

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SAI, SPDIF, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	82
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f765vgh6

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3 Embedded Flash memory

The STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx devices embed a Flash memory of up to 2 Mbytes available for storing programs and data. The Flash interface features:

- Single /or Dual bank operating modes,
- Read-While-Write (RWW) in Dual bank mode.

2.4 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.5 Embedded SRAM

All the devices feature:

- System SRAM up to 512 Kbytes:
 - SRAM1 on AHB bus Matrix: 368 Kbytes
 - SRAM2 on AHB bus Matrix: 16 Kbytes
 - DTCM-RAM on TCM interface (Tighly Coupled Memory interface): 128 Kbytes for critical real-time data.
- Instruction RAM (ITCM-RAM) 16 Kbytes:
 - It is mapped on TCM interface and reserved only for CPU Execution/Instruction useful for critical real-time routines.

The Data TCM RAM is accessible by the GP-DMAs and peripherals DMAs through specific AHB slave of the CPU. The instruction TCM RAM is reserved only for CPU. It is accessed at CPU clock speed with 0 wait states.

• 4 Kbytes of backup SRAM

This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode.

2.7 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. The configuration is made by software and the transfer sizes between the source and the destination are independent.

The DMA can be used with the main peripherals:

- SPI and I²S
- I²C
- USART
- General-purpose, basic and advanced-control timers TIMx
- DAC
- SDMMC
- Camera interface (DCMI)
- ADC
- SAI
- SPDIFRX
- Quad-SPI
- HDMI-CEC
- JPEG codec
- DFSDM1

2.8 Flexible memory controller (FMC)

The Flexible memory controller (FMC) includes three memory controllers:

- The NOR/PSRAM memory controller
- The NAND/memory controller
- The Synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) controller

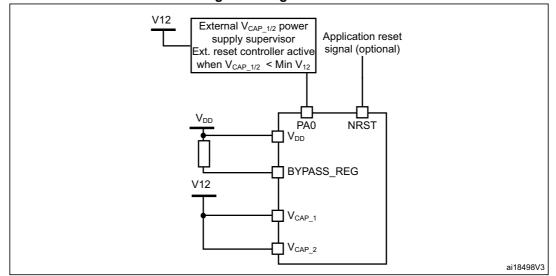
The main features of the FMC controller are the following:

- Interface with static-memory mapped devices including:
 - Static random access memory (SRAM)
 - NOR Flash memory/OneNAND Flash memory
 - PSRAM (4 memory banks)
 - NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
- Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
- 8-,16-,32-bit data bus width
- Independent Chip Select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO
- Read FIFO for SDRAM controller
- The maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is HCLK/2

LCD parallel interface

The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

2.9 Quad-SPI memory interface (QUADSPI)


All the devices embed a Quad-SPI memory interface, which is a specialized communication interface targetting Single, Dual or Quad-SPI Flash memories. It can work in:

- Direct mode through registers
- External Flash status register polling mode
- Memory mapped mode.

Up to 256 Mbytes external Flash are memory mapped, supporting 8, 16 and 32-bit access. Code execution is supported.

The opcode and the frame format are fully programmable. The communication can be either in Single Data Rate or Dual Data Rate.

Figure 8. Regulator OFF

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is faster than the time for V_{DD} to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach V₁₂ minimum value and until V_{DD} reaches 1.7 V (see *Figure 9*).
- Otherwise, if the time for V_{CAP_1} and V_{CAP_2} to reach V_{12} minimum value is slower than the time for V_{DD} to reach 1.7 V, then PA0 could be asserted low externally (see *Figure 10*).
- If V_{CAP_1} and V_{CAP_2} go below V_{12} minimum value and V_{DD} is higher than 1.7 V, then a reset must be asserted on PA0 pin.
- *Note:* The minimum value of V₁₂ depends on the maximum frequency targeted in the application.

