

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SAI, SPDIF, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	140
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	201-UFBGA
Supplier Device Package	176+25UFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f765iik7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		5.3.25	Temperature sensor characteristics	. 175
		5.3.26	V _{BAT} monitoring characteristics	. 175
		5.3.27	Reference voltage	. 175
		5.3.28	DAC electrical characteristics	. 176
		5.3.29	Communications interfaces	. 178
		5.3.30	FMC characteristics	. 195
		5.3.31	Quad-SPI interface characteristics	. 215
		5.3.32	Camera interface (DCMI) timing specifications	. 217
		5.3.33	LCD-TFT controller (LTDC) characteristics	. 218
		5.3.34	Digital filter for Sigma-Delta Modulators (DFSDM) characteristics	. 220
		5.3.35	DFSDM timing diagrams	. 222
		5.3.36	SD/SDIO MMC card host interface (SDMMC) characteristics	223
6	Packa	ige info	rmation	225
	6.1	LQFP10	0 14x 14 mm, low-profile quad flat package information	225
	6.2	LQFP14	4 20 x 20 mm, low-profile quad flat package information	229
	6.3	LQFP17	6 24 x 24 mm, low-profile quad flat package information	233
	6.4	LQFP20	8 28 x 28 mm low-profile quad flat package information	237
	6.5	WLCSP package	180-bump, 5.5 x 6 mm, wafer level chip scale	241
	6.6	UFBGA ² array pa	176+25, 10 x 10, 0.65 mm ultra thin fine-pitch ball grid ackage information	245
	6.7	TFBGA2 array pa	216, 13 x 13 x 0.8 mm thin fine-pitch ball grid ckage information	248
	6.8	Thermal	characteristics	251
7	Order	ing info	rmation	252
Appendix	A Re	ecomme	endations when using internal reset OFF	253
	Δ 1	Operatir		252
	Π.Ι	Operaul		200
Revision I	history	/		254

List of figures

Figure 1.	Compatible board design for LQFP100 package	18
Figure 2.	STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx block diagram	19
Figure 3.	STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx AXI-AHB	
	bus matrix architecture ⁽¹⁾	22
Figure 4.	VDDUSB connected to VDD power supply.	28
Figure 5.	VDDUSB connected to external power supply	29
Figure 6.	Power supply supervisor interconnection with internal reset OFF	30
Figure 7.	PDR_ON control with internal reset OFF	31
Figure 8.	Regulator OFF	33
Figure 9.	Startup in regulator OFF: slow V _{DD} slope	
	- power-down reset risen after V _{CAP 1} , V _{CAP 2} stabilization	34
Figure 10.	Startup in regulator OFF mode: fast V _{DD} slope	
	- power-down reset risen before V _{CAP 1} V _{CAP 2} stabilization	34
Figure 11.	STM32F76xxx LQFP100 pinout	54
Figure 12.	STM32F76xxx LQFP144 pinout	55
Figure 13.	STM32F76xxx LQFP176 pinout	56
Figure 14.	STM32F769xx LQFP176 pinout	57
Figure 15.	STM32F769Ax/STM32F768Ax WLCSP180 ballout	58
Figure 16.	STM32F76xxx LQFP208 pinout	59
Figure 17.	STM32F769xx LQFP208 pinout	60
Figure 18.	STM32F76xxx UFBGA176 ballout	61
Figure 19.	STM32F76xxx TFBGA216 ballout	62
Figure 20.	STM32F769xx TFBGA216 ballout	63
Figure 21.	Memory map	106
Figure 22.	Pin loading conditions.	111
Figure 23.	Pin input voltage	111
Figure 24.	STM32F769xx/STM32F779xx power supply scheme	112
Figure 25.	STM32F767xx/STM32F777xx power supply scheme	113
Figure 26.	Current consumption measurement scheme	114
Figure 27.	External capacitor C _{EVT}	118
Figure 28.	High-speed external clock source AC timing diagram	141
Figure 29	Low-speed external clock source AC timing diagram	142
Figure 30	Typical application with an 8 MHz crystal	143
Figure 31	Typical application with a 32 768 kHz crystal	144
Figure 32	ACCHSI versus temperature	145
Figure 33	I SI deviation versus temperature	146
Figure 34	PLL output clock waveforms in center spread mode	150
Figure 35	PLL output clock waveforms in down spread mode	151
Figure 36	MIPL D-PHY HS/I P clock lane transition timing diagram	154
Figure 37	MIPL D-PHY HS/LP data lane transition timing diagram	154
Figure 38	FT I/O input characteristics	164
Figure 30	I/O AC characteristics definition	167
Figure 40	Recommended NRST nin protection	168
Figure 40.		100 172
Figure 41.	Typical connection diagram using the ADC	173 172
Figure 42.	Power supply and reference decoupling (Vnet connected to V)	
Figure 43.	Fower supply and reference decoupling ($V_{\text{REF+}}$ for connected to V_{DDA})	
Figure 44.	Tower suppry and reference decoupling (V _{REF+} connected to V _{DDA})	
rigure 45.		

