

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SAI, SPDIF, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	159
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	208-LQFP
Supplier Device Package	208-LQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f767bgt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Description

The STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx devices are based on the high-performance ARM[®] Cortex[®]-M7 32-bit RISC core operating at up to 216 MHz frequency. The Cortex[®]-M7 core features a floating point unit (FPU) which supports ARM[®] double-precision and single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances the application security.

The STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx devices incorporate high-speed embedded memories with a Flash memory up to 2 Mbytes, 512 Kbytes of SRAM (including 128 Kbytes of Data TCM RAM for critical real-time data), 16 Kbytes of instruction TCM RAM (for critical real-time routines), 4 Kbytes of backup SRAM available in the lowest power modes, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses, a 32-bit multi-AHB bus matrix and a multi layer AXI interconnect supporting internal and external memories access.

All the devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve generalpurpose 16-bit timers including two PWM timers for motor control, two general-purpose 32bit timers, a true random number generator (RNG). They also feature standard and advanced communication interfaces.

- Up to four I²Cs
- Six SPIs, three I²Ss in half-duplex mode. To achieve audio class accuracy, the I²S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization.
- Four USARTs plus four UARTs
- An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the ULPI)
- Three CANs
- Two SAI serial audio interfaces
- Two SDMMC host interfaces
- Ethernet and camera interfaces
- LCD-TFT display controller
- Chrom-ART Accelerator™
- SPDIFRX interface
- HDMI-CEC

Advanced peripherals include two SDMMC interfaces, a flexible memory control (FMC) interface, a Quad-SPI Flash memory interface, a camera interface for CMOS sensors. Refer to *Table 2: STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx features and peripheral counts* for the list of peripherals available on each part number.

The STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx devices operate in the –40 to +105 °C temperature range from a 1.7 to 3.6 V power supply. Dedicated supply inputs for USB (OTG_FS and OTG_HS) and SDMMC2 (clock, command and 4-bit data) are available on all the packages except LQFP100 for a greater power supply choice.

The supply voltage can drop to 1.7 V with the use of an external power supply supervisor (refer to *Section 2.18.2: Internal reset OFF*). A comprehensive set of power-saving mode allows the design of low-power applications.

DocID029041 Rev 4

option bytes. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for an external reset circuit.

The device also features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

2.18.2 Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.

An external power supply supervisor should monitor V_{DD} and NRST and should maintain the device in reset mode as long as V_{DD} is below a specified threshold. PDR_ON should be connected to V_{SS} . Refer to *Figure 6: Power supply supervisor interconnection with internal reset OFF*.

Figure 6. Power supply supervisor interconnection with internal reset OFF

The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.7 V (see *Figure 7*).

A comprehensive set of power-saving mode allows to design low-power applications.

When the internal reset is OFF, the following integrated features are no more supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
- The brownout reset (BOR) circuitry must be disabled
- The embedded programmable voltage detector (PVD) is disabled
- V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD}.

All the packages, except for the LQFP100, allow to disable the internal reset through the PDR_ON signal when connected to V_{SS} .

