

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SAI, SPDIF, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	140
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	201-UFBGA
Supplier Device Package	176+25UFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f767iik6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		5.3.25	Temperature sensor characteristics	. 175
		5.3.26	V _{BAT} monitoring characteristics	. 175
		5.3.27	Reference voltage	. 175
		5.3.28	DAC electrical characteristics	. 176
		5.3.29	Communications interfaces	. 178
		5.3.30	FMC characteristics	. 195
		5.3.31	Quad-SPI interface characteristics	. 215
		5.3.32	Camera interface (DCMI) timing specifications	. 217
		5.3.33	LCD-TFT controller (LTDC) characteristics	. 218
		5.3.34	Digital filter for Sigma-Delta Modulators (DFSDM) characteristics	. 220
		5.3.35	DFSDM timing diagrams	. 222
		5.3.36	SD/SDIO MMC card host interface (SDMMC) characteristics	223
6	Packa	ige info	rmation	225
	6.1	LQFP10	0 14x 14 mm, low-profile quad flat package information	225
	6.2	LQFP14	4 20 x 20 mm, low-profile quad flat package information	229
	6.3	LQFP17	6 24 x 24 mm, low-profile quad flat package information	233
	6.4	LQFP20	8 28 x 28 mm low-profile quad flat package information	237
	6.5	WLCSP package	180-bump, 5.5 x 6 mm, wafer level chip scale	241
	6.6	UFBGA ² array pa	176+25, 10 x 10, 0.65 mm ultra thin fine-pitch ball grid ackage information	245
	6.7	TFBGA2 array pa	216, 13 x 13 x 0.8 mm thin fine-pitch ball grid ckage information	248
	6.8	Thermal	characteristics	251
7	Order	ing info	rmation	252
Appendix	A Re	ecomme	endations when using internal reset OFF	253
	Δ 1	Operatir		252
	Π.Ι	Operaul		200
Revision I	history	/		254

Table 128.	LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package mechanical data	38
Table 129.	WLCSP 180-bump, 5.5 x 6 mm, 0.4 mm pitch wafer level chip scale package mechanical data	42
Table 130.	WLCSP 180-bump, 5.5 x 6 mm, recommended PCB design rules	43
Table 131.	UFBGA176+25, $10 \times 10 \times 0.65$ mm ultra thin fine-pitch ball grid array	10
Table 132.	UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)	45 46
Table 133.	TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid array package mechanical data 24	48
Table 134.	TFBGA216 recommended PCB design rules (0.8 mm pitch BGA)	49
Table 135.	Package thermal characteristics	51
Table 136.	Ordering information scheme	52
Table 137.	Limitations depending on the operating power supply range	53
I able 138.	Document revision history	54

2 Functional overview

2.1 ARM[®] Cortex[®]-M7 with FPU

The ARM[®] Cortex[®]-M7 with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering an outstanding computational performance and low interrupt latency.

The Cortex[®]-M7 processor is a highly efficient high-performance featuring:

- Six-stage dual-issue pipeline
- Dynamic branch prediction
- Harvard caches (16 Kbytes of I-cache and 16 Kbytes of D-cache)
- 64-bit AXI4 interface
- 64-bit ITCM interface
- 2x32-bit DTCM interfaces

The processor supports the following memory interfaces:

- Tightly Coupled Memory (TCM) interface.
- Harvard instruction and data caches and AXI master (AXIM) interface.
- Dedicated low-latency AHB-Lite peripheral (AHBP) interface.

The processor supports a set of DSP instructions which allow an efficient signal processing and a complex algorithm execution.

It supports single and double precision FPU (floating point unit), speeds up software development by using metalanguage development tools, while avoiding saturation.

Figure 2 shows the general block diagram of the STM32F76xxx family.

Note:

The Cortex[®]-M7 with FPU core is binary compatible with the Cortex[®]-M4 core.

2.2 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

Figure 5. V_{DDUSB} connected to external power supply

The DSI (Display Serial Interface) sub-system uses several power supply pins which are independent from the other supply pins:

- V_{DDDSI} is an independent DSI power supply dedicated for DSI Regulator and MIPI D-PHY. This supply must be connected to global V_{DD}.
- The V_{CAPDSI} pin is the output of DSI Regulator (1.2V) which must be connected externally to V_{DD12DSI}.
- The V_{DD12DSI} pin is used to supply the MIPI D-PHY, and to supply the clock and data lanes pins. An external capacitor of 2.2 uF must be connected on the V_{DD12DSI} pin.
- The V_{SSDSI} pin is an isolated supply ground used for DSI sub-system.
- If the DSI functionality is not used at all, then:
 - The V_{DDDSI} pin must be connected to global V_{DD} .
 - The V_{CAPDSI} pin must be connected externally to V_{DD12DSI} but the external capacitor is no more needed.
 - The V_{SSDSI} pin must be grounded.