Figure 46.	SPI timing diagram - slave mode and CPHA = 0	81
Figure 47.	SPI timing diagram - slave mode and CPHA = $1^{(1)}$	82
Figure 48.	SPI timing diagram - master mode ⁽¹⁾	82
Figure 49.	I ² S slave timing diagram (Philips protocol) ⁽¹⁾ 18	84
Figure 50.	I ² S master timing diagram (Philips protocol) ⁽¹⁾ 18	84
Figure 51.	JTAG timing diagram	86
Figure 52.	SWD timing diagram	87
Figure 53.	SAI master timing waveforms	88
Figure 54.	SAI slave timing waveforms 18	89
Figure 55.	USB OTG full speed timings: definition of data signal rise and fall time	90
Figure 56.	ULPI timing diagram	92
Figure 57.	Ethernet SMI timing diagram	93
Figure 58.	Ethernet RMII timing diagram	93
Figure 59.	Ethernet MII timing diagram	94
Figure 60.	MDIO Slave timing diagram	95
Figure 61.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	96
Figure 62.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	98
Figure 63.	Asynchronous multiplexed PSRAM/NOR read waveforms.	99
Figure 64.	Asynchronous multiplexed PSRAM/NOR write waveforms	01
Figure 65	Synchronous multiplexed NOR/PSRAM read timings	03
Figure 66	Synchronous multiplexed PSRAM write timings	05
Figure 67	Synchronous non-multiplexed NOR/PSRAM read timings	07
Figure 68	Synchronous non-multiplexed PSRAM write timings	08
Figure 69	NAND controller waveforms for read access	10
Figure 70	NAND controller waveforms for write access	10
Figure 71	NAND controller waveforms for common memory read access	11
Figure 72	NAND controller waveforms for common memory write access	11 11
Figure 72.	NAND controller wavelouns for common memory while access $\dots \dots $	12
Figure 73.	SDRAW read access waveforms (CL = 1)	17
Figure 74.	Oued CDI timing diagram CDD mode	14
Figure 75.	Quad-SPI timing diagram DDD made	17
Figure 76.	Quad-SPT liming diagram	11
Figure 77.	LCD TET herizentel timing diagram	10
Figure 78.		19
Figure 79.		19
Figure 80.		22
Figure 81.		23
Figure 82.		23
Figure 83.	LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline	25
Figure 84.	LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package	
	recommended footprint	27
Figure 85.	LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package	
	top view example	28
Figure 86.	LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline	29
Figure 87.	LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package	
	recommended footprint	31
Figure 88.	LQFP144, 20 x 20mm, 144-pin low-profile quad flat package	
	top view example	32
Figure 89.	LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package outline	33
Figure 90.	LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package	
	recommended footprint	35
Figure 91.	LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package	
-	top view example	36