3 Pinouts and pin description

Figure 11. STM32F76xxx LQFP100 pinout

1. The above figure shows the package top view.

Figure 12. STM32F76xxx LQFP144 pinout

1. The above figure shows the package top view.

Figure 20. STM32F769xx TFBGA216 ballout

1. The above figure shows the package top view.

			I	Pin N	umb	er									
	S S	TM32 TM32	2F765 2F767	xx xx		ST ST	FM32 FM32	F768/ F769:	Ax xx	reset					
LQFP100	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	WLCSP180 ⁽¹⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after	Pin type	I/O structure Notes		Alternate functions	Additional functions
24	36	P2	42	45	P2	J10	42	45	P2	PA2	I/O	FT	-	TIM2_CH3, TIM5_CH3, TIM9_CH1, USART2_TX, SAI2_SCK_B, ETH_MDIO, MDIOS_MDIO, LCD_R1, EVENTOUT	ADC1_IN2, ADC2_IN2, ADC3_IN2, WKUP2
i	-	F4	43	46	K4	L10	43	46	K4	PH2	I/O	FT	-	LPTIM1_IN2, QUADSPI_BK2_IO0, SAI2_SCK_B, ETH_MII_CRS, FMC_SDCKE0, LCD_R0, EVENTOUT	-
-	-	G4	44	47	J4	K10	44	47	J4	PH3	I/O	FT	-	QUADSPI_BK2_IO1, SAI2_MCLK_B, ETH_MII_COL, FMC_SDNE0, LCD_R1, EVENTOUT	-
-	-	H4	45	48	H4	N12	45	48	H4	PH4	I/O	FT	-	I2C2_SCL, LCD_G5, OTG_HS_ULPI_NXT, LCD_G4, EVENTOUT	-
-	-	J4	46	49	J3	N11	46	49	J3	PH5	1/0	FT	-	I2C2_SDA, SPI5_NSS, FMC_SDNWE, EVENTOUT	-
25	37	R2	47	50	R2	M10	47	50	R2	PA3	I/O	FT	-	TIM2_CH4, TIM5_CH4, TIM9_CH2, USART2_RX, LCD_B2, OTG_HS_ULPI_D0, ETH_MII_COL, LCD_B5, EVENTOUT	ADC1_IN3, ADC2_IN3, ADC3_IN3
26	38	-	-	51	K6	J9	-	51	K6	VSS	S	-	-	-	-
-	-	L4	48	-	L5	_(5)	48	-	L5	BYPASS_ REG	1	FT	-	-	-
27	39	K4	49	52	K5	K9	49	52	K5	VDD	S	-	-	-	-

Table 10. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

				Pin N	umbe	ər									
	S S	TM32 TM32	F765 F767	xx xx		S1 S1	FM32 FM32	F768/ F769:	Ax xx	reset					
LQFP100	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	WLCSP180 ⁽¹⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after	Pin type	I/O structure	Notes	Alternate functions	Additional functions
47	70	R13	80	91	R13	L5	80	91	R13	PB11	I/O	FT	-	TIM2_CH4, I2C2_SDA, DFSDM1_CKIN7, USART3_RX, OTG_HS_ULPI_D4, ETH_MII_TX_EN/ETH_RM II_TX_EN, DSI_TE, LCD_G5, EVENTOUT	-
48	71	M10	81	92	L11	P5	81	92	L11	VCAP_1	S	-	-	-	-
49	-	-	-	93	K9	N5	-	93	K9	VSS	S	-	-	-	-
50	72	N10	82	94	L10	P4	82	94	L10	VDD	S	-	-	-	-
-	-	-	-	95	M1 4	NC	-	95	M1 4	PJ5	I/O	FT	-	LCD_R6, EVENTOUT	-
-	-	M11	83	96	P13	NC	83	96	P13	PH6	I/O	FT	-	I2C2_SMBA, SPI5_SCK, TIM12_CH1, ETH_MII_RXD2, FMC_SDNE1, DCMI_D8, EVENTOUT	-
-	-	N12	84	97	N13	NC	84	97	N13	PH7	I/O	FT	-	I2C3_SCL, SPI5_MISO, ETH_MII_RXD3, FMC_SDCKE1, DCMI_D9, EVENTOUT	-
-	-	M12	85	98	P14	M5	-	98	P14	PH8	I/O	FT	-	I2C3_SDA, FMC_D16, DCMI_HSYNC, LCD_R2, EVENTOUT	-
-	-	M13	86	99	N14	K4	-	99	N14	PH9	I/O	FT	-	I2C3_SMBA, TIM12_CH2, FMC_D17, DCMI_D0, LCD_R3, EVENTOUT	-
-	-	L13	87	100	P15	L4	-	100	P15	PH10	I/O	FT	-	TIM5_CH1, I2C4_SMBA, FMC_D18, DCMI_D1, LCD_R4, EVENTOUT	-
-	-	L12	88	101	N15	M4	-	101	N15	PH11	I/O	FT	-	TIM5_CH2, I2C4_SCL, FMC_D19, DCMI_D2, LCD_R5, EVENTOUT	-

Table 10. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Pinouts and pin description

