

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SAI, SPDIF, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	140
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f765igt6

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Refreshed by software
- DMA capability to read the final conversion data
- Interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial channel clock absence
- "regular" or "injected" conversions:
 - "regular" conversions can be requested at any time or even in continuous mode without having any impact on the timing of "injected" conversions
 - "injected" conversions for precise timing and with high conversion priority

2.43 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with the temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the same input channel as V_{BAT}, ADC1_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and V_{BAT} conversion are enabled at the same time, only V_{BAT} conversion is performed.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

			l	Pin N	umbe	ər									
		TM32 TM32					FM32I FM32			reset					
LQFP100	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	WLCSP180 ⁽¹⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after reset	Pin type	I/O structure	Notes	Alternate functions	Additional functions
81	114	B12	142	164	B12	A4	142	164	B12	PD0	I/O	FT	-	DFSDM1_CKIN6, DFSDM1_DATIN7, UART4_RX, CAN1_RX, FMC_D2, EVENTOUT	-
82	115	C12	143	165	C12	D5	143	165	C12	PD1	I/O	FT	-	DFSDM1_DATIN6, DFSDM1_CKIN7, UART4_TX, CAN1_TX, FMC_D3, EVENTOUT	
83	116	D12	144	166	D12	D6	144	166	D12	PD2	I/O	FT	-	TRACED2, TIM3_ETR, UART5_RX, SDMMC1_CMD, DCMI_D11, EVENTOUT	-
84	117	D11	145	167	C11	B5	145	167	C11	PD3	I/O	FT	-	DFSDM1_CKOUT, SPI2_SCK/I2S2_CK, DFSDM1_DATIN0, USART2_CTS, FMC_CLK, DCMI_D5, LCD_G7, EVENTOUT	-
85	118	D10	146	168	D11	A5	146	168	D11	PD4	I/O	FT	-	DFSDM1_CKIN0, USART2_RTS,FMC_NOE, EVENTOUT	-
86	119	C11	147	169	C10	C5	147	169	C10	PD5	I/O	FT	-	USART2_TX, FMC_NWE, EVENTOUT	-
-	120	D8	148	170	F8	B6	148	170	F8	VSS	S	-	-	-	-
-	121	C8	149	171	E9	A6	149	171	E9	VDDSDM MC	s	-	-	-	-
87	122	B11	150	172	B11	E6	150	172	B11	PD6	I/O	FT	-	DFSDM1_CKIN4, SPI3_MOSI/I2S3_SD, SAI1_SD_A, USART2_RX, DFSDM1_DATIN1, SDMMC2_CK, FMC_NWAIT, DCMI_D10, LCD_B2, EVENTOUT	-

