

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SAI, SPDIF, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	168
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	208-LQFP
Supplier Device Package	208-LQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f765bgt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

disappear. The following conditions V_{DDUSB} must be respected:

- During the power-on phase (V_{DD} < V_{DD_MIN}), V_{DDUSB} should be always lower than V_{DD}
- During the power-down phase (V_{DD} < V_{DD_MIN}), V_{DDUSB} should be always lower than V_{DD}
- The V_{DDUSB} rising and falling time rate specifications must be respected (see *Table 20* and *Table 21*)
- In operating mode phase, V_{DDUSB} could be lower or higher than V_{DD}.
 If USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by V_{DDUSB} are operating between V_{DDUSB_MIN} and V_{DDUSB_MAX}.

- The V_{DDUSB} supply both USB transceiver (USB OTG_HS and USB OTG_FS). If only one USB transceiver is used in the application, the GPIOs associated to the other USB transceiver are still supplied by V_{DDUSB}.

- If USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered by V_{DDUSB} are operating between V_{DD} $_{MIN}$ and V_{DD} $_{MAX}.$

Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising or falling edge on one of the 6 WKUP pins (PA0, PA2, PC1, PC13, PI8, PI11), or an RTC alarm / wakeup / tamper /time stamp event occurs.

The Standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

2.22 V_{BAT} operation

Note:

The V_{BAT} pin allows to power the device V_{BAT} domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present.

 V_{BAT} operation is activated when V_{DD} is not present.

The V_{BAT} pin supplies the RTC, the backup registers and the backup SRAM.

When the microcontroller is supplied from V_{BAT}, external interrupts and RTC alarm/events do not exit it from V_{BAT} operation.

When the PDR_ON pin is connected to V_{SS} (Internal Reset OFF), the V_{BAT} functionality is no more available and the V_{BAT} pin should be connected to VDD.

2.23 Timers and watchdogs

The devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 6 compares the features of the advanced-control, general-purpose and basic timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complem entary output	Max interface clock (MHz)	Max timer clock (MHz) ⁽¹⁾
Advanced -control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	108	216
	TIM2, TIM5	32-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	54	108/216
General	TIM3, TIM4	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	54	108/216
	TIM9	16-bit	Up	Any integer between 1 and 65536	No	2	No	108	216
purpose	TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	108	216
	TIM12	16-bit	6-bit Up Any betwee and 65		No	2	No	54	108/216
	TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No	54	108/216
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	54	108/216

Table 6.	Timer	feature	comparison
14010 0.		ioataro	001110011

1. The maximum timer clock is either 108 or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

2.24 Inter-integrated circuit interface (I²C)

The devices embed 4 I2C. Refer to table *Table 7: I2C implementation* for the features implementation.

The I²C bus interface handles communications between the microcontroller and the serial I²C bus. It controls all I²C bus-specific sequencing, protocol, arbitration and timing.

The I2C peripheral supports:

- I²C-bus specification and user manual rev. 5 compatibility:
 - Slave and master modes, multimaster capability
 - Standard-mode (Sm), with a bitrate up to 100 kbit/s
 - Fast-mode (Fm), with a bitrate up to 400 kbit/s
 - Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
 - 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
 - Programmable setup and hold times
 - Optional clock stretching
- System Management Bus (SMBus) specification rev 2.0 compatibility:
 - Hardware PEC (Packet Error Checking) generation and verification with ACK control
 - Address resolution protocol (ARP) support
 - SMBus alert
- Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
- Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming.
- Programmable analog and digital noise filters
- 1-byte buffer with DMA capability

Table 7. I2C implementation

I2C features ⁽¹⁾	I2C1	I2C2	I2C3	I2C4
Standard-mode (up to 100 kbit/s)	Х	Х	Х	Х
Fast-mode (up to 400 kbit/s)	Х	Х	Х	Х
Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)	Х	Х	Х	Х
Programmable analog and digital noise filters	Х	Х	Х	Х
SMBus/PMBus hardware support	Х	Х	Х	Х
Independent clock	Х	Х	Х	Х

1. X: supported.

2.33 Controller area network (bxCAN)

The three CANs are compliant with the 2.0A and B (active) specifications with a bit rate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for CAN1 and CAN2. 512 bytes of SRAM are dedicated for CAN3.