2.18 Power supply supervisor

2.18.1 Internal reset ON

On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other packages, the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR thresholds, or to disable BOR permanently. Three BOR thresholds are available through

2.19.3 Regulator ON/OFF and internal reset ON/OFF availability

	ie integulater e		na root on or availability			
Package	Regulator ON	Regulator OFF	Internal reset ON	Internal reset OFF		
LQFP100	Vos	No	Yes	No		
LQFP144, LQFP208	165	NO				
LQFP176, UFBGA176, TFBGA216	Yes BYPASS_REG set to V _{SS}	Yes BYPASS_REG set to V _{DD}	Yes PDR_ON set to V _{DD}	Yes PDR_ON set to V _{SS}		
WLCSP180	Ye	_S (1)				

Table 4. Regulator ON/OFF and internal reset ON/OFF availability

1. Available only on dedicated part number. Refer to Section 7: Ordering information.

2.20 Real-time clock (RTC), backup SRAM and backup registers

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Two programmable alarms.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to V_{BAT} mode.
- 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period.

The RTC and the 32 backup registers are supplied through a switch that takes power either from the V_{DD} supply when present or from the V_{BAT} pin.

The backup registers are 32-bit registers used to store 128 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby mode.

Figure 12. STM32F76xxx LQFP144 pinout

1. The above figure shows the package top view.

				Pin N	umb	er									
	S S	TM32 TM32	2F765 2F767	ixx 'xx		ST ST	ГМ32 ГМ32	F768/ F769	Ax xx	reset					
LQFP100	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	WLCSP180 ⁽¹⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	51	M8	61	72	K7	P9	61	72	K7	VSS	s		-	-	-
-	52	N8	62	73	L8	M8	62	73	L8	VDD	s		-	-	-
-	53	N6	63	74	N6	L8	63	74	N6	PF13	I/O	FT	-	I2C4_SMBA, DFSDM1_DATIN6, FMC_A7, EVENTOUT	-
-	54	R7	64	75	P6	K8	64	75	P6	PF14	I/O	FT	-	I2C4_SCL, DFSDM1_CKIN6, FMC_A8, EVENTOUT	-
-	55	P7	65	76	M8	P8	65	76	M8	PF15	I/O	FT	-	I2C4_SDA, FMC_A9, EVENTOUT	-
-	56	N7	66	77	N7	N8	66	77	N7	PG0	I/O	FT	-	FMC_A10, EVENTOUT	-
-	57	M7	67	78	M7	L7	67	78	M7	PG1	I/O	FT	-	FMC_A11, EVENTOUT	-
37	58	R8	68	79	R8	M7	68	79	R8	PE7	I/O	FT	-	TIM1_ETR, DFSDM1_DATIN2, UART7_RX, QUADSPI_BK2_IO0, FMC_D4, EVENTOUT	-
38	59	P8	69	80	N9	N7	69	80	N9	PE8	I/O	FT	-	TIM1_CH1N, DFSDM1_CKIN2, UART7_TX, QUADSPI_BK2_IO1, FMC_D5, EVENTOUT	-
39	60	P9	70	81	P9	P7	70	81	P9	PE9	I/O	FT	-	TIM1_CH1, DFSDM1_CKOUT, UART7_RTS, QUADSPI_BK2_IO2, FMC_D6, EVENTOUT	-
-	61	M9	71	82	K8	-	71	82	K8	VSS	s	-	-	-	-
-	62	N9	72	83	L9	-	72	83	L9	VDD	S	-	-	-	-