2.10 LCD-TFT controller

The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue) and delivers all signals to interface directly to a broad range of LCD and TFT panels up to XGA (1024x768) resolution with the following features:

- 2 display layers with dedicated FIFO (64x32-bit)
- Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
- Up to 8 input color formats selectable per layer
- Flexible blending between two layers using alpha value (per pixel or constant)
- Flexible programmable parameters for each layer
- Color keying (transparency color)
- Up to 4 programmable interrupt events

2.11 Chrom-ART Accelerator[™] (DMA2D)

The Chrom-Art Accelerator [™] (DMA2D) is a graphic accelerator which offers advanced bit blitting, row data copy and pixel format conversion. It supports the following functions:

- Rectangle filling with a fixed color
- Rectangle copy
- Rectangle copy with pixel format conversion
- Rectangle composition with blending and pixel format conversion

Various image format codings are supported, from indirect 4bpp color mode up to 32bpp direct color. It embeds dedicated memory to store color lookup tables.

An interrupt can be generated when an operation is complete or at a programmed watermark.

All the operations are fully automatized and are running independently from the CPU or the DMAs.

2.12 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 110 maskable interrupt channels plus the 16 interrupt lines of the $Cortex^{\mathbb{R}}$ -M7 with FPU core.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

Figure 8. Regulator OFF

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is faster than the time for V_{DD} to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach V₁₂ minimum value and until V_{DD} reaches 1.7 V (see *Figure 9*).
- Otherwise, if the time for V_{CAP_1} and V_{CAP_2} to reach V_{12} minimum value is slower than the time for V_{DD} to reach 1.7 V, then PA0 could be asserted low externally (see *Figure 10*).
- If V_{CAP_1} and V_{CAP_2} go below V_{12} minimum value and V_{DD} is higher than 1.7 V, then a reset must be asserted on PA0 pin.
- Note: The minimum value of V_{12} depends on the maximum frequency targeted in the application.

2.19.3 Regulator ON/OFF and internal reset ON/OFF availability

	ie integulater e		anabinty	
Package	Regulator ON	Regulator OFF	Internal reset ON	Internal reset OFF
LQFP100	Vos	No	Yes	No
LQFP144, LQFP208	165	NO		
LQFP176, UFBGA176, TFBGA216	Yes BYPASS_REG set to V _{SS}	Yes BYPASS_REG set to V _{DD}	Yes PDR_ON set to V _{DD}	Yes PDR_ON set to V _{SS}
WLCSP180	Ye	_S (1)		

Table 4. Regulator ON/OFF and internal reset ON/OFF availability

1. Available only on dedicated part number. Refer to Section 7: Ordering information.

2.20 Real-time clock (RTC), backup SRAM and backup registers

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Two programmable alarms.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to V_{BAT} mode.
- 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period.

The RTC and the 32 backup registers are supplied through a switch that takes power either from the V_{DD} supply when present or from the V_{BAT} pin.

The backup registers are 32-bit registers used to store 128 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby mode.

