WACC	_		1	μs
SNDR at 1Msps and f _{IN} = 10kHz	SNDR _{ADC}	Internal reference ⁷ , differential measurement	TBD	67	_	dB
		External reference ⁶ , differential measurement	_	68	_	dB
Spurious-free dynamic range (SFDR)	SFDR _{ADC}	1 MSamples/s, 10 kHz full-scale sine wave	—	75	—	dB
Differential non-linearity (DNL)	DNL _{ADC}	12 bit resolution, No missing co- des	TBD		TBD	LSB
Integral non-linearity (INL), End point method	INL _{ADC}	12 bit resolution	TBD		TBD	LSB
Offset error	VADCOFFSETERR		TBD	0	TBD	LSB
Gain error in ADC	VADCGAIN	Using internal reference	_	-0.2	TBD	%
		Using external reference	_	-1	—	%
Temperature sensor slope	V _{TS_SLOPE}			-1.84		mV/°C

Note:

1. Derived from ADCCLK.

2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL.

3. In ADCn_BIASPROG register.

4. In ADCn CNTL register.

5. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on EMU PWRCTRL ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin.

6. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential input range with this configuration is ± 1.25 V.

7. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum value is production-tested using sine wave input at 1.5 dB lower than full scale.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Hysteresis (V _{CM} = 1.25 V,	V _{ACMPHYST}	HYSTSEL ⁵ = HYST0	TBD	0	TBD	mV
$BIASPROG^4 = 0x10, FULL-$ $BIAS^4 = 1)$		HYSTSEL ⁵ = HYST1	TBD	18	TBD	mV
		HYSTSEL ⁵ = HYST2	TBD	33	TBD	mV
		HYSTSEL ⁵ = HYST3	TBD	46	TBD	mV
		HYSTSEL ⁵ = HYST4	TBD	57	TBD	mV
		HYSTSEL ⁵ = HYST5	TBD	68	TBD	mV
		HYSTSEL ⁵ = HYST6	TBD	79	TBD	mV
		HYSTSEL ⁵ = HYST7	TBD	90	TBD	mV
		HYSTSEL ⁵ = HYST8	TBD	0	TBD	mV
		HYSTSEL ⁵ = HYST9	TBD	-18	TBD	mV
		HYSTSEL ⁵ = HYST10	TBD	-33	TBD	mV
		HYSTSEL ⁵ = HYST11	TBD	-45	TBD	mV
		HYSTSEL ⁵ = HYST12	TBD	-57	TBD	mV
		HYSTSEL ⁵ = HYST13	TBD	-67	TBD	mV
		HYSTSEL ⁵ = HYST14	TBD	-78	TBD	mV
		HYSTSEL ⁵ = HYST15	TBD	-88	TBD	mV
Comparator delay ³	t _{ACMPDELAY}	$BIASPROG^4 = 1$, $FULLBIAS^4 = 0$	—	30	_	μs
		$BIASPROG^4 = 0x10, FULLBIAS^4 = 0$		3.7	_	μs
		BIASPROG ⁴ = $0x02$, FULLBIAS ⁴ = 1		360	_	ns
		BIASPROG ⁴ = 0x20, FULLBIAS ⁴ = 1		35	_	ns
Offset voltage	VACMPOFFSET	BIASPROG ⁴ =0x10, FULLBIAS ⁴ = 1	TBD		TBD	mV
Reference voltage	V _{ACMPREF}	Internal 1.25 V reference	TBD	1.25	TBD	V
		Internal 2.5 V reference	TBD	2.5	TBD	V
Capacitive sense internal re-	R _{CSRES}	CSRESSEL ⁶ = 0	—	infinite	—	kΩ
		CSRESSEL ⁶ = 1	_	15	—	kΩ
		CSRESSEL ⁶ = 2	—	27	_	kΩ
		CSRESSEL ⁶ = 3	—	39	_	kΩ
		CSRESSEL ⁶ = 4		51	_	kΩ
		CSRESSEL ⁶ = 5	_	100		kΩ
		$CSRESSEL^6 = 6$		162		kΩ
		CSRESSEL ⁶ = 7	_	235	_	kΩ

Figure 4.5. EBI Read Enable Output Timing Diagram

EBI Ready/Wait Timing Requirements

Timing applies to both EBI_REn and EBI_WEn for all addressing modes and both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.