STM32F765xx STM32F767xx STM32F768Ax STM32F769xx

	Table 12. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx alternate																
	function mapping (continued)																
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	SYS	12C4/UA RT5/TIM 1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/DFSDM 1/CEC	I2C1/2/3/ 4/USART 1/CEC	SPI1/I2S 1/SPI2/I2 S2/SPI3/ I2S3/SPI 4/5/6	SPI2/I2S 2/SPI3/I2 S3/SAI1/ I2C4/UA RT4/DF SDM1	SPI2/I2S 2/SPI3/I2 S3/SPI6/ USART1/ 2/3/UART 5/DFSDM 1/SPDIF	SPI6/SAI 2/USART 6/UART4/ 5/7/8/OT G_FS/SP DIF	CAN1/2/T IM12/13/ 14/QUAD SPI/FMC/ LCD	SAI2/QU ADSPI/S DMMC2/D FSDM1/O TG2_HS/ OTG1_FS /LCD	I2C4/CAN 3/SDMM C2/ETH	UART7/ FMC/SD MMC1/M DIOS/OT G2_FS	DCMI/L CD/DSI	LCD	SYS
	PB7	-	-	TIM4_C H2	-	I2C1_SD A	-	DFSDM1 _CKIN5	USART1 _RX	-	-	-	I2S4_SD A	FMC_NL	DCMI_V SYNC	-	EVEN TOUT
	PB8	-	I2C4_SC L	TIM4_C H3	TIM10_C H1	I2C1_SC L	-	DFSDM1 _CKIN7	UART5_ RX	-	CAN1_R X	SDMMC2 _D4	ETH_MII_ TXD3	SDMMC _D4	DCMI_D 6	LCD_B6	EVEN TOUT
	PB9	-	I2S4_SD A	TIM4_C H4	TIM11_CH 1	I2C1_SD A	SPI2_NS S/I2S2_ WS	DFSDM1 _DATIN7	UART5_T X	-	CAN1_T X	SDMMC2 _D5	I2C4_SM BA	SDMMC _D5	DCMI_D 7	LCD_B7	EVEN TOUT
	PB10	-	TIM2_C H3	-	-	I2C2_SC L	SPI2_SC K/I2S2_ CK	DFSDM1 _DATIN7	USART3 _TX	-	- QUADSP I_BK1_N CS	OTG_HS_ ULPI_D3	ETH_MII_ RX_ER	-	-	LCD_G4	EVEN TOUT
Port B	PB11	-	TIM2_C H4	-	-	I2C2_SD A	-	DFSDM1 _CKIN7	USART3 _RX	-	-	OTG_HS_ ULPI_D4	ETH_MII_ TX_EN/E TH_RMII_ TX_EN	-	DSI_TE	LCD_G5	EVEN TOUT
	PB12	-	TIM1_B KIN	-	-	I2C2_SM BA	SPI2_NS S/I2S2_ WS	DFSDM1 _DATIN1	USART3 _CK	UART5_ RX	CAN2_R X	OTG_HS_ ULPI_D5	ETH_MII_ TXD0/ET H_RMII_T XD0	OTG_HS _ID	-	-	EVEN TOUT
	PB13	-	TIM1_C H1N	-	-	-	SPI2_SC K/I2S2_ CK	DFSDM1 _CKIN1	USART3 _CTS	UART5_T X	CAN2_T	OTG_HS_ ULPI_D6	ETH_MII_ TXD1/ET H_RMII_T XD1	-	-	-	EVEN TOUT
	PB14	-	TIM1_C H2N	-	TIM8_CH 2N	USART1_ TX	SPI2_MI SO	DFSDM1 _DATIN2	USART3 _RTS	UART4_ RTS	TIM12_C H1	SDMMC2 _D0	-	OTG_HS _DM	-	-	EVEN TOUT
	PB15	RTC_RE FIN	TIM1_C H3N	-	TIM8_CH 3N	USART1_ RX	SPI2_M OSI/I2S2 _SD	DFSDM1 _CKIN2	-	UART4_ CTS	TIM12_C H2	SDMMC2 _D1	-	OTG_HS _DP	-	-	EVEN TOUT