2.34 Universal serial bus on-the-go full-speed (OTG_FS)

The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.

The major features are:

- Combined Rx and Tx FIFO size of 1.28 Kbytes with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 1 bidirectional control endpoint + 5 IN endpoints + 5 OUT endpoints
- 12 host channels with periodic OUT support
- Software configurable to OTG1.3 and OTG2.0 modes of operation
- USB 2.0 LPM (Link Power Management) support
- Battery Charging Specification Revision 1.2 support
- Internal FS OTG PHY support
- HNP/SNP/IP inside (no need for any external resistor)

For the OTG/Host modes, a power switch is needed in case bus-powered devices are connected

2.35 Universal serial bus on-the-go high-speed (OTG_HS)

The devices embed a USB OTG high-speed (up to 480 Mbit/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 Mbit/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 Mbit/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.

The major features are:

- Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 8 bidirectional endpoints
- 16 host channels with periodic OUT support

				Pin N	lumb	er									
		STM32 STM32	2F765 2F767	ixx 'xx		ST ST	ГМ32 ГМ32	F768/ F769:	Ax xx	reset					
	LQFP144 LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	WLCSP180 ⁽¹⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after	Pin type	I/O structure	Notes	Alternate functions	Additional functions
:	3 3	B1	3	3	A1	C12	3	3	A1	PE4	I/O	FT	-	TRACED1, SPI4_NSS, SAI1_FS_A, DFSDM1_DATIN3, FMC_A20, DCMI_D4, LCD_B0, EVENTOUT	-
	4 4	B2	4	4	B1	D12	4	4	B1	PE5	I/O	FT	-	TRACED2, TIM9_CH1, SPI4_MISO, SAI1_SCK_A, DFSDM1_CKIN3, FMC_A21, DCMI_D6, LCD_G0, EVENTOUT	-
	5 5	В3	5	5	B2	E11	5	5	B2	PE6	I/O	FT	-	TRACED3, TIM1_BKIN2, TIM9_CH2, SPI4_MOSI, SAI1_SD_A, SAI2_MCLK_B, FMC_A22, DCMI_D7, LCD_G1, EVENTOUT	-
		-	-	-	G6	-	-	-	G6	VSS	s	-	-	-	-
		-	-	-	F5	-	-	-	F5	VDD	s	-	-	-	-
	6 6	C1	6	6	C1	C13	6	6	C1	VBAT	S	-	-	-	-
		D2	7	7	C2	NC	7	7	C2	PI8	I/O	FT	(2)	EVENTOUT	RTC_TAMP 2/RTC_TS/ WKUP5
	7 7	D1	8	8	D1	D13	8	8	D1	PC13	I/O	FT	(2)	EVENTOUT	RTC_TAMP 1/RTC_TS/ RTC_OUT/ WKUP4
	3 8	E1	9	9	E1	E12	9	9	E1	PC14- OSC32_I N	I/O	FT	(2) (3)	EVENTOUT	OSC32_IN
	9 9	F1	10	10	F1	E13	10	10	F1	PC15- OSC32_O UT	I/O	FT	(2) (3)	EVENTOUT	OSC32_OU T
		-	-	-	G5	-	-	-	G5	VDD	S	-	-	-	-