Table 4.41.	EBI Ready/Wait	Timing	Requirements
-------------	----------------	--------	--------------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Setup time, from EBI_ARDY valid to trailing EBI_REn, EBI_WEn edge	tsu_ardy	IOVDD ≥ 1.62 V	55 + (3 * t _{HFCOR-} _{ECLK})	_	_	ns
		IOVDD ≥ 3.0 V	36 + (3 * t _{HFCOR-} _{ECLK})	_	_	ns
Hold time, from trailing EBI_REn, EBI_WEn edge to EBI_ARDY invalid	th_ardy	IOVDD ≥ 1.62 V	-9	_	_	ns

Figure 4.8. EBI Ready/Wait Timing Requirements

4.1.27 Serial Data I/O Host Controller (SDIO)

SDIO DS Mode Timing

Timing is specified for route location 0 at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 6, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 40 pF on all pins.

Table 4.46. SDIO DS Mode Timing (Location 0)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Clock frequency during data transfer	F _{SD_CLK}	Using HFRCO, AUXHFRCO, or USHFRCO	_	—	23	MHz
		Using HFXO	_	_	TBD	MHz
Clock low time	t _{WL}	Using HFRCO, AUXHFRCO, or USHFRCO	19.7			ns
		Using HFXO	TBD	_	_	ns
Clock high time	t _{WH}	Using HFRCO, AUXHFRCO, or USHFRCO	19.7	_	_	ns
		Using HFXO	TBD	_	_	ns
Clock rise time	t _R		1.69	3.23	_	ns
Clock fall time	t _F		1.42	2.79	_	ns
Input setup time, CMD, DAT[0:3] valid to SD_CLK	t _{ISU}		6	_	_	ns
Input hold time, SD_CLK to CMD, DAT[0:3] change	t _{IH}		0			ns
Output delay time, SD_CLK to CMD, DAT[0:3] valid	todly		0	_	14	ns
Output hold time, SD_CLK to CMD, DAT[0:3] change	t _{OH}		5			ns

Figure 4.18. SDIO MMC SDR Mode Timing

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VBUS	A13	USB VBUS signal and auxiliary input to 5 V regulator.	PF11	A14	GPIO (5V)
PF10	A15	GPIO (5V)	PF0	A16	GPIO (5V)
PA0	B1	GPIO	PD11	B2	GPIO
PD10	B3	GPIO	PD9	B4	GPIO
PF9	B5	GPIO	PF8	B6	GPIO
PF7	B7	GPIO	PF6	B8	GPIO
PI11	B9	GPIO (5V)	PI8	B10	GPIO (5V)
PF5	B11	GPIO	PF13	B12	GPIO (5V)
PF3	B13	GPIO	PF2	B14	GPIO
PF1	B15	GPIO (5V)	VREGO	B16	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs
PA1	C1	GPIO	PD12	C2	GPIO
PD14	C3	GPIO (5V)	PD13	C4	GPIO (5V)
PI15	C5	GPIO (5V)	PI14	C6	GPIO (5V)
PI13	C7	GPIO (5V)	PI12	C8	GPIO (5V)
PI10	C9	GPIO (5V)	PI7	C10	GPIO (5V)
PF15	C11	GPIO (5V)	PF12	C12	GPIO
PF4	C13	GPIO	PC15	C14	GPIO (5V)
PC14	C15	GPIO (5V)	VREGI	C16	Input to 5 V regulator.
PA2	D1	GPIO	PG0	D2	GPIO (5V)
PD15	D3	GPIO (5V)	PC13	D14	GPIO (5V)
PC12	D15	GPIO (5V)	PC11	D16	GPIO (5V)
PA3	E1	GPIO	PG2	E2	GPIO (5V)
PG1	E3	GPIO (5V)	PC10	E14	GPIO (5V)
PC9	E15	GPIO (5V)	PC8	E16	GPIO (5V)
PA4	F1	GPIO	PG4	F2	GPIO (5V)
PG3	F3	GPIO (5V)	IOVDD2	F6 G6	Digital IO power supply 2.