94/255

DocID029041 Rev 4

3

			Т	able 12.	STM32F	765xx, \$	STM32F functio	767xx, on map	STM32F ping (co	768Ax a ntinued	ind STM)	32F769x	x alterna	ate			
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Pe	ort	SYS	I2C4/UA RT5/TIM 1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/DFSDM 1/CEC	I2C1/2/3/ 4/USART 1/CEC	SPI1/I2S 1/SPI2/I2 S2/SPI3/ I2S3/SPI 4/5/6	SPI2/I2S 2/SPI3/I2 S3/SAI1/ I2C4/UA RT4/DF SDM1	SPI2/I2S 2/SPI3/I2 S3/SPI6/ USART1/ 2/3/UART 5/DFSDM 1/SPDIF	SPI6/SAI 2/USART 6/UART4/ 5/7/8/OT G_FS/SP DIF	CAN1/2/T IM12/13/ 14/QUAD SPI/FMC/ LCD	SAI2/QU ADSPI/S DMMC2/D FSDM1/O TG2_HS/ OTG1_FS /LCD	I2C4/CAN 3/SDMM C2/ETH	UART7/ FMC/SD MMC1/M DIOS/OT G2_FS	DCMI/L CD/DSI	LCD	SYS
	PH0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PH1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PH2	-	-	-	LPTIM1_I N2	-	-	-	-	-	QUADSP I_BK2_IO 0	SAI2_SC K_B	ETH_MII_ CRS	FMC_SD CKE0	-	LCD_R0	EVEN TOUT
	PH3	-	-	-	-	-	-	-	-	-	QUADSP I_BK2_IO 1	SAI2_MC K_B	ETH_MII_ COL	FMC_SD NE0	-	LCD_R1	EVEN TOUT
	PH4	-	-	-	-	I2C2_SC L	-	-	-	-	LCD_G5	OTG_HS_ ULPI_NX T	-	-	-	LCD_G4	EVEN TOUT
	PH5	-	-	-	-	I2C2_SD A	SPI5_NS S	-	-	-	-	-	-	FMC_SD NWE	-	-	EVEN TOUT
Port H	PH6	-	-	-	-	I2C2_SM BA	SPI5_SC K	-	-	-	TIM12_C H1	-	ETH_MII_ RXD2	FMC_SD NE1	DCMI_D 8	-	EVEN TOUT
	PH7	-	-	-	-	I2C3_SC L	SPI5_MI SO	-	-	-	-	-	ETH_MII_ RXD3	FMC_SD CKE1	DCMI_D 9	-	EVEN TOUT
	PH8	-	-	-	-	I2C3_SD A	-	-	-	-	-	-	-	FMC_D1 6	DCMI_H SYNC	LCD_R2	EVEN TOUT
	PH9	-	-	-	-	I2C3_SM BA	-	-	-	-	TIM12_C H2	-	-	FMC_D1 7	DCMI_D 0	LCD_R3	EVEN TOUT
	PH10	-	-	TIM5_C H1	-	I2C4_SM BA	-	-	-	-	-	-	-	FMC_D1 8	DCMI_D 1	LCD_R4	EVEN TOUT
	PH11	-	-	TIM5_C H2	-	I2C4_SC L	-	-	-	-	-	-	-	FMC_D1 9	DCMI_D 2	LCD_R5	EVEN TOUT
	PH12	-	-	TIM5_C H3	-	I2C4_SD A	-	-	-	-	-	-	-	FMC_D2 0	DCMI_D 3	LCD_R6	EVEN TOUT
	PH13	-	-	-	TIM8_CH 1N	-	-	-	-	UART4_T X	CAN1_T X	-	-	FMC_D2 1	-	LCD_G2	EVEN TOUT

DocID029041 Rev 4

102/255

Pinouts and pin description

STM32F765xx STM32F767xx STM32F768Ax STM32F769xx

Figure 35. PLL output clock waveforms in down spread mode

5.3.13 MIPI D-PHY characteristics

The parameters given in *Table 51* and *Table 52* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	Hi-Speed Inpu	t/Output Character	ristics			
U _{INST}	UI instantaneous	-	2	-	12.5	ns
V _{CMTX}	HS transmit common mode voltage	-	150	200	250	
ΔV _{CMTX}	$V_{\mbox{CMTX}}$ mismatch when output is Differential-1 or Differential-0	-	-	-	5	.,
V _{OD}	HS transmit differential voltage	-	140	200	270	mV
ΔV _{OD}	V _{OD} mismatch when output is Differential-1 or Differential-0	-	-	-	14	
V _{OHHS}	HS output high voltage	-	-	-	360	
Z _{OS}	Single ended output impedance	-	40	50	62.5	Ω
ΔZ_{OS}	Single ended output impedance mismatch	-	-	-	10	%
t _{HSr} & t _{HSf}	20%-80% rise and fall time	-	100	-	0.35*UI	ps
	LP Receiver	Input Characterist	tics			
V _{IL}	Logic 0 input voltage (not in ULP State)	-	-	-	550	
V _{IL-ULPS}	Logic 0 input voltage in ULP State	-	-	-	300	mV
V _{IH}	Input high level voltage	-	880	-	-	
V _{hys}	Voltage hysteresis	-	25	-	-	
	LP Emitter C	Dutput Characteris	tics			