Table 10. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

			1	able 12.	STM32F	70588, 6				ntinued		32F/03X	A allering	ale			
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	SYS	I2C4/UA RT5/TIM 1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/DFSDM 1/CEC	I2C1/2/3/ 4/USART 1/CEC	SPI1/I2S 1/SPI2/I2 S2/SPI3/ I2S3/SPI 4/5/6	SPI2/I2S 2/SPI3/I2 S3/SAI1/ I2C4/UA RT4/DF SDM1	SPI2/I2S 2/SPI3/I2 S3/SPI6/ USART1/ 2/3/UART 5/DFSDM 1/SPDIF	SPI6/SAI 2/USART 6/UART4/ 5/7/8/OT G_FS/SP DIF	CAN1/2/T IM12/13/ 14/QUAD SPI/FMC/ LCD	SAI2/QU ADSPI/S DMMC2/D FSDM1/O TG2_HS/ OTG1_FS /LCD	I2C4/CAN 3/SDMM C2/ETH	UART7/ FMC/SD MMC1/M DIOS/OT G2_FS	DCMI/L CD/DSI	LCD	SYS
Port H	PH14	-	-	-	TIM8_CH 2N	-	-	-	-	UART4_ RX	CAN1_R X	-	-	FMC_D2 2	DCMI_D 4	LCD_G3	EVEN TOUT
POILE	PH15	-	-	-	TIM8_CH 3N	-	-	-	-	-	-	-	-	FMC_D2 3	DCMI_D 11	LCD_G4	EVEN TOUT
	PI0	-	-	TIM5_C H4	-	-	SPI2_NS S/I2S2_ WS	-	-	-	-	-	-	FMC_D2 4	DCMI_D 13	LCD_G5	EVEN TOUT
	PI1	-	-	-	TIM8_BKI N2	-	SPI2_SC K/I2S2_ CK	-	-	-	-	-	-	FMC_D2 5	DCMI_D 8	LCD_G6	EVEN TOUT
	PI2	-	-	-	TIM8_CH 4	-	SPI2_MI SO	-	-	-	-	-	-	FMC_D2 6	DCMI_D 9	LCD_G7	EVEN TOUT
	PI3	-	-	-	TIM8_ET R	-	SPI2_M OSI/I2S2 _SD	-	-	-	-	-	-	FMC_D2 7	DCMI_D 10	-	EVEN TOUT
	PI4	-	-	-	TIM8_BKI N	-	-	-	-	-	-	SAI2_MC K_A	-	FMC_NB L2	DCMI_D 5	LCD_B4	EVEN TOUT
Port I	PI5	-	-	-	TIM8_CH 1	-	-	-	-	-	-	SAI2_SC K_A	-	FMC_NB L3	DCMI_V SYNC	LCD_B5	EVEN TOUT
	PI6	-	-	-	TIM8_CH 2	-	-	-	-	-	-	SAI2_SD_ A	-	FMC_D2 8	DCMI_D 6	LCD_B6	EVEN TOUT
	PI7	-	-	-	TIM8_CH 3	-	-	-	-	-	-	SAI2_FS_ A	-	FMC_D2 9	DCMI_D 7	LCD_B7	EVEN TOUT
	PI8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PI9	-	-	-	-	-	-	-	-	UART4_ RX	CAN1_R X	-	-	FMC_D3 0	-	LCD_VS YNC	EVEN TOUT
	PI10	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_ RX_ER	FMC_D3 1	-	LCD_HS YNC	EVEN TOUT
	PI11	-	-	-	-	-	-	-	-	-	LCD_G6	OTG_HS_ ULPI_DIR	-	-	-	-	EVEN TOUT

Table 12. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx alternate

DocID029041 Rev 4

5

103/255

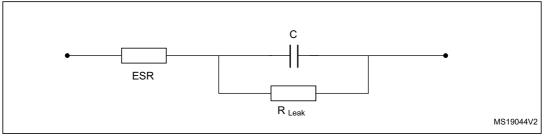
STM32F765xx STM32F767xx STM32F768Ax STM32F769xx

Pinouts and pin description

- 7. The over-drive mode is not supported when the internal regulator is OFF.
- 8. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
- 9. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} .
- 10. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax}.

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum HCLK frequency vs Flash memory wait states (1)(2)	I/O operation	Possible Flash memory operations
V _{DD} =1.7 to 2.1 V ⁽³⁾	Conversion time up to 1.2 Msps	20 MHz	180 MHz with 8 wait states and over-drive OFF	No I/O compensation	8-bit erase and program operations only
V _{DD} = 2.1 to 2.4 V	Conversion time up to 1.2 Msps	22 MHz	216 MHz with 9 wait states and over-drive ON	No I/O compensation	16-bit erase and program operations
V _{DD} = 2.4 to 2.7 V	Conversion time up to 2.4 Msps	24 MHz	216 MHz with 8 wait states and over-drive ON	I/O compensation works	16-bit erase and program operations
$V_{DD} = 2.7 \text{ to}$ 3.6 V ⁽⁴⁾	Conversion time up to 2.4 Msps	30 MHz	216 MHz with 6 wait states and over-drive ON	I/O compensation works	32-bit erase and program operations

1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.


 Thanks to the ART accelerator on ITCM interface and L1-cache on AXI interface, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator or L1-cache allows to achieve a performance equivalent to 0-wait state program execution.

- V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.18.2: Internal reset OFF).
- 4. The voltage range for USB full speed PHYs can drop down to 2.7 V. However the electrical characteristics of D- and D+ pins will be degraded between 2.7 and 3 V.