Table 10. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Pin Number															
	S S	TM32 TM32	F765 F767	xx xx		S1 S1	FM32 FM32	F768/ F769:	Ax xx	reset					
LQFP100	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	WLCSP180 ⁽¹⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after	Pin type	I/O structure	Notes	Alternate functions	Additional functions
47	70	R13	80	91	R13	L5	80	91	R13	PB11	I/O	FT	-	TIM2_CH4, I2C2_SDA, DFSDM1_CKIN7, USART3_RX, OTG_HS_ULPI_D4, ETH_MII_TX_EN/ETH_RM II_TX_EN, DSI_TE, LCD_G5, EVENTOUT	-
48	71	M10	81	92	L11	P5	81	92	L11	VCAP_1	S	-	-	-	-
49	-	-	-	93	K9	N5	-	93	K9	VSS	S	-	-	-	-
50	72	N10	82	94	L10	P4	82	94	L10	VDD	S	-	-	-	-
-	-	-	-	95	M1 4	NC	-	95	M1 4	PJ5	I/O	FT	-	LCD_R6, EVENTOUT	-
-	-	M11	83	96	P13	NC	83	96	P13	PH6	I/O	FT	-	I2C2_SMBA, SPI5_SCK, TIM12_CH1, ETH_MII_RXD2, FMC_SDNE1, DCMI_D8, EVENTOUT	-
-	-	N12	84	97	N13	NC	84	97	N13	PH7	I/O	FT	-	I2C3_SCL, SPI5_MISO, ETH_MII_RXD3, FMC_SDCKE1, DCMI_D9, EVENTOUT	-
-	-	M12	85	98	P14	M5	-	98	P14	PH8	I/O	FT	-	I2C3_SDA, FMC_D16, DCMI_HSYNC, LCD_R2, EVENTOUT	-
-	-	M13	86	99	N14	K4	-	99	N14	PH9	I/O	FT	-	I2C3_SMBA, TIM12_CH2, FMC_D17, DCMI_D0, LCD_R3, EVENTOUT	-
-	-	L13	87	100	P15	L4	-	100	P15	PH10	I/O	FT	-	TIM5_CH1, I2C4_SMBA, FMC_D18, DCMI_D1, LCD_R4, EVENTOUT	-
-	-	L12	88	101	N15	M4	-	101	N15	PH11	I/O	FT	-	TIM5_CH2, I2C4_SCL, FMC_D19, DCMI_D2, LCD_R5, EVENTOUT	-

Table 10. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Pin name	NOR/PSRAM/SR AM	NOR/PSRAM Mux	NAND16	SDRAM
PF0	A0	-	-	A0
PF1	A1	-	-	A1
PF2	A2	-	-	A2
PF3	A3	-	-	A3
PF4	A4	-	-	A4
PF5	A5	-	-	A5
PF12	A6	-	-	A6
PF13	A7	-	-	A7
PF14	A8	-	-	A8
PF15	A9	-	-	A9
PG0	A10	-	-	A10
PG1	A11	-	-	A11
PG2	A12	-	-	A12
PG3	A13	-	-	-
PG4	A14	-	-	BA0
PG5	A15	-	-	BA1
PD11	A16	A16	CLE	-
PD12	A17	A17	ALE	-
PD13	A18	A18	-	-
PE3	A19	A19	-	-
PE4	A20	A20	-	-
PE5	A21	A21	-	-
PE6	A22	A22	-	-
PE2	A23	A23	-	-
PG13	A24	A24	-	-
PG14	A25	A25	-	-
PD14	D0	DA0	D0	D0
PD15	D1	DA1	D1	D1
PD0	D2	DA2	D2	D2
PD1	D3	DA3	D3	D3
PE7	D4	DA4	D4	D4
PE8	D5	DA5	D5	D5
PE9	D6	DA6	D6	D6
PE10	D7	DA7	D7	D7

Table 11. FMC pin definition

- 7. The over-drive mode is not supported when the internal regulator is OFF.
- 8. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
- 9. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} .
- 10. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax}.

Table 18. Limitations	depending on	the operating	power supply range
			pono. onpp.j.m.go

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum HCLK frequency vs Flash memory wait states (1)(2)	I/O operation	Possible Flash memory operations
V _{DD} =1.7 to 2.1 V ⁽³⁾	Conversion time up to 1.2 Msps	20 MHz	180 MHz with 8 wait states and over-drive OFF	No I/O compensation	8-bit erase and program operations only
V _{DD} = 2.1 to 2.4 V	Conversion time up to 1.2 Msps	22 MHz	216 MHz with 9 wait states and over-drive ON	No I/O compensation	16-bit erase and program operations
V _{DD} = 2.4 to 2.7 V	Conversion time up to 2.4 Msps	24 MHz	216 MHz with 8 wait states and over-drive ON	I/O compensation works	16-bit erase and program operations
$V_{DD} = 2.7 \text{ to}$ 3.6 V ⁽⁴⁾	Conversion time up to 2.4 Msps	30 MHz	216 MHz with 6 wait states and over-drive ON	I/O compensation works	32-bit erase and program operations

1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.