3 Pinouts and pin description

Figure 11. STM32F76xxx LQFP100 pinout

1. The above figure shows the package top view.

Figure 18. STM32F76xxx UFBGA176 ballout

1. The above figure shows the package top view.

~~	
~	
_	
_	
<	
ω	
Ň٦.	
-п	
~	
n	
~	
σ	
~	
×	
~	
~	
_	
~	
ω	
N	
_	
~	
<u> </u>	
Ο,	
_	
×	
\sim	
\sim	
"	
r n	
~~~	
¥1	
Ϋ́	
Ť	
MLS	
ŝTM	
STM3	
<b>STM32</b>	
3TM321	
STM32F	
STM32F7	
3TM32F7	
3TM32F76	
3TM32F768	
3TM32F768	
3TM32F7684	
3TM32F768A	
STM32F768Ax	
STM32F768Ax	
3TM32F768Ax \$	
STM32F768Ax S	
STM32F768Ax ST	
3TM32F768Ax ST	
3TM32F768Ax STN	
3TM32F768Ax STM	
STM32F768Ax STM3	
3TM32F768Ax STM3	
3TM32F768Ax STM32	
3TM32F768Ax STM32I	
3TM32F768Ax STM32F	
3TM32F768Ax STM32F7	
3TM32F768Ax STM32F7	
3TM32F768Ax STM32F76	
3TM32F768Ax STM32F769	
3TM32F768Ax STM32F769	
3TM32F768Ax STM32F769x	
3TM32F768Ax STM32F769x)	

AF15

SYS

EVEN TOUT

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14
Pc	ort	SYS	12C4/UA RT5/TIM 1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/DFSDM 1/CEC	I2C1/2/3/ 4/USART 1/CEC	SPI1/I2S 1/SPI2/I2 S2/SPI3/ I2S3/SPI 4/5/6	SPI2/I2S 2/SPI3/I2 S3/SAI1/ I2C4/UA RT4/DF SDM1	SPI2/I2S 2/SPI3/I2 S3/SPI6/ USART1/ 2/3/UART 5/DFSDM 1/SPDIF	SPI6/SAI 2/USART 6/UART4/ 5/7/8/OT G_FS/SP DIF	CAN1/2/T IM12/13/ 14/QUAD SPI/FMC/ LCD	SAI2/QU ADSPI/S DMMC2/D FSDM1/O TG2_HS/ OTG1_FS /LCD	I2C4/CAN 3/SDMM C2/ETH	UART7/ FMC/SD MMC1/M DIOS/OT G2_FS	DCMI/L CD/DSI	LCD
	PG8	-	-	-	-	-	SPI6_NS S	-	SPDIF_R X2	USART6 _RTS	-	-	ETH_PPS _OUT	FMC_SD CLK	-	LCD_G7
	PG9	-	-	-	-	-	SPI1_MI SO	-	SPDIF_R X3	USART6 _RX	QUADSP I_BK2_IO 2	SAI2_FS_ B	SDMMC2 _D0	FMC_NE 2/FMC_ NCE	DCMI_V SYNC	-
	PG10	-	-	-	-	-	SPI1_NS S/I2S1_ WS	-	-	-	LCD_G3	SAI2_SD_ B	SDMMC2 _D1	FMC_NE 3	DCMI_D 2	LCD_B2
Detto	PG11	-	-	-	-	-	SPI1_SC K/I2S1_ CK	-	SPDIF_R X0	-	-	SDMMC2 _D2	ETH_MII_ TX_EN/E TH_RMII_ TX_EN	-	DCMI_D 3	LCD_B3
Port G	PG12	-	-	-	LPTIM1_I N1	-	SPI6_MI SO	-	SPDIF_R X1	USART6 _RTS	LCD_B4	-	SDMMC2 _D3	FMC_NE 4	-	LCD_B1
	PG13	TRACED 0	-	-	LPTIM1_ OUT	-	SPI6_SC K	-	-	USART6 _CTS	-	-	ETH_MII_ TXD0/ET H_RMII_T XD0	FMC_A2 4	-	LCD_R0
	PG14	TRACED	-	-	LPTIM1_E TR	-	SPI6_M OSI	-	-	USART6 _TX	QUADSP I_BK2_IO 3	-	ETH_MII_ TXD1/ET H_RMII_T XD1	FMC_A2 5	-	LCD_B0
	PG15	-	-	-	-	-	-	-	-	USART6 _CTS	-	-	-	FMC_SD NCAS	DCMI_D 13	-

# Table 12. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx alternate function mapping (continued)

DocID029041 Rev 4

5

101/255

# Table 27. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (Single bank mode) or SRAM on AXI (L1-cache disabled), regulator ON

Symbol	Deremeter	Conditions		Turn			linit		
Symbol	Parameter Conditions				тур	TA= 25 °C	TA=85 °C	TA=105 °C	Unit
			216	190	209	255	-		
			200	177	194	241	268		
			180	160	175	211	232		
		All peripherals enabled ⁽²⁾⁽³⁾	168	144	156	189	209		
		Chabled	144	115	125	152	170		
			60	56	62	89	107		
	Supply			25	27	32	59	79	mA
'DD	RUN mode		216	92	103	150	-		
			200	86	96	243	171		
			180	79	87	123	144		
		All peripherals disabled ⁽³⁾	168	71	79	111	131		
			144	60	65	92	110		
			60	32	36	63	80		
				25	16	20	46	64	

1. Guaranteed by characterization results, unless otherwise specified.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.



- 1. Guaranteed by characterization results.
- 2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.
- When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

Symbol	Paramatar	Conditiono	f (MH-)	Tun			Unit	