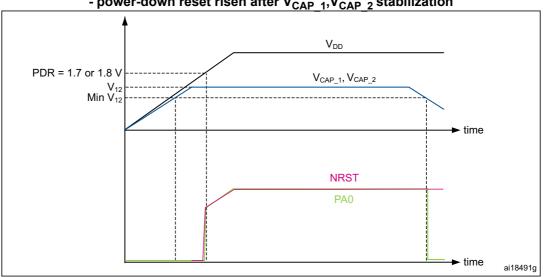


Figure 9. Startup in regulator OFF: slow V_{DD} slope - power-down reset risen after V_{CAP_1}, V_{CAP_2} stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

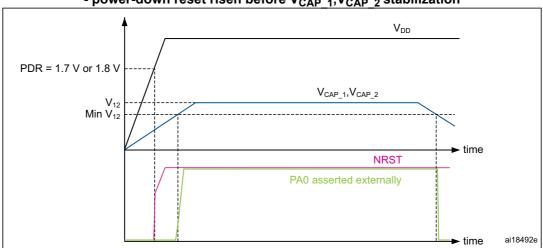


Figure 10. Startup in regulator OFF mode: fast V_{DD} slope - power-down reset risen before V_{CAP_1}, V_{CAP_2} stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

features ⁽¹⁾	USART1/2/3/6	UART4/5/7/8					
Smartcard mode	X	-					
Single-wire half-duplex communication	X	Х					
IrDA SIR ENDEC block	X	Х					
LIN mode	X	Х					
Dual clock domain	X	Х					
Receiver timeout interrupt	X	Х					
Modbus communication	X	Х					
Auto baud rate detection	X	х					
Driver Enable	X	Х					

Table 8. USART implementation (continued)

1. X: supported.

2.26 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S)

The devices feature up to six SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1, SPI4, SPI5, and SPI6 can communicate at up to 54 Mbits/s, SPI2 and SPI3 can communicate at up to 25 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable from 4 to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and Hardware CRC calculation. All the SPIs can be served by the DMA controller.

Three standard I^2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They can be operated in master or slave mode, in simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I^2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I2Sx can be served by the DMA controller.

2.27 Serial audio interface (SAI)

The devices embed two serial audio interfaces.

The serial audio interface is based on two independent audio subblocks which can operate as transmitter or receiver with their FIFO. Many audio protocols are supported by each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both subblocks can be configured in master or in slave mode.

In master mode, the master clock can be output to the external DAC/CODEC at 256 times of the sampling frequency.

The two sub-blocks can be configured in synchronous mode when full-duplex mode is required.

DocID029041 Rev 4

			I	Pin N	umbe	ər									
		TM32 TM32			I			F768/ F769:		reset					
LQFP100	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	WLCSP180 ⁽¹⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after reset	Pin type	I/O structure	Notes	Alternate functions	Additional functions
3	3	B1	3	3	A1	C12	3	3	A1	PE4	I/O	FT	-	TRACED1, SPI4_NSS, SAI1_FS_A, DFSDM1_DATIN3, FMC_A20, DCMI_D4, LCD_B0, EVENTOUT	-
4	4	B2	4	4	B1	D12	4	4	B1	PE5	I/O	FT	-	TRACED2, TIM9_CH1, SPI4_MISO, SAI1_SCK_A, DFSDM1_CKIN3, FMC_A21, DCMI_D6, LCD_G0, EVENTOUT	-
5	5	В3	5	5	B2	E11	5	5	B2	PE6	I/O	FT	-	TRACED3, TIM1_BKIN2, TIM9_CH2, SPI4_MOSI, SAI1_SD_A, SAI2_MCLK_B, FMC_A22, DCMI_D7, LCD_G1, EVENTOUT	-
-	-	-	-	-	G6	-	-	-	G6	VSS	S	-	-	-	-
-	-	-	-	-	F5	-	-	-	F5	VDD	S	-	-	-	-
6	6	C1	6	6	C1	C13	6	6	C1	VBAT	S	-	-	-	-
-	-	D2	7	7	C2	NC	7	7	C2	PI8	I/O	FT	(2)	EVENTOUT	RTC_TAMP 2/RTC_TS/ WKUP5
7	7	D1	8	8	D1	D13	8	8	D1	PC13	I/O	FT	(2)	EVENTOUT	RTC_TAMP 1/RTC_TS/ RTC_OUT/ WKUP4
8	8	E1	9	9	E1	E12	9	9	E1	PC14- OSC32_I N	I/O	FT	(2) (3)	EVENTOUT	OSC32_IN
9	9	F1	10	10	F1	E13	10	10	F1	PC15- OSC32_O UT	I/O	FT	(2) (3)	EVENTOUT	OSC32_OU T
-	-	-	-	-	G5	-	-	-	G5	VDD	S	-	-	-	-