Figure 5.8. EFM32GG11B8xx in QFP100 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	PA3	4	GPIO
PA4	5	GPIO	PA5	6	GPIO
PA6	7	GPIO	IOVDD0	8 17 31 44 82	Digital IO power supply 0.
PB0	9	GPIO	PB1	10	GPIO

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description	
PB2	11	GPIO	PB3	12	GPIO	
PB4	13	GPIO	PB5	14	GPIO	
PB6	15	GPIO	VSS	16 32 59 83	Ground	
PC0	18	GPIO (5V)	PC1	19	GPIO (5V)	
PC2	20	GPIO (5V)	PC3	21	GPIO (5V)	
PC4	22	GPIO	PC5	23	GPIO	
PB7	24	GPIO	PB8	25	GPIO	
PA7	26	GPIO	PA8	27	GPIO	
PA9	28	GPIO	PA10	29	GPIO	
PA11	30	GPIO	PA12	33	GPIO (5V)	
PA13	34	GPIO (5V)	PA14	35	GPIO	
RESETn	36	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB9	37	GPIO (5V)	
PB10	38	GPIO (5V)	PB11	39	GPIO	
PB12	40	GPIO	AVDD	41	Analog power supply.	
PB13	42	GPIO	PB14	43	GPIO	
PD0	45	GPIO (5V)	PD1	46	GPIO	
PD2	47	GPIO (5V)	PD3	48	GPIO	
PD4	49	GPIO	PD5	50	GPIO	
PD6	51	GPIO	PD7	52	GPIO	
PD8	53	GPIO	PC7	54	GPIO	
VREGVSS	55	Voltage regulator VSS	VREGSW	56	DCDC regulator switching node	
VREGVDD	57	Voltage regulator VDD input	DVDD	58	Digital power supply.	
DECOUPLE	60	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PE1	61	GPIO (5V)	
PE2	62	GPIO	PE3	63	GPIO	
PE4	64	GPIO	PE5	65	GPIO	
PE6	66	GPIO	PE7	67	GPIO	
PC8	68	GPIO (5V)	PC9	69	GPIO (5V)	
PC10	70	GPIO (5V)	PC11	71	GPIO (5V)	
VREGI	72	Input to 5 V regulator.	VREGO	73	Decoupling for 5 V regulator and regu- lator output. Power for USB PHY in USB-enabled OPNs	
PF10	74	GPIO (5V)	PF11	75	GPIO (5V)	
PF0	76	GPIO (5V)	PF1	77	GPIO (5V)	