Symbol Pa	Farameter	Conditions		тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			216	128	144 ⁽³⁾	190 ⁽³⁾	-	
			200	119	134	180	214	
		All	180	105	118 ⁽³⁾	153 ⁽³⁾	178 ⁽³⁾	
		peripherals	168	93	105	136	156	
		enabled ⁽²⁾	144	72	80	107	124	
			60	33	39	65	82	
	Supply		25	17	21	47	65	mA
DD	Sleep mode		216	18	25 ⁽³⁾	71 ⁽³⁾	-	
			200	17	24	70	112	
		All	180	14	20 ⁽³⁾	54 ⁽³⁾	75 ⁽³⁾	
		peripherals	168	13	18	49	69	
		disabled	144	10	14	40	58	
			60	6	10	36	53	
			25	4	8	34	51	

Table 33. Typical and maximum current consumption in Sleep mode, regulator ON

1. Guaranteed by characterization results, unless otherwise specified.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. Guaranteed by test in production.



## 5.3.9 External clock source characteristics

#### High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 65: I/O static characteristics*. However, the recommended clock input waveform is shown in *Figure 28*.

The characteristics given in *Table 41* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	External user clock source frequency ⁽¹⁾		1	-	50	MHz
V _{HSEH}	OSC_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	_	V _{SS}	-	$0.3V_{DD}$	v
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		5	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	10	115
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(HSE)	Duty cycle	-	45	-	55	%
ΙL	OSC_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μÂ

Table 41. High-speed external user clock characteristics

1. Guaranteed by design.

#### Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 65: I/O static characteristics*. However, the recommended clock input waveform is shown in *Figure 29*.

The characteristics given in *Table 42* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 17*.



# 5.3.11 PLL characteristics

The parameters given in *Table 47* and *Table 48* are derived from tests performed under temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	S	Min	Тур	Max	Unit
f _{PLL_IN}	PLL input clock ⁽¹⁾	-		0.95 ⁽²⁾	1	2.10	
f _{PLL_OUT}	PLL multiplier output clock	-	-		-	216	
f _{PLL48_OUT}	48 MHz PLL multiplier output clock	-		-	48	75	MHz
f _{VCO_OUT}	PLL VCO output	-		100	-	432	
t	PLL lock time	VCO freq = 192 M	1Hz	75	-	200	116
LOCK		VCO freq = 432 M	1Hz	100	-	300	μο
			RMS	-	25	-	
	Cycle-to-cycle jitter	System clock	peak to peak	-	±150	-	
		216 MHz	RMS	-	15	-	
Jitter ⁽³⁾	Period Jitter		peak to peak	-	±200	-	ps
	Main clock output (MCO) for RMII Ethernet	Cycle to cycle at 50 MHz on 1000 samples		-	32	-	
	Main clock output (MCO) for MII Ethernet	Cycle to cycle at 25 MHz on 1000 samples		-	40	-	
	Bit Time CAN jitter		1 MHz	-	330	-	
I _{DD(PLL)} ⁽⁴⁾	PLL power consumption on $V_{DD}$	VCO freq = 192 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLL)} ⁽⁴⁾	PLL power consumption on $V_{DDA}$	VCO freq = 192 M VCO freq = 432 M	1Hz 1Hz	0.30 0.55	-	0.40 0.85	mA

Table 47.	Main	PLL	characteristics
-----------	------	-----	-----------------

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.

2. Guaranteed by design.

3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.

4. Guaranteed by characterization results.



- 1. Guaranteed by characterization results.
- 2. Cycling performed over the whole temperature range.

## 5.3.17 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

### Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 60*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V _{DD} = 3.3 V, T _A = +25 °C, f _{HCLK} = 216 MHz, conforms to IEC 61000- 4-2	2B