Table 10. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

				Pin N	umbe	ər									
	S S	TM32 TM32	F765 F767	xx xx		S1 S1	FM32 FM32	F768/ F769:	Ax xx	reset					
LQFP100	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	WLCSP180 ⁽¹⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after	Pin type	I/O structure	Notes	Alternate functions	Additional functions
47	70	R13	80	91	R13	L5	80	91	R13	PB11	I/O	FT	-	TIM2_CH4, I2C2_SDA, DFSDM1_CKIN7, USART3_RX, OTG_HS_ULPI_D4, ETH_MII_TX_EN/ETH_RM II_TX_EN, DSI_TE, LCD_G5, EVENTOUT	-
48	71	M10	81	92	L11	P5	81	92	L11	VCAP_1	S	-	-	-	-
49	-	-	-	93	K9	N5	-	93	K9	VSS	S	-	-	-	-
50	72	N10	82	94	L10	P4	82	94	L10	VDD	S	-	-	-	-
-	-	-	-	95	M1 4	NC	-	95	M1 4	PJ5	1/0	FT	-	LCD_R6, EVENTOUT	-
-	-	M11	83	96	P13	NC	83	96	P13	PH6	I/O	FT	-	I2C2_SMBA, SPI5_SCK, TIM12_CH1, ETH_MII_RXD2, FMC_SDNE1, DCMI_D8, EVENTOUT	-
-	-	N12	84	97	N13	NC	84	97	N13	PH7	I/O	FT	-	I2C3_SCL, SPI5_MISO, ETH_MII_RXD3, FMC_SDCKE1, DCMI_D9, EVENTOUT	-
-	-	M12	85	98	P14	M5	-	98	P14	PH8	I/O	FT	-	I2C3_SDA, FMC_D16, DCMI_HSYNC, LCD_R2, EVENTOUT	-
-	-	M13	86	99	N14	K4	-	99	N14	PH9	I/O	FT	-	I2C3_SMBA, TIM12_CH2, FMC_D17, DCMI_D0, LCD_R3, EVENTOUT	-
-	-	L13	87	100	P15	L4	-	100	P15	PH10	I/O	FT	-	TIM5_CH1, I2C4_SMBA, FMC_D18, DCMI_D1, LCD_R4, EVENTOUT	-
-	-	L12	88	101	N15	M4	-	101	N15	PH11	I/O	FT	-	TIM5_CH2, I2C4_SCL, FMC_D19, DCMI_D2, LCD_R5, EVENTOUT	-

Table 10. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

			l	Pin N	umbe	ər									
	S S	TM32 TM32	2F765 2F767	xx 'xx		ST ST	FM32I FM32	F768/ F769:	Ax xx	reset					
LQFP100	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	WLCSP180 ⁽¹⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	C13	134	157	C13	D3	134	157	C13	PI3	I/O	FT	-	TIM8_ETR, SPI2_MOSI/I2S2_SD, FMC_D27, DCMI_D10, EVENTOUT	-
-	-	D9	135	-	F9	-	135	-	F9	VSS	s	-	-	-	
-	-	C9	136	158	E10	-	136	158	E10	VDD	s	-	-	-	
76	109	A14	137	159	A14	A3	137	159	A14	PA14(JTC K- SWCLK)	I/O	FT	-	JTCK-SWCLK, EVENTOUT	-
77	110	A13	138	160	A13	F8	138	160	A13	PA15(JTD I)	I/O	FT	-	JTDI, TIM2_CH1/TIM2_ETR, HDMI_CEC, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, SPI6_NSS, UART4_RTS, CAN3_TX, UART7_TX, EVENTOUT	-
78	111	B14	139	161	B14	B4	139	161	B14	PC10	I/O	FT	-	DFSDM1_CKIN5, SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, QUADSPI_BK1_IO1, SDMMC1_D2, DCMI_D8, LCD_R2, EVENTOUT	-
79	112	B13	140	162	B13	C4	140	162	B13	PC11	I/O	FT	-	DFSDM1_DATIN5, SPI3_MISO, USART3_RX, UART4_RX, QUADSPI_BK2_NCS, SDMMC1_D3, DCMI_D4, EVENTOUT	-
80	113	A12	141	163	A12	D4	141	163	A12	PC12	I/O	FT	-	TRACED3, SPI3_MOSI/I2S3_SD, USART3_CK, UART5_TX, SDMMC1_CK, DCMI_D9, EVENTOUT	-

Table 10. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Pinouts and pin description