5.3.2 VCAP1/VCAP2 external capacitor

Stabilization for the main regulator is achieved by connecting an external capacitor C_{EXT} to the VCAP1/VCAP2 pins. C_{EXT} is specified in *Table 19*.

Figure 27. External capacitor C_{EXT}

1. Legend: ESR is the equivalent series resistance.

- 1. Guaranteed by characterization results.
- 2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.
- When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

Cumhal	Deremeter			Turn		Max ⁽¹⁾		Unit	
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Onit	
			216	128	144 ⁽³⁾	190 ⁽³⁾	-		
			200	119	134	180	214		
		All	180	105	118 ⁽³⁾	153 ⁽³⁾	178 ⁽³⁾		
		peripherals	168	93	105	136	156		
		enabled ⁽²⁾	144	72	80	107	124		
			60	33	39	65	82		
	Supply		25	17	21	47	65	mA	
I _{DD}	current in Sleep mode		216	18	25 ⁽³⁾	71 ⁽³⁾	-		
			200	17	24	70	112		
		All	180	14	20 ⁽³⁾	54 ⁽³⁾	75 ⁽³⁾		
		peripherals	168	13	18	49	69		
		disabled	144	10	14	40	58		
			60	6	10	36	53		
			25	4	8	34	51		

Table 33. Typical and maximum current consumption in Sleep mode, regulator ON

1. Guaranteed by characterization results, unless otherwise specified.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. Guaranteed by test in production.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid a current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 39: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load

 V_{DD} is the MCU supply voltage

 $f_{\mbox{SW}}$ is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT}

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Symbol	Parameter	Conditions	I/O toggling frequency (fsw) MHz	Typ V _{DD} = 3.3 V	Тур V _{DD} = 1.8 V	Unit
			2	0.1	0.1	
			8	0.4	0.2	
			25	1.1	0.7	
		$C_{EXT} = 0 \text{ pF}$ $C = C_{INT} + C_S + C_{EXT}$	50	2.4	1.3	
		$C = C_{INT} + C_S + C_{EXT}$	60	3.1	1.6	
			84 4.3	2.4		
			90	4.9	2.6	
	I/O switching		100	5.4	2.8	mA
I _{DDIO}	Current		2	0.2	0.1	
			8	0.6	0.3	
			25	1.8	1.1	
		$C_{EXT} = 10 \text{ pF}$ $C = C_{INT} + C_S + C_{EXT}$	50	3.1	2.3	
		$C = C_{INT} + C_S + C_{EXT}$	60	4.6	3.4	
			84	9.7	3.6	
			90	10.12	5.2	1
			100	14.92	5.4	

Table 38	. Switching output	I/O current	consumption ⁽¹⁾
----------	--------------------	-------------	----------------------------

DocID029041 Rev 4

5.3.8 Wakeup time from low-power modes

The wakeup times given in *Table 40* are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep modes: the wakeup event is WFE.
- WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and V_{DD} =3.3 V.

Symbol	Parameter	Conditions	Typ ⁽¹⁾	Max ⁽¹⁾	Unit	
t _{WUSLEEP} ⁽²⁾	Wakeup from Sleep	-	13	13	CPU clock cycles	
		Main regulator is ON	14	14.9		
twustop ⁽²⁾	Wakeup from Stop mode	Main regulator is ON and Flash memory in Deep power down mode	104.1	107.6		
	with MR/LP regulator in normal mode	Low power regulator is ON	21.4	24.2		
		Low power regulator is ON and Flash memory in Deep power down mode	111.5	116.5	μs	
	Wakeup from Stop mode	Main regulator in under-drive mode (Flash memory in Deep power-down mode)	107.4	113.2		
t _{WUSTOP} ⁽²⁾	with MR/LP regulator in Under-drive mode	Low power regulator in under-drive mode (Flash memory in Deep power-down mode)	112.7	120		
tWUSTDBY	Wakeup from Standby	Exit Standby mode on rising edge	308	313	1	
(2)	mode	Exit Standby mode on falling edge	307	313		