Table 10. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Bus	Boundary address	Peripheral	
	0x4008 0000- 0x4FFF FFFF	Reserved	
	0x4004 0000 - 0x4007 FFFF	USB OTG HS	
	0x4002 BC00- 0x4003 FFFF	Reserved	
	0x4002 B000 - 0x4002 BBFF	Chrom-ART (DMA2D)	
	0x4002 9400 - 0x4002 AFFF	Reserved	
	0x4002 9000 - 0x4002 93FF		
	0x4002 8C00 - 0x4002 8FFF		
	0x4002 8800 - 0x4002 8BFF	ETHERNET MAC	
	0x4002 8400 - 0x4002 87FF		
	0x4002 8000 - 0x4002 83FF		
	0x4002 6800 - 0x4002 7FFF	Reserved	
	0x4002 6400 - 0x4002 67FF	DMA2	
	0x4002 6000 - 0x4002 63FF	DMA1	
	0x4002 5000 - 0X4002 5FFF	Reserved	
	0x4002 4000 - 0x4002 4FFF	BKPSRAM	
AHB1	0x4002 3C00 - 0x4002 3FFF	Flash interface register	
	0x4002 3800 - 0x4002 3BFF	RCC	
	0X4002 3400 - 0X4002 37FF	Reserved	
	0x4002 3000 - 0x4002 33FF	CRC	
	0x4002 2C00 - 0x4002 2FFF	Reserved	
	0x4002 2800 - 0x4002 2BFF	GPIOK	
	0x4002 2400 - 0x4002 27FF	GPIOJ	
	0x4002 2000 - 0x4002 23FF	GPIOI	
	0x4002 1C00 - 0x4002 1FFF	GPIOH	
	0x4002 1800 - 0x4002 1BFF	GPIOG	
	0x4002 1400 - 0x4002 17FF	GPIOF	
	0x4002 1000 - 0x4002 13FF	GPIOE	
	0X4002 0C00 - 0x4002 0FFF	GPIOD	
	0x4002 0800 - 0x4002 0BFF	GPIOC	
	0x4002 0400 - 0x4002 07FF	GPIOB	
	0x4002 0000 - 0x4002 03FF	GPIOA	

Table 13. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx register boundary addresses⁽¹⁾ (continued)