STM32F765xx STM32F767xx STM32F768Ax STM32F769xx

							functio	on map	oing (co	ntinued)						
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	SYS	I2C4/UA RT5/TIM 1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/DFSDM 1/CEC	I2C1/2/3/ 4/USART 1/CEC	SPI1/I2S 1/SPI2/I2 S2/SPI3/ I2S3/SPI 4/5/6	SPI2/I2S 2/SPI3/I2 S3/SAI1/ I2C4/UA RT4/DF SDM1	SPI2/I2S 2/SPI3/I2 S3/SPI6/ USART1/ 2/3/UART 5/DFSDM 1/SPDIF	SPI6/SAI 2/USART 6/UART4/ 5/7/8/OT G_FS/SP DIF	CAN1/2/T IM12/13/ 14/QUAD SPI/FMC/ LCD	SAI2/QU ADSPI/S DMMC2/D FSDM1/O TG2_HS/ OTG1_FS /LCD	I2C4/CAN 3/SDMM C2/ETH	UART7/ FMC/SD MMC1/M DIOS/OT G2_FS	DCMI/L CD/DSI	LCD	SYS
	PE4	TRACED	-	-	-	-	SPI4_NS S	SAI1_FS _A	-	-	-	DFSDM1_ DATAIN3	-	FMC_A2 0	DCMI_D 4	LCD_B0	EVEN TOUT
	PE5	TRACED 2	-	-	TIM9_CH 1	-	SPI4_MI SO	SAI1_SC K_A	-	-	-	DFSDM1_ CKIN3	-	FMC_A2 1	DCMI_D 6	LCD_G0	EVEN TOUT
	PE6	TRACED 3	TIM1_B KIN2	-	TIM9_CH 2	-	SPI4_M OSI	SAI1_SD _A	-	-	-	SAI2_MC K_B	-	FMC_A2 2	DCMI_D 7	LCD_G1	EVEN TOUT
	PE7	-	TIM1_ET R	-	-	-	-	DFSDM1 _DATAIN _2	-	UART7_ Rx	-	QUADSPI _BK2_IO0	-	FMC_D4	-	-	EVEN TOUT
	PE8	-	TIM1_C H1N	-	-	-	-	DFSDM1 _CKIN2	-	UART7_T x	-	QUADSPI _BK2_IO1	-	FMC_D5	-	-	EVEN TOUT
	PE9	-	TIM1_C H1	-	-	-	-	DFSDM1 _CKOUT	-	UART7_ RTS	-	QUADSPI _BK2_IO2	-	FMC_D6	-	-	EVEN TOUT
Port E	PE10	-	TIM1_C H2N	-	-	-	-	DFSDM1 _DATAIN _4	-	UART7_ CTS	-	QUADSPI _BK2_IO3	-	FMC_D7	-	-	EVEN TOUT
	PE11	-	TIM1_C H2	-	-	-	SPI4_NS S	DFSDM1 _CKIN4	-	-	-	SAI2_SD_ B	-	FMC_D8	-	LCD_G3	EVEN TOUT
	PE12	-	TIM1_C H3N	-	-	-	SPI4_SC K	DFSDM1 _DATAIN 5	-	-	-	SAI2_SC K_B	-	FMC_D9	-	LCD_B4	EVEN TOUT
	PE13	-	TIM1_C H3	-	-	-	SPI4_MI SO	DFSDM1 _CKIN5	-	-	-	SAI2_FS_ B	-	FMC_D1 0	-	LCD_DE	EVEN TOUT
	PE14	-	TIM1_C H4	-	-	-	SPI4_M OSI	-	-	-	-	SAI2_MC K_B	-	FMC_D1 1	-	LCD_CL K	EVEN TOUT
	PE15	-	TIM1_B KIN	-	-	-	-	-	-	-	-	-	-	FMC_D1 2	-	LCD_R7	EVEN TOUT

Table 12. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx alternate

DocID029041 Rev 4

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A$ max (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.3 V (for the 1.7 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 22*.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 23*.

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} ...) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure good operation of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device.

5.1.7 Current consumption measurement

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 14: Voltage characteristics*, *Table 15: Current characteristics*, and *Table 16: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and the functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. The device mission profile (application conditions) is compliant with JEDEC JESD47 Qualification Standard. Extended mission profiles are available on demand.