 Thanks to the ART accelerator on ITCM interface and L1-cache on AXI interface, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator or L1-cache allows to achieve a performance equivalent to 0-wait state program execution.

- V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.18.2: Internal reset OFF).
- 4. The voltage range for USB full speed PHYs can drop down to 2.7 V. However the electrical characteristics of D- and D+ pins will be degraded between 2.7 and 3 V.

5.3.2 VCAP1/VCAP2 external capacitor

Stabilization for the main regulator is achieved by connecting an external capacitor C_{EXT} to the VCAP1/VCAP2 pins. C_{EXT} is specified in *Table 19*.

Figure 27. External capacitor C_{EXT}

1. Legend: ESR is the equivalent series resistance.

5.3.9 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 65: I/O static characteristics*. However, the recommended clock input waveform is shown in *Figure 28*.

The characteristics given in *Table 41* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	External user clock source frequency ⁽¹⁾		1	-	50	MHz
V _{HSEH}	OSC_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	_	V _{SS}	-	$0.3V_{DD}$	v
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		5	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	10	115
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(HSE)	Duty cycle	-	45	-	55	%
١L	OSC_IN Input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$	-	-	±1	μA

Table 41. High-speed external user clock characteristics

1. Guaranteed by design.

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 65: I/O static characteristics*. However, the recommended clock input waveform is shown in *Figure 29*.

The characteristics given in *Table 42* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 17*.

Figure 49. I²S slave timing diagram (Philips protocol)⁽¹⁾

LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 50. I²S master timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Symbol	Parameter	Conditions	Min. (1)	Тур.	Max. (1)	Unit
P	PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM)	₩ - ₩	17	21	24	kΩ
крD	PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	VIN - VDD	2.4	5.2	8	
R _{PU}	PA12, PB15 (USB_FS_DP, USB_HS_DP)	V _{IN} = V _{SS}	1.5	1.8	2.1	
	PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	V _{IN} = V _{SS}	0.55	0.95	1.35	

Table 91. USB OTG full speed DC electrical characteristics (continued)

1. All the voltages are measured from the local ground potential.

2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DDUSB} voltage range.

3. Guaranteed by design.

4. R_L is the load connected on the USB OTG full speed drivers.

Note:

When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state (floating input), not as alternate function. A typical 200 µA current consumption of the sensing block (current to voltage conversion to determine the different sessions) can be observed on PA9 and PB13 when the feature is enabled.

Figure 55. USB OTG full speed timings: definition of data signal rise and fall time

Table 92	USB	OTG full	speed	electrical	characteristics ⁽¹⁾
Table 32.	000		Sheen	electrical	

Driver characteristics								
Symbol	Parameter	Conditions	Min	Max	Unit			
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns			
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	20	ns			
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%			
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V			
Z _{DRV}	Output driver impedance ⁽³⁾	Driving high or low	28	44	Ω			

DocID029041 Rev 4

Table 95. Dynamic characteristics: USB ULPI⁽¹⁾

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{SC}	Control in (ULPI_DIR, ULPI_NXT) setup time	-	2	-	-	
t _{HC}	Control in (ULPI_DIR, ULPI_NXT) hold time	-	1.5	-	-	
t _{SD}	Data in setup time	-	2	-	-	
t _{HD}	Data in hold time	-	1	-	-	
t _{DC} /t _{DD}		2.7 V < V _{DD} < 3.6 V, C _L = 20 pF	-	6.5	8	ns
	Data/control output delay	-	-			
		1.7 V < V _{DD} < 3.6 V, C _L = 15 pF	-	6.5	11	

1. Guaranteed by characterization results.

Ethernet characteristics

Unless otherwise specified, the parameters given in *Table 96*, *Table 97* and *Table 98* for SMI, RMII and MII are derived from tests performed under the ambient temperature, f_{HCLK} frequency summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 20 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}.

Refer to *Section 5.3.20: I/O port characteristics* for more details on the input/output characteristics.

Table 96 gives the list of Ethernet MAC signals for the SMI (station management interface) and *Figure 57* shows the corresponding timing diagram.