Table 40. Low-power mode wakeup timings

1. Guaranteed by characterization results.

2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
	Programming voltage	32-bit program operation	2.7	-	3	V
V _{prog}		16-bit program operation	2.1	-	3.6	V
		8-bit program operation	1.7	-	3.6	V

Table 56. Flash memory programming (single bank configurationnDBANK=1) (continued)

1. Guaranteed by characterization results.

2. The maximum programming time is measured after 100K erase operations.

		nDBANK=0)				
Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Word programming time	Program/erase parallelism (PSIZE) = x 8/16/32	-	16	100 ⁽²⁾	μs
		Program/erase parallelism (PSIZE) = x 8	-	400	800	
t _{ERASE16KB}	Sector (16 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	250	600	ms
		Program/erase parallelism (PSIZE) = x 32	-	200	500	
		Program/erase parallelism (PSIZE) = x 8	-	1100	2400	
t _{ERASE64KB}	Sector (64 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	800	1400	ms
		Program/erase parallelism (PSIZE) = x 32	-	500	1100	
		Program/erase parallelism (PSIZE) = x 8	-	2.1	4	
t _{ERASE128KB}	Sector (128 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	1.5	2.6	s
		Program/erase parallelism (PSIZE) = x 32	-	1	2	
		Program/erase parallelism (PSIZE) = x 8	-	16	32	
t _{ME}	Mass erase time	Program/erase parallelism (PSIZE) = x 16	-	11	22	s
		Program/erase parallelism (PSIZE) = x 32	-	8	16	

Table 57. Flash memory programming (dual bank configuration
nDBANK=0)

- 1. Guaranteed by characterization results.
- 2. Cycling performed over the whole temperature range.

5.3.17 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 60*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V _{DD} = 3.3 V, T _A = +25 °C, f _{HCLK} = 216 MHz, conforms to IEC 61000- 4-2	2B
V _{FTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V _{DD} = 3.3 V, T _A =+25 °C, f _{HCLK} = 168 MHz, conforms to IEC 61000- 4-2	5A

Table 60. EMS characteristics

As a consequence, it is recommended to add a serial resistor (1 k Ω) located as close as possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm on PCB).

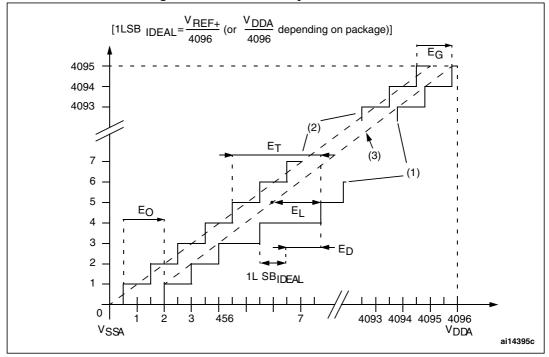
Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

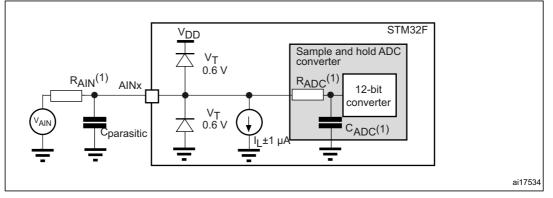
Software recommendations

The software flowchart must include the management of runaway conditions such as:


- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Symbol		ADC characteristics	,	Max	11014	
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 30 MHz, 12-bit resolution	-	-	1764	kHz
		-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> for details	-	-	50	kΩ
$R_{ADC}^{(2)(4)}$	Sampling switch resistance	-	-	-	6	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	4	7	pF
↓ (2)	Injection trigger conversion	f _{ADC} = 30 MHz	-	-	0.100	μs
$t_{lat}^{(2)}$	latency		-	-	3 ⁽⁵⁾	1/f _{ADC}
t _{latr} (2)	Regular trigger conversion	f _{ADC} = 30 MHz	-	-	0.067	μs
⁴ atr`´	latency		-	-	2 ⁽⁵⁾	1/f _{ADC}
ts ⁽²⁾	Sampling time	f _{ADC} = 30 MHz	0.100	-	16	μs
IS T		-	3	-	480	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	-	2	3	μs
		f _{ADC} = 30 MHz 12-bit resolution	0.50	-	16.40	μs
		f _{ADC} = 30 MHz 10-bit resolution	0.43	-	16.34	μs
t _{CONV} ⁽²⁾	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	μs
		f _{ADC} = 30 MHz 6-bit resolution	0.30	-	16.20	μs
		9 to 492 (t _S for sampling approximation)	+n-bit resolution f	ssive	1/f _{ADC}	
		12-bit resolution Single ADC	-	-	2.4	Msps
f _S ⁽²⁾	Sampling rate (f _{ADC} = 36 MHz, and t _S = 3 ADC cycles)	12-bit resolution Interleave Dual ADC mode	-	-	4.5	Msps
		12-bit resolution Interleave Triple ADC mode	-	-	7.2	Msps

Table 71. ADC characteristics (continued)



- 1. See also Table 73.
- 2. Example of an actual transfer curve.
- 3. Ideal transfer curve.
- 4 End point correlation line.

 E_T = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. 5.

EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

- 1. Refer to Table 71 for the values of RAIN, RADC and CADC.
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high $C_{parasitic}$ value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

Symbol Parameter		Conditions	Min	Тур	Мах	Unit
T _{Coeff} ⁽²⁾	Temperature coefficient	-	-	30	50	ppm/°C
t _{START} ⁽²⁾	Startup time	-	-	6	10	μs

Table 80. internal reference voltage (continued)

1. Shortest sampling time can be determined in the application by multiple iterations.

2. Guaranteed by design.

Table 81. Internal reference voltage calibration values

Symbol	Parameter	Memory address
V _{REFIN_CAL}	Raw data acquired at temperature of 30 $^\circ\text{C}$ _{VDDA} = 3.3 V	0x1FF0 F44A - 0x1FF0 F44B

5.3.28 DAC electrical characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Comments
V _{DDA}	Analog supply voltage	1.7 ⁽¹⁾	-	3.6	V	-
V _{REF+}	Reference supply voltage	1.7 ⁽¹⁾	-	3.6	V	$V_{REF+} \le V_{DDA}$
V _{SSA}	Ground	0	-	0	V	-
R _{LOAD} ⁽²⁾	Resistive load with buffer ON	5	-	-	kΩ	-
R ₀ ⁽²⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 M Ω
C _{LOAD} ⁽²⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} - 0.2	V	(0x0E0) to (0xF1C) at V _{REF+} = 3.6 V and (0x1C7) to (0xE38) at V _{REF+} = 1.7 V
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output excursion of
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{REF+} - 1LSB	V	the DAC.
I _{VREF+} ⁽⁴⁾	DAC DC V _{REF} current consumption in quiescent	-	170	240	μA	With no load, worst code (0x800) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
VREF+` ′	mode (Standby mode)	-	50	75	μΑ	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs

Table 82. DAC characteristics

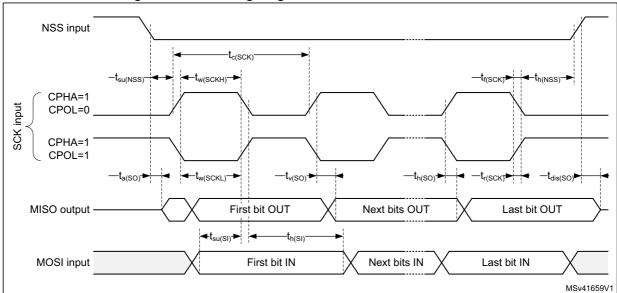
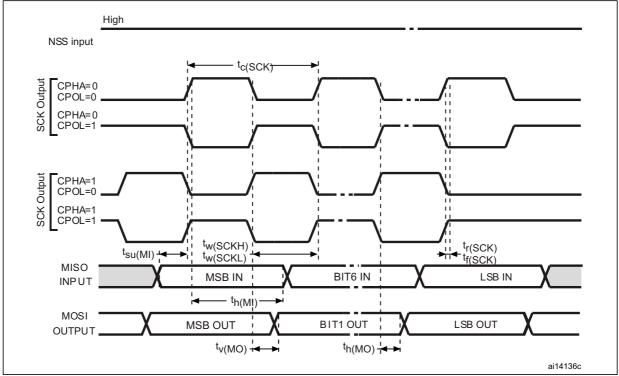
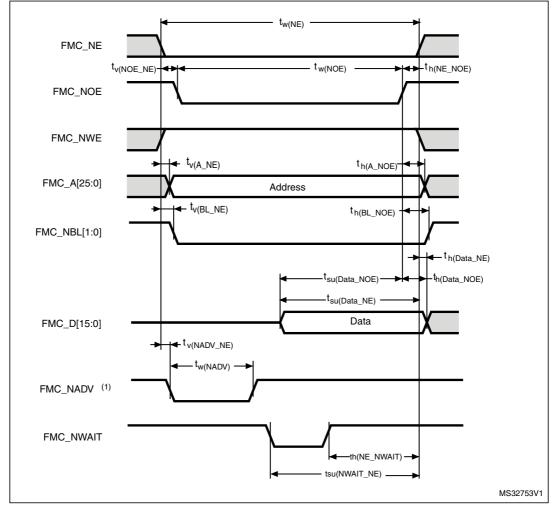



Figure 47. SPI timing diagram - slave mode and CPHA = $1^{(1)}$

1. Measurement points are done at $0.5V_{DD}$ and with external C_L = 30 pF.

Figure 48. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at $0.5V_{DD}$ and with external C_L = 30 pF.


Refer to *Section 5.3.20: I/O port characteristics* for more details on the input/output characteristics.

Asynchronous waveforms and timings

Figure 61 through *Figure 64* represent asynchronous waveforms and *Table 100* through *Table 107* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- AddressSetupTime = 0x1
- AddressHoldTime = 0x1
- DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)
- BusTurnAroundDuration = 0x0
- Capcitive load CL = 30 pF

In all timing tables, the T_{HCLK} is the HCLK clock period

Figure 61. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

5.3.34 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics

Unless otherwise specified, the parameters given in *Table 122* for DFSDM are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DD} supply voltage summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30pF
- Measurement points are done at CMOS levels: 0.5 x VDD

Refer to *Section 5.3.20: I/O port characteristics* for more details on the input/output alternate function characteristics (DFSDM1_CKINx, DFSDM1_DATINx, DFSDM1_CKOUT for DFSDM1).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{DFSDMCLK}	DFSDM clock	1.71 < V _{DD} < 3.6 V	-	-	f _{SYSCLK}	
		SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1:0]=0), 1.71 < V _{DD} < 3.6 V	-	-	20 (f _{DFSDMCLK} /4)	
		SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1:0]=0), 2.7 < V _{DD} < 3.6 V	-	-	20 (f _{DFSDMCLK} /4)	
	Input clock frequency	SPI mode (SITP[1:0]=0,1), Internal clock mode (SPICKSEL[1:0]≠0), 1.71 < V _{DD} < 3.6 V	-	-	20 (f _{DFSDMCLK} /4)	MHz
		SPI mode (SITP[1:0]=0,1), Internal clock mode (SPICKSEL[1:0]≠0), 2.7 < V _{DD} < 3.6 V	-	-	20 (f _{DFSDMCLK} /4)	
fскоит	Output clock frequency	1.71 < V _{DD} < 3.6 V	-	-	20	
DuCy _{CKOUT}	Output clock frequency duty cycle	1.71 < V _{DD} < 3.6 V	45	50	55	%

Table 122. DFSDM measured timing 1.71-3.6V

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
^t wh(CKIN) ^t wl(CKIN)	Input clock high and low time	SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1:0]=0), 1.71 < V _{DD} < 3.6 V	TCKIN/2 - 0.5	T _{CKIN} /2	-	
t _{su}	Data input setup time	SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1:0]=0), 1.71 < V _{DD} < 3.6 V	2	-	-	
t _h	Data input hold time	SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1:0]=0), 1.71 < V _{DD} < 3.6 V	3	-	-	ns
T _{Manchester}	Manchester data period (recovered clock period)	Manchester mode (SITP[1:0]=2,3), Internal clock mode (SPICKSEL[1:0] \neq 0), 1.71 < V _{DD} < 3.6 V	(CKOUTDIV+1) * T _{DFSDMCLK}	-	(2*CKOUTDIV) * T _{DFSDMCLK}	