Symbol	Ratings	Min	Мах	Unit
$V_{DD} - V_{SS}$	External main supply voltage (including V_{DDA} , V_{DD} , V_{BAT} , V_{DDUSB} , V_{DDDSI} ⁽¹⁾ and $V_{DDSDMMC}$) ⁽²⁾	- 0.3	4.0	
	Input voltage on FT pins ⁽³⁾	V _{SS} – 0.3	V _{DD} +4.0	
V	Input voltage on TTa pins	V _{SS} – 0.3	4.0	V
VIN	Input voltage on any other pin	V _{SS} – 0.3	4.0	
	Input voltage on BOOT pin	V _{SS}	9.0	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	m\/
$ V_{SSX} - V_{SS} $	Variations between all the different ground pins ⁽⁴⁾	-	50	IIIV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section Absolute m ratings (ele sensitivity)	n 5.3.18: naximum ectrical	-

5.3 Operating conditions

5.3.1 General operating conditions

Table 17. Genera	operating	conditions
------------------	-----------	------------

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Мах	Unit	
		Power Scale 3 (VOS[1:0] bits ir PWR_CR register = 0x01), Reg ON, over-drive OFF	ı julator	0	-	144	
		Power Scale 2 (VOS[1:0] bits	Over- drive OFF	0	-	168	
f _{HCLK}	Internal AHB clock frequency	Regulator ON	Over- drive ON	0	-	180	
		Power Scale 1 (VOS[1:0] bits	Over- drive OFF	0	-	180	MHz
		Regulator ON	Over- drive ON		-	216 ⁽²⁾	
f	Internal ADB1 clock frequency	Over-drive OFF	•	0	-	45	
PCLK1		Over-drive ON		0	-	54	
fpouro	Internal APB2 clock frequency	Over-drive OFF		0	-	90	
PCLK2		Over-drive ON		0	-	108	
V _{DD}	Standard operating voltage	-		1.7 ⁽³⁾	-	3.6	
V (4)(5)	Analog operating voltage (ADC limited to 1.2 M samples)	Must be the same potential as a	(6)	1.7 ⁽³⁾	-	2.4	
VDDA	Analog operating voltage (ADC limited to 2.4 M samples)	Must be the same potential as	VDD`	2.4	-	3.6	
	USB supply voltage (supply	USB not used		1.7	3.3	3.6	
V _{DDUSB}	voltage for PA11,PA12, PB14 and PB15 pins)	USB used	3.0	-	3.6		
V _{BAT}	Backup operating voltage	-	1.65	-	3.6		
V _{DDSDMMC}	SDMMC2 supply voltage (supply voltage for PG[12:9] and PD6 pins)	It can be different from VDD	1.7	-	3.6		
V _{DDDSI}	DSI system operating	-		1.7	-	3.6	

- 1. Guaranteed by design.
- 2. The reset temporization is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is read by the user application code.

5.3.6 Over-drive switching characteristics

When the over-drive mode switches from enabled to disabled or disabled to enabled, the system clock is stalled during the internal voltage set-up.

The over-drive switching characteristics are given in *Table 23*. They are subject to general operating conditions for T_A .

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Tod_swen		HSI	-	45	-	
	Over_drive switch enable time	HSE max for 4 MHz and min for 26 MHz	45	-	100	
		External HSE 50 MHz	-	40	-	116
	Over_drive switch disable time	HSI	-	20	-	μο
		HSE max for 4 MHz and min for 26 MHz.	20	-	80	
		External HSE 50 MHz	-	15	-	

Table 23. Over-drive switching characteristics⁽¹⁾

1. Guaranteed by design.

5.3.7 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 26: Current consumption measurement scheme*.

All the run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

- 1. Guaranteed by characterization results.
- 2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.
- When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

Symbol	Paramatar	Conditiono	f (MHz) Tup		Unit			
Symbol	Farameter	Conditions		тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			216	128	144 ⁽³⁾	190 ⁽³⁾	-	
			200	119	134	180	214	
		All	180	105	118 ⁽³⁾	153 ⁽³⁾	178 ⁽³⁾	
		peripherals	168	93	105	136	156	
	Supply current in Sleep mode	enabled ⁽²⁾	144	72	80	107	124	
			60	33	39	65	82	
			25	17	21	47	65	mA
DD		de All	216	18	25 ⁽³⁾	71 ⁽³⁾	-	
			200	17	24	70	112	
			180	14	20 ⁽³⁾	54 ⁽³⁾	75 ⁽³⁾	
		peripherals	168	13	18	49	69	
		disabled	144	10	14	40	58	
			60	6	10	36	53	
				25	4	8	34	51

Table 33. Typical and maximum current consumption in Sleep mode, regulator ON

1. Guaranteed by characterization results, unless otherwise specified.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. Guaranteed by test in production.