V _{FTB}	Fast transient voltage burst limits to be applied through 100 pF on $V_{DD}$ and $V_{SS}$ pins to induce a functional disturbance	V _{DD} = 3.3 V, T _A =+25 °C, f _{HCLK} = 168 MHz, conforms to IEC 61000- 4-2	5A

#### Table 60. EMS characteristics

As a consequence, it is recommended to add a serial resistor (1 k $\Omega$ ) located as close as possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm on PCB).

#### Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)



# 5.3.25 Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	-	2.5	-	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	-	0.76	-	V
t _{START} ⁽²⁾	Startup time	-	6	10	μs
T _{S_temp} ⁽²⁾	ADC sampling time when reading the temperature (1 °C accuracy)	10	-	-	μs

Table ( / . Temperature sensor characteristics	Table 7	7. Tem	perature	sensor	characteristics
------------------------------------------------	---------	--------	----------	--------	-----------------

1. Guaranteed by characterization results.

2. Guaranteed by design.

Table 78. Temperature sensor calibration values					
Symbol	Parameter	Memory address			
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, $V_{DDA}$ = 3.3 V	0x1FF0 F44C - 0x1FF0 F44D			
TS_CAL2	TS ADC raw data acquired at temperature of 110 °C, $V_{DDA}$ = 3.3 V	0x1FF0 F44E - 0x1FF0 F44F			

# 5.3.26 V_{BAT} monitoring characteristics

### Table 79. V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
R	Resistor bridge for V _{BAT}	-	50	-	KΩ
Q	Ratio on V _{BAT} measurement	-	4	-	
Er ⁽¹⁾	Error on Q	-1	-	+1	%
T _{S_vbat} ⁽²⁾⁽²⁾	ADC sampling time when reading the V _{BAT} 1 mV accuracy	5	_	_	μs

1. Guaranteed by design.

2. Shortest sampling time can be determined in the application by multiple iterations.

## 5.3.27 Reference voltage

The parameters given in *Table 80* are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 17*.

Table 80.	internal	reference	voltage
-----------	----------	-----------	---------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +105 °C	1.18	1.21	1.24	V
T _{S_vrefint} ⁽¹⁾	ADC sampling time when reading the internal reference voltage	-	10	-	-	μs
V _{RERINT_s} ⁽²⁾	Internal reference voltage spread over the temperature range	$V_{DD}$ = 3V $\pm$ 10mV	-	3	5	mV



DocID029041 Rev 4



Table 95. Dynamic characteristics: USB ULPI⁽¹⁾

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{SC}	Control in (ULPI_DIR, ULPI_NXT) setup time	-	2	-	-	
t _{HC}	Control in (ULPI_DIR, ULPI_NXT) hold time	-	1.5	-	-	
t _{SD}	Data in setup time	-	2	-	-	
t _{HD}	Data in hold time	-	1	-	-	
t _{DC} /t _{DD}	Data/control output delay	2.7 V < V _{DD} < 3.6 V, C _L = 20 pF	-	6.5	8	ns
		-	-			
		1.7 V < V _{DD} < 3.6 V, C _L = 15 pF	-	6.5	11	

1. Guaranteed by characterization results.

#### Ethernet characteristics

Unless otherwise specified, the parameters given in *Table 96*, *Table 97* and *Table 98* for SMI, RMII and MII are derived from tests performed under the ambient temperature,  $f_{HCLK}$  frequency summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 20 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}.

Refer to *Section 5.3.20: I/O port characteristics* for more details on the input/output characteristics.

*Table 96* gives the list of Ethernet MAC signals for the SMI (station management interface) and *Figure 57* shows the corresponding timing diagram.