Alternate	LOCA	ATION		
Functionality	0 - 3	4 - 7	Description	
LES_CH11	0: PC11		LESENSE channel 11.	
LES_CH12	0: PC12		LESENSE channel 12.	
LES_CH13	0: PC13		LESENSE channel 13.	
LES_CH14	0: PC14		LESENSE channel 14.	
LES_CH15	0: PC15		LESENSE channel 15.	
LETIM0_OUT0	0: PD6 1: PB11 2: PF0 3: PC4	4: PE12 5: PC14 6: PA8 7: PB9	Low Energy Timer LETIM0, output channel 0.	
LETIM0_OUT1	0: PD7 1: PB12 2: PF1 3: PC5	4: PE13 5: PC15 6: PA9 7: PB10	Low Energy Timer LETIM0, output channel 1.	
LETIM1_OUT0	0: PA7 1: PA11 2: PA12 3: PC2	4: PB5 5: PB2 6: PG0 7: PG2	Low Energy Timer LETIM1, output channel 0.	
LETIM1_OUT1	0: PA6 1: PA13 2: PA14 3: PC3	4: PB6 5: PB1 6: PG1 7: PG3	Low Energy Timer LETIM1, output channel 1.	
LEU0_RX	0: PD5 1: PB14 2: PE15 3: PF1	4: PA0 5: PC15	LEUART0 Receive input.	
LEU0_TX	0: PD4 1: PB13 2: PE14 3: PF0	4: PF2 5: PC14	LEUART0 Transmit output. Also used as receive input in half duplex communication.	
LEU1_RX	0: PC7 1: PA6 2: PD3 3: PB1	4: PB5 5: PH1	LEUART1 Receive input.	
LEU1_TX	0: PC6 1: PA5 2: PD2 3: PB0	4: PB4 5: PH0	LEUART1 Transmit output. Also used as receive input in half duplex communication.	

Alternate	ternate LOCATION			
Functionality	0 - 3	4 - 7	Description	
PRS_CH7	0: PB13 1: PA7 2: PE7		Peripheral Reflex System PRS, channel 7.	
PRS_CH8	0: PA8 1: PA2 2: PE9		Peripheral Reflex System PRS, channel 8.	
PRS_CH9	0: PA9 1: PA3 2: PB10		Peripheral Reflex System PRS, channel 9.	
PRS_CH10	0: PA10 1: PC2 2: PD4		Peripheral Reflex System PRS, channel 10.	
PRS_CH11	0: PA11 1: PC3 2: PD5		Peripheral Reflex System PRS, channel 11.	
PRS_CH12	0: PA12 1: PB6 2: PD8		Peripheral Reflex System PRS, channel 12.	
PRS_CH13	0: PA13 1: PB9 2: PE14		Peripheral Reflex System PRS, channel 13.	
PRS_CH14	0: PA14 1: PC6 2: PE15		Peripheral Reflex System PRS, channel 14.	
PRS_CH15	0: PA15 1: PC7 2: PF0		Peripheral Reflex System PRS, channel 15.	
PRS_CH16	0: PA4 1: PB12 2: PE4		Peripheral Reflex System PRS, channel 16.	
PRS_CH17	0: PA5 1: PB15 2: PE5		Peripheral Reflex System PRS, channel 17.	
PRS_CH18	0: PB2 1: PC10 2: PC4		Peripheral Reflex System PRS, channel 18.	
PRS_CH19	0: PB3 1: PC11 2: PC5		Peripheral Reflex System PRS, channel 19.	

6.2 BGA192 PCB Land Pattern

Figure 6.2. BGA192 PCB Land Pattern Drawing

7. BGA152 Package Specifications

7.1 BGA152 Package Dimensions

Figure 7.1. BGA152 Package Drawing

Dimension	Min	Тур	Мах			
A	-	-	1.20			
A1	0.05	-	0.15			
A2	0.95	1.00	1.05			
b	0.17	0.22	0.27			
b1	0.17	0.20	0.23			
С	0.09	-	0.20			
c1	0.09	-	0.16			
D		16.0 BSC				
E		16.0 BSC				
D1		14.0 BSC				
E1	14.0 BSC					
е	0.50 BSC					
L1	1 REF					
L	0.45	0.60	0.75			
θ	0	3.5	7			
θ1	0 -		-			
θ2	11	11 12				
θ3	11	13				
R1	0.08	-				
R2	0.08 - 0.2					
S	0.2					
ааа	0.2					
bbb	0.2					
ССС	0.08					
ddd	0.08					
еее	0.05					

Table 10.1. TQFP100 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 12.2. QFN64 PCB Land Pattern Drawing