5.3.10 Internal clock source characteristics

The parameters given in *Table 45* and *Table 46* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
	HSI user trimming step ⁽²⁾	-	-	-	1	%
ACC _{HSI}	Accuracy of the HSI oscillator	$T_A = -40$ to 105 °C ⁽³⁾	- 8	-	4.5	%
		$T_A = -10$ to 85 °C ⁽³⁾	- 4	-	4	%
		$T_A = 25 \ ^{\circ}C^{(4)}$	- 1	-	1	%
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	60	80	μA

Table 45.	HSI	oscillator	characteristics	(1)
		oscillator			

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization results.

4. Factory calibrated, parts not soldered.

Figure 32. ACCHSI versus temperature

1. Guaranteed by characterization results.

Figure 35. PLL output clock waveforms in down spread mode

5.3.13 MIPI D-PHY characteristics

The parameters given in *Table 51* and *Table 52* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit						
Hi-Speed Input/Output Characteristics												
U _{INST}	UI instantaneous	-	2	-	12.5	ns						
V _{CMTX}	HS transmit common mode voltage	-	150	200	250							
ΔV _{CMTX}	$V_{\mbox{CMTX}}$ mismatch when output is Differential-1 or Differential-0	-	-	-	5	.,						
V _{OD}	HS transmit differential voltage	-	140	200	270	mV						
ΔV _{OD}	V _{OD} mismatch when output is Differential-1 or Differential-0	-	-	-	14							
V _{OHHS}	HS output high voltage	-	-	-	360							
Z _{OS}	Single ended output impedance	-	40	50	62.5	Ω						
ΔZ _{OS}	Single ended output impedance mismatch	-	-	-	10	%						
t _{HSr} & t _{HSf}	20%-80% rise and fall time	-	100	-	0.35*UI	ps						
	LP Receiver	Input Characterist	tics									
V _{IL}	Logic 0 input voltage (not in ULP State)	-	-	-	550							
V _{IL-ULPS}	Logic 0 input voltage in ULP State	-	-	-	300	mV						
V _{IH}	Input high level voltage	-	880	-	-							
V _{hys}	Voltage hysteresis	-	25	-	-							
	LP Emitter C	Dutput Characteris	tics		LP Emitter Output Characteristics							

Table 51. MIPI D-PHY characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	$\begin{array}{c} \text{CMOS port}^{(2)} \\ \text{I}_{\text{IO}} = +8 \text{ mA} \\ \text{2.7 V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V} \end{array}$	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin except PC14	CMOS port ⁽²⁾ $I_{IO} = -8 \text{ mA}$ 2.7 V $\leq V_{DD} \leq 3.6 \text{ V}$	V _{DD} - 0.4	-	V
V _{OH} ⁽³⁾	Output high level voltage for PC14	CMOS port ⁽²⁾ $I_{IO} = -2 \text{ mA}$ 2.7 V $\leq V_{DD} \leq 3.6 \text{ V}$	V _{DD} – 0.4		
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	$\begin{array}{c} \text{TTL port}^{(2)}\\ \text{I}_{\text{IO}}=+8\text{mA}\\ 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V} \end{array}$	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin except PC14	$\begin{array}{l} \text{TTL port}^{(2)}\\ \text{I}_{\text{IO}} = -8\text{mA}\\ 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V} \end{array}$	2.4	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I_{IO} = +20 mA 2.7 V \leq V _{DD} \leq 3.6 V	-	1.3 ⁽⁴⁾	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin except PC14	I_{IO} = -20 mA 2.7 V \leq V _{DD} \leq 3.6 V	V _{DD} -1.3 ⁽⁴⁾	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I_{IO} = +6 mA 1.8 V ≤ V _{DD} ≤ 3.6 V	-	0.4 ⁽⁴⁾	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin except PC14	I_{IO} = -6 mA 1.8 V \leq V _{DD} \leq 3.6 V	V _{DD} -0.4 ⁽⁴⁾	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	$I_{IO} = +4 \text{ mA}$ $1.7 \text{ V} \le V_{DD} \le 3.6 \text{V}$	-	0.4 ⁽⁵⁾	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin except PC14	$I_{IO} = -4 \text{ mA}$ $1.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{V}$	V _{DD} -0.4 ⁽⁵⁾	-	V
V _{OH} ⁽³⁾	Output high level voltage for PC14	$I_{IO} = -1 \text{ mA}$ 1.7 V \leq V _{DD} \leq 3.6V	V _{DD} -0.4 ⁽⁵⁾	-	

Table 66. Output voltage characteristics

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 15*. and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 15 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

- 4. Based on characterization data.
- 5. Guaranteed by design.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 39* and *Table 67*, respectively.