DocID029041 Rev 4

Bus	Boundary address	Peripheral
	0x4000 8000- 0x4000 FFFF	Reserved
	0x4000 7C00 - 0x4000 7FFF	UART8
	0x4000 7800 - 0x4000 7BFF	UART7
	0x4000 7400 - 0x4000 77FF	DAC
	0x4000 7000 - 0x4000 73FF	PWR
	0x4000 6C00 - 0x4000 6FFF	HDMI-CEC
	0x4000 6800 - 0x4000 6BFF	CAN2
	0x4000 6400 - 0x4000 67FF	CAN1
	0x4000 6000 - 0x4000 63FF	I2C4
	0x4000 5C00 - 0x4000 5FFF	I2C3
	0x4000 5800 - 0x4000 5BFF	12C2
	0x4000 5400 - 0x4000 57FF	I2C1
	0x4000 5000 - 0x4000 53FF	UART5
	0x4000 4C00 - 0x4000 4FFF	UART4
	0x4000 4800 - 0x4000 4BFF	USART3
	0x4000 4400 - 0x4000 47FF	USART2
APB1	0x4000 4000 - 0x4000 43FF	SPDIFRX
AFDI	0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3
	0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2
	0x4000 3400 - 0x4000 37FF	CAN3
	0x4000 3000 - 0x4000 33FF	IWDG
	0x4000 2C00 - 0x4000 2FFF	WWDG
	0x4000 2800 - 0x4000 2BFF	RTC & BKP Registers
	0x4000 2400 - 0x4000 27FF	LPTIM1
	0x4000 2000 - 0x4000 23FF	TIM14
	0x4000 1C00 - 0x4000 1FFF	TIM13
	0x4000 1800 - 0x4000 1BFF	TIM12
	0x4000 1400 - 0x4000 17FF	TIM7
	0x4000 1000 - 0x4000 13FF	TIM6
	0x4000 0C00 - 0x4000 0FFF	TIM5
	0x4000 0800 - 0x4000 0BFF	TIM4
	0x4000 0400 - 0x4000 07FF	TIM3
	0x4000 0000 - 0x4000 03FF	TIM2

Table 13. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx register boundary addresses⁽¹⁾ (continued)

1. The gray color is used for reserved Flash memory addresses.

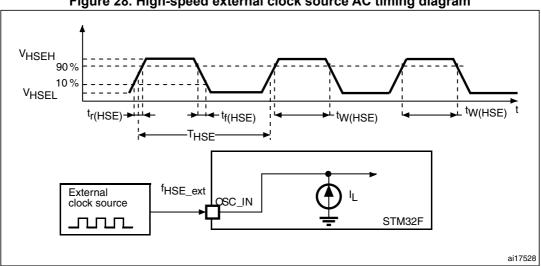
- 1. Guaranteed by characterization results.
- 2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.
- When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

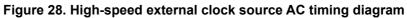
Cumhal	Deremeter	Conditions	£ (MIL-)	Turn		Max ⁽¹⁾		Unit	
Symbol	Parameter	Conditions	f _{HCLK} (MHz) Тур		T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Onit	
			216	128	144 ⁽³⁾	190 ⁽³⁾	-		
			200	119	134	180	214		
		All	180	105	118 ⁽³⁾	153 ⁽³⁾	178 ⁽³⁾		
		peripherals	168	93	105	136	156		
		enabled ⁽²⁾	enabled ⁽²⁾	144	72	80	107	124	
			60	33	39	65	82]	
	Supply		25	17	21	47	65	mA	
I _{DD}	current in Sleep mode			216	18	25 ⁽³⁾	71 ⁽³⁾	-	
			200	17	24	70	112		
			180	14	20 ⁽³⁾	54 ⁽³⁾	75 ⁽³⁾		
		peripherals	168	13	18	49	69		
		disabled	144	10	14	40	58		
			60	6	10	36	53		
			25	4	8	34	51		

Table 33. Typical and maximum current consumption in Sleep mode, regulator ON

1. Guaranteed by characterization results, unless otherwise specified.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

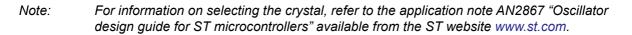

3. Guaranteed by test in production.



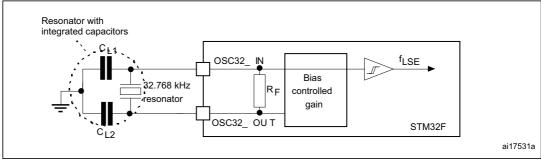
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	
t _{w(LSE)} t _{f(LSE)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(LSE)	Duty cycle	-	30	-	70	%
١L	OSC32_IN Input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$	-	-	±1	μA