Table 51. MIPI D-PHY characteristics⁽¹⁾

I²S interface characteristics

Unless otherwise specified, the parameters given in *Table 86* for the I²S interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{MCK}	I2S Main clock output	-	256x8K	256xFs ⁽²⁾	MHz
f	128 clock frequency	Master data	-	64xFs	
I ICK	125 Clock frequency	Slave data	-	64xFs	
D _{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	%
t _{v(WS)}	WS valid time	Master mode	-	3	
t _{h(WS)}	WS hold time	Master mode	0	-	
t _{su(WS)}	WS setup time	Slave mode	5	-	
t _{h(WS)}	WS hold time	Slave mode	2	-	
t _{su(SD_MR)}	Data input sotup timo	Master receiver	2.5	-	
t _{su(SD_SR)}		Slave receiver	2.5	-	
t _{h(SD_MR)}	Data input hold time	Master receiver	3.5	-	115
t _{h(SD_SR)}	Data input noid time	Slave receiver	2	-	
t _{v(SD_ST)}	Data output valid time	Slave transmitter (after enable edge)	-	12	
t _{v(SD_MT)}		Master transmitter (after enable edge)	-	3	
t _{h(SD_ST)}	Data output hold time	Slave transmitter (after enable edge)	5	-	
t _{h(SD_MT)}		Master transmitter (after enable edge)	0	-	

Table 86. I ²	² S d	ynamic	characteristics ⁽¹⁾
--------------------------	------------------	--------	--------------------------------

1. Guaranteed by characterization results.

2. The maximum value of 256xFs is 49.152 MHz (APB1 maximum frequency).

Note: Refer to RM0410 reference manual I2S section for more details about the sampling frequency (F_S). f_{MCK} , f_{CK} , and D_{CK} values reflect only the digital peripheral behavior. The values of these parameters might be slightly impacted by the source clock precision. D_{CK} depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F_S maximum value is supported for each mode/condition.

Symbol	Parameter	Conditions	Min	Max	Unit
	Data output valid time	Slave transmitter (after enable edge) 2.7≤VDD≤3.6V	-	12	
ⁱ v(SD_B_ST)		Slave transmitter (after enable edge) 1.71≤VDD≤3.6V	-	20	
t _{h(SD_B_MT)}	Data output hold time	Slave transmitter (after enable edge)	5	-	
t	Data output valid time	Master transmitter (after enable edge) 2.7≤VDD≤3.6V	-	15	115
v(SD_MT)_A		Master transmitter (after enable edge) 1.71≤VDD≤3.6V	-	20	
t _{h(SD_A_MT)}	Data output hold time	Master transmitter (after enable edge)	5	-	

Table 89. SAI characteristics⁽¹⁾ (continued)

1. Guaranteed by characterization results.

2. APB clock frequency must be at least twice SAI clock frequency.

3. With F_S=192kHz.

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	2T _{HCLK} – 1	2 T _{HCLK} +1	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	0	0.5	
t _{w(NOE)}	FMC_NOE low time	2T _{HCLK} – 1	2T _{HCLK} + 1	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	0	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0.5	
t _{h(A_NOE)}	Address hold time after FMC_NOE high	0	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	0.5	ne
t _{h(BL_NOE)}	FMC_BL hold time after FMC_NOE high	0	-	115
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{HCLK} – 1	-	
t _{su(Data_NOE)}	Data to FMC_NOEx high setup time	T _{HCLK} – 1	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0	
t _{w(NADV)}	FMC_NADV low time	-	T _{HCLK} + 1	

 Table 100. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings⁽¹⁾⁽²⁾

1. C_L = 30 pF.

2. Guaranteed by characterization results.

Table 101. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	7T _{HCLK} +1	7T _{HCLK} +1	
t _{w(NOE)}	FMC_NWE low time	5T _{HCLK} −1	5T _{HCLK} +1	ns
t _{w(NWAIT)}	FMC_NWAIT low time	T _{HCLK} -0.5		115
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{HCLK} +1.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1	-	

1. Guaranteed by characterization results.

Figure 65. Synchronous multiplexed NOR/PSRAM read timings

1. Guaranteed by characterization results.

Figure 68. Synchronous non-multiplexed PSRAM write timings

Figure 76. Quad-SPI timing diagram - DDR mode

5.3.32 Camera interface (DCMI) timing specifications

Unless otherwise specified, the parameters given in *Table 120* for DCMI are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage summarized in *Table 17*, with the following configuration:

- DCMI_PIXCLK polarity: falling
- DCMI_VSYNC and DCMI_HSYNC polarity: high
- Data formats: 14 bits