Table 122. DFSDM measur	red timing 1.71-3.6V (co	ontinued)

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

6.1 LQFP100 14x 14 mm, low-profile quad flat package information

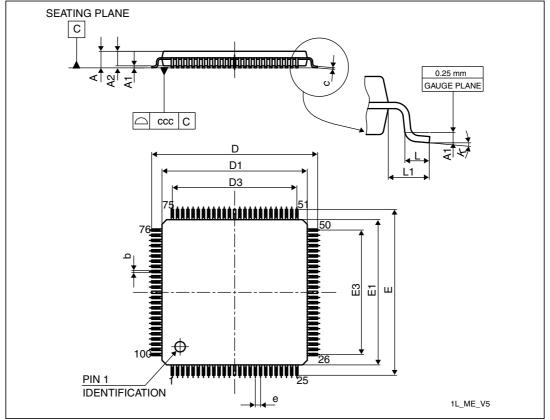
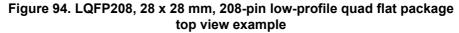


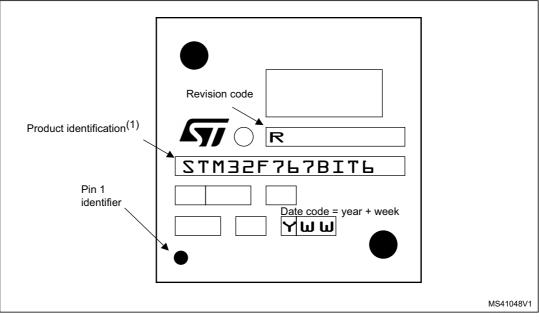
Figure 83. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline

1. Drawing is not to scale.

Symbol		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
A	-	-	1.600		-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	29.800	30.000	30.200	1.1732	1.1811	1.1890	
D1	27.800	28.000	28.200	1.0945	1.1024	1.1102	
D3	-	25.500	-	-	1.0039	-	
E	29.800	30.000	30.200	1.1732	1.1811	1.1890	
E1	27.800	28.000	28.200	1.0945	1.1024	1.1102	
E3	-	25.500	-	-	1.0039	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7.0°	0°	3.5°	7.0°	
ссс	-	-	0.080	-	-	0.0031	

Table 128. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package mechanical data


1. Values in inches are converted from mm and rounded to 4 decimal digits.



LQFP208 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

6.7 TFBGA216, 13 x 13 x 0.8 mm thin fine-pitch ball grid array package information

Z Seating plane A2 A1 А D1 Χ A1 ball A1 ball D identifier index area F t e ÷00000000000 Α • 4 0000000000000000 G 000000000000000 000000 000000 E1 Е +00000 000000 00000 000000 0000000000000000 000000000000000 е Υ 0000000000000000 000000000000000 R 0000000000000000 15 Øb (216 balls) BOTTOM VIEW TOP VIEW A0L2_ME_V3

Figure 101. TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid array package outline

1. Drawing is not to scale.

Table 133. TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid array	
package mechanical data	

O maked		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
A	-	-	1.100	-	-	0.0433	
A1	0.150	-	-	0.0059	-	-	
A2	-	0.760	-	-	0.0299	-	
b	0.350	0.400	0.450	0.0138	0.0157	0.0177	
D	12.850	13.000	13.150	0.5118	0.5118	0.5177	
D1	-	11.200	-	-	0.4409	-	
E	12.850	13.000	13.150	0.5118	0.5118	0.5177	
E1	-	11.200	-	-	0.4409	-	
е	-	0.800	-	-	0.0315	-	
F	-	0.900	-	-	0.0354	-	

DocID029041 Rev 4