Table 42. Low-speed external user clock characteristics

1. Guaranteed by design.



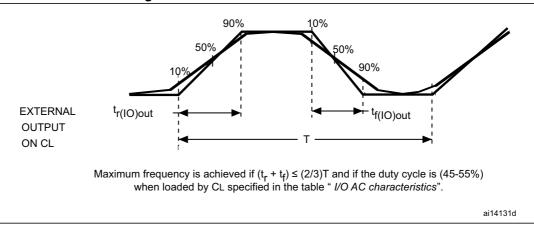
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		LSEDRV[1:0]=00 Low drive capability	-	-	0.48		
	Maximum critical crystal g _m -	LSEDRV[1:0]=10 Medium low drive capability	-	-	0.75	uA/V	
G _m _cnt_max		LSEDRV[1:0]=01 Medium high drive capability	-	-	1.7	μΑνν	
		LSEDRV[1:0]=11 High drive capability	-	-	2.7		
t _{SU} ⁽²⁾	start-up time	V _{DD} is stabilized	-	2	-	s	


Table 44. LSE oscillator characteristics (f _{LSE} = 32.76	8 kHz) ⁽¹⁾ (continued)

1. Guaranteed by design.

 Guaranteed by characterization results. t_{SU} is the start-up time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
			C _L = 30 pF, V _{DD} ≥ 2.7 V	-	-	100 ⁽⁴⁾	
			C _L = 30 pF, V _{DD} ≥ 1.8 V	-	-	50	
	f	Maximum frequency ⁽³⁾	C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	42.5	MHz
	f _{max(IO)out}		C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	180 ⁽⁴⁾	
		Output high to low level fall	C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	100	
11			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	72.5	
			C _L = 30 pF, V _{DD} ≥ 2.7 V	-	-	4	
			C _L = 30 pF, V _{DD} ≥1.8 V	-	-	6	ns
	t _{f(IO)out} /		C _L = 30 pF, V _{DD} ≥1.7 V	-	-	7	
	t _{r(IO)out}	time and output low to high level rise time	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	2.5	
			C _L = 10 pF, V _{DD} ≥1.8 V	-	-	3.5	
			C _L = 10 pF, V _{DD} ≥1.7 V	-	-	4	
-	tEXTIpw	Pulse width of external signals detected by the EXTI controller	-	10	-	-	ns


Table 67. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

1. Guaranteed by design.

2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F76xxx and STM32F77xxx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.

3. The maximum frequency is defined in *Figure 39*.

4. For maximum frequencies above 50 MHz and V_{DD} > 2.4 V, the compensation cell should be used.

Figure 39. I/O AC characteristics definition

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 43 or Figure 44, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

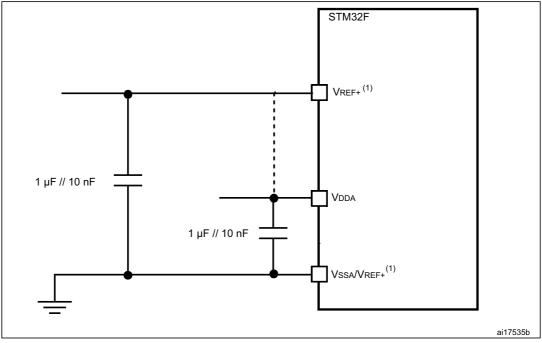


Figure 43. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

 V_{REF+} input is available on all package whereas the V_{REF-} s available only on UFBGA176 and TFBGA216. When V_{REF-} is not available, it isinternally connected to V_{DDA} and V_{SSA} . 1.

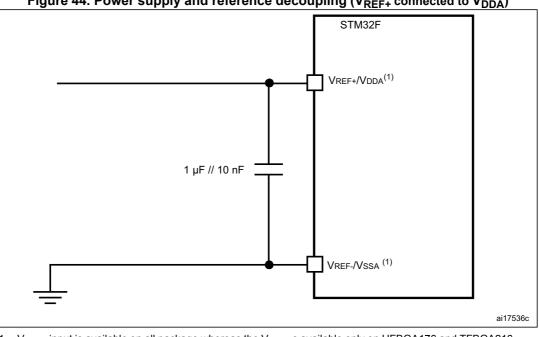


Figure 44. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

 V_{REF+} input is available on all package whereas the V_{REF-} s available only on UFBGA176 and TFBGA216. When V_{REF-} is not available, it isinternally connected to V_{DDA} and V_{SSA} . 1.