······································					
Symbol	Parameter	Min	Мах	Unit	
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} - 0.5	-		
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	2		
$t_{d(CLKH_NExH)}$	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} + 0.5	-		
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	1.		
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-		
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	2.5		
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK}	-		
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	1.5	ns	
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{HCLK} – 0.5	-		
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	3		
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-		
t _{su(ADV-CLKH)}	FMC_A/D[15:0] valid data before FMC_CLK high	1.5	-		
t _{h(CLKH-ADV)}	FMC_A/D[15:0] valid data after FMC_CLK high	3.5	-		
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2	-		
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	3.5	-		

Table 108. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾

1. Guaranteed by characterization results.





Figure 74. SDRAM write access waveforms

#### Table 116. SDRAM write timings⁽¹⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} + 0.5	
t _{d(SDCLKL _Data} )	Data output valid time	-	3	
t _{h(SDCLKL} _Data)	Data output hold time	0	-	
t _{d(SDCLKL_Add)}	Address valid time	-	3.5	
t _{d(SDCLKL_SDNWE)}	SDNWE valid time	-	1.5	
t _{h(SDCLKL_SDNWE)}	SDNWE hold time	0.5	-	20
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	1.5	115
t _{h(SDCLKLSDNE)}	Chip select hold time	0.5	-	
td(SDCLKL_SDNRAS)	SDNRAS valid time	-	1	
t _h (SDCLKL_SDNRAS)	SDNRAS hold time	0.5	-	
td(SDCLKL_SDNCAS)	SDNCAS valid time	-	1	
t _{d(SDCLKL_SDNCAS)}	SDNCAS hold time	0.5	-	

1. Guaranteed by characterization results.



Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} + 0.5	
t _{d(SDCLKL _Data} )	Data output valid time	-	2.5	
t _{h(SDCLKL} _Data)	Data output hold time	0	-	
t _{d(SDCLKL_Add)}	Address valid time	-	2.5	
t _{d(SDCLKL-SDNWE)}	SDNWE valid time	-	2.5	
t _{h(SDCLKL-SDNWE)}	SDNWE hold time	0	-	ne
t _{d(SDCLKL} - SDNE)	Chip select valid time	-	0.5	115
t _h (SDCLKL- SDNE)	Chip select hold time	0	-	
t _{d(SDCLKL-SDNRAS)}	SDNRAS valid time	-	1.5	
t _{h(SDCLKL-SDNRAS)}	SDNRAS hold time	0 -		
t _d (SDCLKL-SDNCAS)	SDNCAS valid time	-	1.5	
t _{d(SDCLKL-SDNCAS)}	SDNCAS hold time	0	-	

### Table 117. LPSDR SDRAM write timings⁽¹⁾

1. Guaranteed by characterization results.

## 5.3.31 Quad-SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 118* and *Table 119* for Quad-SPI are derived from tests performed under the ambient temperature,  $f_{AHB}$  frequency and  $V_{DD}$  supply voltage conditions summarized in *Table 17: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 20 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate function characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Fck1/t(CK)	Quad-SPI clock	2.7 V≤ V _{DD} <3.6 V CL=20 pF	-	-	108	
	frequency	1.71 V <v<sub>DD&lt;3.6 V CL=15 pF</v<sub>	-	-	100	

Table 118. Quad-SPI characteristics in SDR mode⁽¹⁾



# 6.3 LQFP176 24 x 24 mm, low-profile quad flat package information



Figure 89. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package outline

1. Drawing is not to scale.