Symbol	Parameter	Test conditions	Тур	Max ⁽¹⁾	Unit
ET	Total unadjusted error		±4	±7	
EO	Offset error	f _{ADC} =36 MHz, V _{DDA} = 2.4 to 3.6 V, V _{DEE} = 1.7 to 3.6 V	±2	±3	
EG	Gain error		±3	±6	LSB
ED	Differential linearity error	$V_{DDA} - V_{REF} < 1.2 V$	±2	±3	
EL	Integral linearity error		±3	±6	

Table 74. ADC static accuracy at f_{ADC} = 36 MHz

1. Guaranteed by characterization results.

Table 75. ADC dynamic accuracy at f_{ADC} = 18 MHz - limited test conditions ⁽¹⁾

Symbol	Parameter	Test conditions	Min	Тур	Мах	Unit
ENOB	Effective number of bits	fade =18 MHz	10.3	10.4	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+} = 1.7 V$	64	64.2	-	
SNR	Signal-to-noise ratio	Input Frequency = 20 KHz	64	65	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	- 67	- 72	-	

1. Guaranteed by characterization results.

Table 76. ADC dynamic accuracy at f_{ADC} = 36 MHz - limited test conditions⁽¹⁾

Symbol	Parameter	Test conditions	Min	Тур	Мах	Unit
ENOB	Effective number of bits	fade =36 MHz	10.6	10.8	-	bits
SINAD	Signal-to noise and distortion ratio	$V_{DDA} = V_{REF+} = 3.3 V$	66	67	-	
SNR	Signal-to noise ratio	Input Frequency = 20 KHz	64	68	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	- 70	- 72	-	

1. Guaranteed by characterization results.

Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in *Section 5.3.20* does not affect the ADC accuracy.

Symbol	Parameter	Min	Max	Unit			
t _{w(NE)}	FMC_NE low time	3T _{HCLK} – 1	3T _{HCLK} + 1				
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	2T _{HCLK}	2T _{HCLK} + 0.5				
t _{tw(NOE)}	FMC_NOE low time	T _{HCLK} – 1	T _{HCLK} + 1				
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	0	-				
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0.5				
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0	0.5				
t _{w(NADV)}	FMC_NADV low time	T _{HCLK} – 0.5	T _{HCLK} +1				
t _{h(AD_NADV)}	FMC_AD(address) valid hold time after FMC_NADV high)	T _{HCLK} + 0.5	-	ns			
t _{h(A_NOE)}	Address hold time after FMC_NOE high	T _{HCLK} – 0.5	-				
t _{h(BL_NOE)}	FMC_BL time after FMC_NOE high	0	-				
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	0.5				
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{HCLK} – 1	-				
t _{su(Data_NOE)}	Data to FMC_NOE high setup time	T _{HCLK} – 1	-				
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-				
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-				

 Table 104. Asynchronous multiplexed PSRAM/NOR read timings⁽¹⁾

1. Guaranteed by characterization results.

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} – 1	8T _{HCLK} + 1	
t _{w(NOE)}	FMC_NWE low time	5T _{HCLK} – 1.5	5T _{HCLK} + 0.5	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{HCLK} + 1.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} + 1	_	

1. Guaranteed by characterization results.

Figure 99. UFBGA176+25, 10 x 10 mm x 0.65 mm, ultra fine-pitch ball grid array package recommended footprint

0000000000000	
0000 00000 0000	
0000 00000 0000	
0000 0000	
ADE	7_FP_V1

Table 132. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)

Dimension	Recommended values
Pitch	0.65 mm
Dpad	0.300 mm
Dsm	0.400 mm typ. (depends on the soldermask reg- istration tolerance)
Stencil opening	0.300 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