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 85* for the SPI interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter	Parameter Conditions Min		Тур	Мах	Unit		
		Master mode SPI1,4,5,6 2.7≤VDD≤3.6			54 ⁽²⁾			
		Master mode SPI1,4,5,6 1.71≤VDD≤3.6			27			
		Master transmitter mode SPI1,4,5,6 1.71≤VDD≤3.6			54			
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave receiver mode SPI1,4,5,6 1.71≤VDD≤3.6	SPI1,4,5,6		54	MHz		
(3CK)			Slave mode transmitter, duplex SPI1,4,5,6 2.7≤VDD≤3.6	SPI1,4,5,6			50 ⁽³⁾	
		Slave mode transmitter/full duplex SPI1,4,5,6 1.71≤VDD≤3.6			37 ⁽³⁾			
		Master & Slave mode SPI2,3 1.71≤VDD≤3.6			27			
tsu(NSS)	NSS setup time	Slave mode, SPI presc = 2	4*T _{PLCK}	-	-			
th(NSS)	NSS hold time	Slave mode, SPI presc = 2	2*T _{PLCK}	-	-	ns		
tw(SCKH) tw(SCKL)	SCK high and low time	Master mode	T _{PLCK} - 2	T _{PLCK}	T _{PLCK} + 2			

Table 85. SPI dynamic characteristics⁽¹⁾

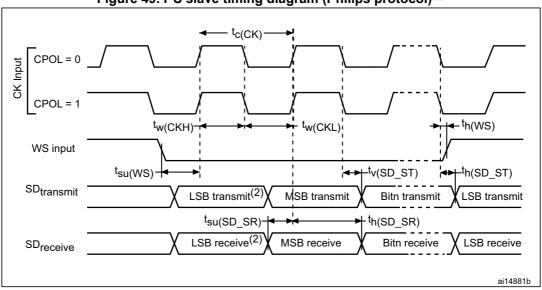
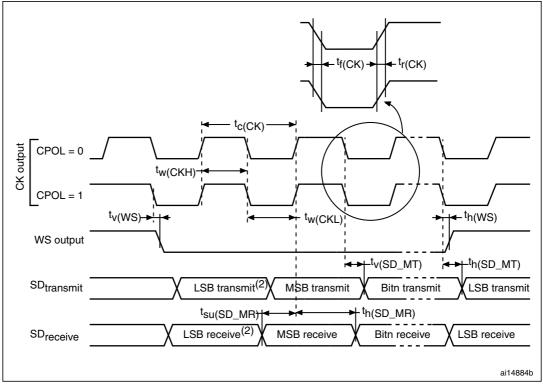



Figure 49. I²S slave timing diagram (Philips protocol)⁽¹⁾

LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 50. I²S master timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Symbol		millimeters			inches ⁽¹⁾				
Symbol	Min	Тур	Max	Min	Тур	Мах			
А	-	-	1.600	-	-	0.0630			
A1	0.050	-	0.150	0.0020	-	0.0059			
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571			
b	0.170	0.220	0.270	0.0067	0.0087	0.0106			
С	0.090	-	0.200	0.0035	-	0.0079			
D	21.800	22.000	22.200	0.8583	0.8661	0.874			
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953			
D3	-	17.500	-	-	0.689	-			
E	21.800	22.000	22.200	0.8583	0.8661	0.8740			
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953			
E3	-	17.500	-	-	0.6890	-			
е	-	0.500	-	-	0.0197	-			
L	0.450	0.600	0.750	0.0177	0.0236	0.0295			
L1	-	1.000	-	-	0.0394	-			
k	0°	3.5°	7°	0°	3.5°	7°			
CCC	-	-	0.080	-	-	0.0031			