Figure 67. Synchronous non-multiplexed NOR/PSRAM read timings

Table 110. Synchronous non-multiplexed NOR/PSRAM read timings ⁽	Table 110. S	Synchronous	non-multiple	exed NOR/PSRAM	I read timings	s ⁽¹⁾
--	--------------	-------------	--------------	----------------	----------------	------------------

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} – 0.5	-	
t _(CLKL-NExL)	FMC_CLK low to FMC_NEx low (x=02)	-	2	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} + 0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	2.5	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK}	-	ns
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	1.5	
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{HCLK} + 0.5	-	
t _{su(DV-CLKH)}	FMC_D[15:0] valid data before FMC_CLK high	1.5	-	
t _{h(CLKH-DV)}	W) FMC_D[15:0] valid data after FMC_CLK high		-	
t _(NWAIT-CLKH)	FMC_NWAIT valid before FMC_CLK high	2	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	3.5	-	

Figure 71. NAND controller waveforms for common memory read access

Figure 72. NAND controller waveforms for common memory write access

Table 112. Switching characteristics for NAND Flash read cycles⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(N0E)}	FMC_NOE low width	4T _{HCLK} -0.5	4T _{HCLK} + 0.5	
t _{su(D-NOE)}	FMC_D[15-0] valid data before FMC_NOE high	11	-	
t _{h(NOE-D)}	FMC_D[15-0] valid data after FMC_NOE high	0	-	ns
t _{d(ALE-NOE)}	FMC_ALE valid before FMC_NOE low	-	3T _{HCLK} + 1	
t _{h(NOE-ALE)}	FMC_NWE high to FMC_ALE invalid	4T _{HCLK} – 2	-	

1. Guaranteed by characterization results.

5.3.34 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics

Unless otherwise specified, the parameters given in *Table 122* for DFSDM are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DD} supply voltage summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30pF
- Measurement points are done at CMOS levels: 0.5 x VDD

Refer to *Section 5.3.20: I/O port characteristics* for more details on the input/output alternate function characteristics (DFSDM1_CKINx, DFSDM1_DATINx, DFSDM1_CKOUT for DFSDM1).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{DFSDMCLK}	DFSDM clock	1.71 < V _{DD} < 3.6 V	-	-	f _{SYSCLK}	
f _{ckin} (1/T _{ckin})		SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1:0]=0), 1.71 < V _{DD} < 3.6 V	-	-	20 (f _{DFSDMCLK} /4)	
	$\label{eq:spinor} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1:0]=0), 2.7 < V _{DD} < 3.6 V	-	- 20 (f _{DFSDMCLI}		
		SPI mode (SITP[1:0]=0,1), Internal clock mode (SPICKSEL[1:0]≠0), 1.71 < V _{DD} < 3.6 V	-	-	20 (f _{DFSDMCLK} /4)	MHz
		-	-	20 (f _{DFSDMCLK} /4)		
fскоит	Output clock frequency 1.71 < V _{DD} < 3.6 V		-	-	20	
DuCy _{CKOUT}	Cy _{CKOUT} Output clock frequency duty cycle 1.71 < V _{DD} < 3.6 V		45	50	55	%

Table 122. DFSDM measured timing 1.71-3.6V

uata							
Cumb al	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
с	0.090	-	0.200	0.0035	-	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	-	12.000	-	-	0.4724	-	
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	-	12.000	-	-	0.4724	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
ссс	-	-	0.080	-	-	0.0031	

Table 125. LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

LQFP144 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Appendix A Recommendations when using internal reset OFF

When the internal reset is OFF, the following integrated features are no longer supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
- The brownout reset (BOR) circuitry must be disabled
- The embedded programmable voltage detector (PVD) is disabled
- V_{BAT} functionality is no more available and VBAT pin should be connected to V_{DD}
- The over-drive mode is not supported

A.1 Operating conditions

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (felashmay)	Maximum Flash memory access frequency with wait states ⁽¹⁾⁽²⁾	I/O operation	Possible Flash memory operations
		(^T Flashmax)			
V _{DD} =1.7 to 2.1 V ⁽³⁾	Conversion time up to 1.2 Msps	20 MHz	168 MHz with 8 wait states and over-drive OFF	 No I/O compensation 	8-bit erase and program operations only

Table 137. Limitations depending on the operating power supply range

1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.

2. Thanks to the ART accelerator on ITCM interface and L1-cache on AXI interface, the number of wait states given here does not impact the execution speed from the Flash memory since the ART accelerator or L1-cache allows to achieve a performance equivalent to 0-wait state program execution.

 V_{DD}/V_{DDA} minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 2.18.1: Internal reset ON).