Symbol	Parameter		Max	Unit
-	Frequency ratio DCMI_PIXCLK/f _{HCLK}	-	0.4	
DCMI_PIXCLK	Pixel clock input	-	54	MHz
D _{Pixel}	D _{Pixel} Pixel clock input duty cycle 30		70	%
t _{su(DATA)}	Data input setup time	2	-	
t _{h(DATA)}	Data input hold time	0.5	-	
t _{su(HSYNC)} t _{su(VSYNC)}	DCMI_HSYNC/DCMI_VSYNC input setup time	2.5	-	ns
t _{h(HSYNC)} t _{h(VSYNC)}	DCMI_HSYNC/DCMI_VSYNC input hold time	3	-	

1. Guaranteed by characterization results.

5.3.34 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics

Unless otherwise specified, the parameters given in *Table 122* for DFSDM are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DD} supply voltage summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30pF
- Measurement points are done at CMOS levels: 0.5 x VDD

Refer to *Section 5.3.20: I/O port characteristics* for more details on the input/output alternate function characteristics (DFSDM1_CKINx, DFSDM1_DATINx, DFSDM1_CKOUT for DFSDM1).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{DFSDMCLK}	DFSDM clock	1.71 < V _{DD} < 3.6 V	-	-	f _{SYSCLK}		
f _{CKIN} (1/T _{CKIN})		SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1:0]=0), 1.71 < V _{DD} < 3.6 V	-	-	20 (f _{DFSDMCLK} /4)		
	Input clock frequency	SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1:0]=0), 2.7 < V _{DD} < 3.6 V	-	-	20 (f _{DFSDMCLK} /4)		
		SPI mode (SITP[1:0]=0,1), Internal clock mode (SPICKSEL[1:0]≠0), 1.71 < V _{DD} < 3.6 V	-	-	20 (f _{DFSDMCLK} /4)	MHz	
		SPI mode (SITP[1:0]=0,1), Internal clock mode (SPICKSEL[1:0]≠0), 2.7 < V _{DD} < 3.6 V	-	-	20 (f _{DFSDMCLK} /4)		
fскоит	Output clock frequency	1.71 < V _{DD} < 3.6 V	-	-	20		
DuCy _{CKOUT}	Output clock frequency duty cycle	1.71 < V _{DD} < 3.6 V	45	50	55	%	

Table 122. DFSDM measured timing 1.71-3.6V

LQFP176 device marking of engineering samples

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 91. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

6.8 Thermal characteristics

The maximum chip-junction temperature, ${\sf T}_{\sf J}$ max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max x \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \left(\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}\right) + \Sigma((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
Θ _{JA}	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch	43	
	Thermal resistance junction-ambient WLCSP180 - 0.4 mm pitch	30	
	Thermal resistance junction-ambient LQFP144 - 20 × 20 mm / 0.5 mm pitch	40	
	Thermal resistance junction-ambient LQFP176 - 24 × 24 mm / 0.5 mm pitch	38	°C/W
	Thermal resistance junction-ambient LQFP208 - 28 × 28 mm / 0.5 mm pitch	19	
	Thermal resistance junction-ambient UFBGA176 - 10× 10 mm / 0.5 mm pitch	39	
	Thermal resistance junction-ambient TFBGA216 - 13 × 13 mm / 0.8 mm pitch	29	

Table 135. Package thermal characteristics

Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

7 Ordering information

Table 136. Ordering information scheme Example: STM32 76x V GΤ F 6 ххх **Device family** STM32 = ARM-based 32-bit microcontroller Product type F = general-purpose **Device subfamily** 765= STM32F765xx, USB OTG FS/HS, camera interface, Ethernet 767= STM32F767xx, USB OTG FS/HS, camera interface, Ethernet, LCD-TFT 768 = STM32F768Ax, USB OTG FS/HS, camera interface, DSI host, WLCSP with internal regulator OFF 769= STM32F769xx, USB OTG FS/HS, camera interface, Ethernet, DSI host Pin count V = 100 pins Z = 144 pins I = 176 pins A = 180 pins B = 208 pins N = 216 pins Flash memory size G = 1024 Kbytes of Flash memory I = 2048 Kbytes of Flash memory Package T = LQFP K = UFBGA H = TFBGA Y = WLCSP **Temperature range** 6 = Industrial temperature range, -40 to 85 °C. 7 = Industrial temperature range, -40 to 105 °C. Options

xxx = programmed parts

TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

DocID029041 Rev 4