Table 126. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

6.7 TFBGA216, 13 x 13 x 0.8 mm thin fine-pitch ball grid array package information

Z Seating plane A2 A1 А D1 Χ A1 ball A1 ball D identifier index area F t e ÷00000000000 Α • 4 0000000000000000 G 000000000000000 000000 000000 E1 Е +00000 000000 00000 000000 0000000000000000 000000000000000 е Υ 0000000000000000 000000000000000 R 0000000000000000 15 Øb (216 balls) BOTTOM VIEW TOP VIEW A0L2_ME_V3

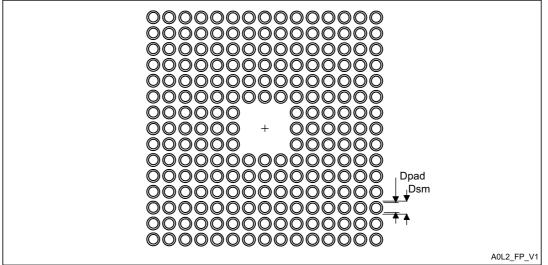
Figure 101. TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid array package outline

1. Drawing is not to scale.

Table 133. TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid array	
package mechanical data	

O maked	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
A	-	-	1.100	-	-	0.0433
A1	0.150	-	-	0.0059	-	-
A2	-	0.760	-	-	0.0299	-
b	0.350	0.400	0.450	0.0138	0.0157	0.0177
D	12.850	13.000	13.150	0.5118	0.5118	0.5177
D1	-	11.200	-	-	0.4409	-
E	12.850	13.000	13.150	0.5118	0.5118	0.5177
E1	-	11.200	-	-	0.4409	-
е	-	0.800	-	-	0.0315	-
F	-	0.900	-	-	0.0354	-

DocID029041 Rev 4



Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
G	-	0.900	-	-	0.0354	-
ddd	-	-	0.100	-	-	0.0039
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.080	-	-	0.0031

Table 133. TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid arraypackage mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 102. TFBGA216, 13 x 13 mm, 0.8 mm pitch, thin fine-pitch ball grid array package recommended footprint

Table 134. TFBGA216 recommended PCB design rules (0.8 mm pitch BGA)

Dimension	Recommended values
Pitch	0.8
Dpad	0.400 mm
Dsm	0.470 mm typ. (depends on the soldermask reg- istration tolerance)
Stencil opening	0.400 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.120 mm

Revision history

Date	Revision	Changes
21-Mar-2016	1	Initial release.
26-Apr-2016	2	 DFSDM replaced by DFSDM1 in: Table 10: STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions. Table 12: STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx alternate function mapping. Table 13: STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx register boundary addresses. Section 5.3.34: Digital filter for Sigma-Delta Modulators (DFSDM) characteristics. Updated Table 2: STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx features and peripheral counts adding DFSDM1 features. Updated Table 39: Peripheral current consumption adding DFSDM1 current consumption. Updated cover in 2 pages. Update cover replacing for SPI 'up to 50 Mbit/s' by 'up to 54 Mbit/s'.
06-May-2016	3	Updated Table 2: STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx features and peripheral counts GPIO number. Updated Table 12: STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx alternate function mapping adding CAN3_RX alternate function on PA8/AF11.
22-Dec-2016	4	Updated Table 97: Dynamics characteristics: Ethernet MAC signals for <i>RMII</i> . Updated Table 71: ADC characteristics sampling rate. Updated all the notes removing 'not tested in production'. Updated Figure 46: SPI timing diagram - slave mode and CPHA = 0 and Figure 47: SPI timing diagram - slave mode and CPHA = 1(1) with modified NSS timing waveforms (among other changes). Updated Table 121: LTDC characteristics clock output frequency at 65 MHz. Updated Section 5.2: Absolute maximum ratings. Updated Section 6: Package information adding information about other optional marking or inset/upset marks.

