

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detalls	
Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SAI, SPDIF, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	140
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f769iit6g

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

STM32F765xx STM32F767xx STM32F768Ax STM32F769xx

LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package outline	237
LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package	
recommended footprint	239
LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package	
top view example	240
WLCSP 180-bump, 5.5 x 6 mm, 0.4 mm pitch wafer level chip scale	
package outline	241
WLCSP 180-bump, 5.5 x 6 mm, 0.4 mm pitch wafer level chip scale	
package recommended footprint	243
WLCSP180-bump, 5.5 x 6 mm, 0.4 mm pitch wafer level chip scale package	
top view example	244
UFBGA176+25, 10 × 10 × 0.65 mm ultra thin fine-pitch ball grid array	
package outline	245
UFBGA176+25, 10 x 10 mm x 0.65 mm, ultra fine-pitch ball grid array	
package recommended footprint	246
UFBGA 176+25, 10 × 10 × 0.65 mm ultra thin fine-pitch ball grid array	
package top view example	247
TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid array	
package outline	248
TFBGA216, 13 x 13 mm, 0.8 mm pitch, thin fine-pitch ball grid array	
package recommended footprint	249
TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid array	
package top view example	250
	LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package recommended footprint. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package top view example WLCSP 180-bump, 5.5 x 6 mm, 0.4 mm pitch wafer level chip scale package outline. WLCSP 180-bump, 5.5 x 6 mm, 0.4 mm pitch wafer level chip scale package recommended footprint WLCSP180-bump, 5.5 x 6 mm, 0.4 mm pitch wafer level chip scale package top view example UFBGA176+25, 10 × 10 × 0.65 mm ultra thin fine-pitch ball grid array package outline. UFBGA176+25, 10 × 10 mm x 0.65 mm, ultra fine-pitch ball grid array package recommended footprint UFBGA 176+25, 10 × 10 × 0.65 mm ultra thin fine-pitch ball grid array package top view example TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid array package outline. TFBGA216, 13 × 13 mm, 0.8 mm pitch, thin fine-pitch ball grid array package recommended footprint

• LPR is used in the Stop modes:

The LP regulator mode is configured by software when entering Stop mode.

Like the MR mode, the LPR can be configured in two ways during stop mode:

- LPR operates in normal mode (default mode when LPR is ON)
- LPR operates in under-drive mode (reduced leakage mode).
- Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Refer to *Table 3* for a summary of voltage regulator modes versus device operating modes.

Two external ceramic capacitors should be connected on V_{CAP \ 1} and V_{CAP \ 2} pin.

All packages have the regulator ON feature.

Voltage regulator configuration	Run mode	Sleep mode	Stop mode	Standby mode
Normal mode	MR	MR	MR or LPR	-
Over-drive mode ⁽²⁾	MR	MR	-	-
Under-drive mode	-	-	MR or LPR	-
Power-down mode	-	-	-	Yes

Table 3. Voltage regulator configuration mode versus device operating mode⁽¹⁾

1. '-' means that the corresponding configuration is not available.

2. The over-drive mode is not available when V_{DD} = 1.7 to 2.1 V.

2.19.2 Regulator OFF

This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V₁₂ voltage source through V_{CAP 1} and V_{CAP 2} pins.

Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. The two 2.2 μ F ceramic capacitors should be replaced by two 100 nF decoupling capacitors.

When the regulator is OFF, there is no more internal monitoring on V_{12} . An external power supply supervisor should be used to monitor the V_{12} of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V_{12} power domain.

In the regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset a part of the V₁₂ logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.
- The over-drive and under-drive modes are not available.
- The Standby mode is not available.

DocID029041 Rev 4

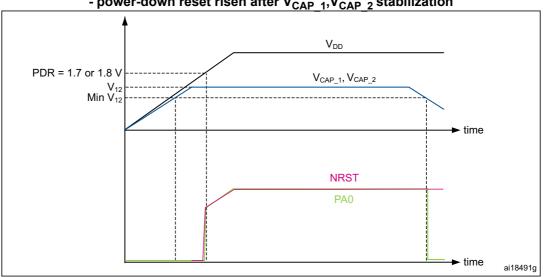


Figure 9. Startup in regulator OFF: slow V_{DD} slope - power-down reset risen after V_{CAP_1}, V_{CAP_2} stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

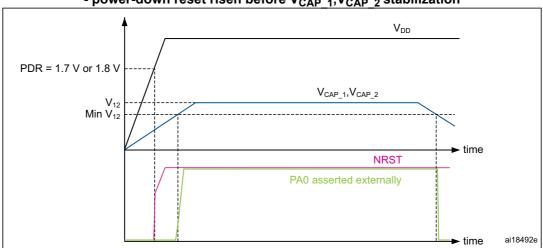


Figure 10. Startup in regulator OFF mode: fast V_{DD} slope - power-down reset risen before V_{CAP_1}, V_{CAP_2} stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

The RTC clock sources can be:

- A 32.768 kHz external crystal (LSE)
- An external resonator or oscillator(LSE)
- The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
- The high-speed external clock (HSE) divided by 32

The RTC is functional in V_{BAT} mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in V_{BAT} mode, but is functional in all low-power modes.

All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes.

2.21 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see *Table 5: Voltage regulator modes in stop mode*):

- Normal mode (default mode when MR or LPR is enabled)
- Under-drive mode.

The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup and LPTIM1 asynchronous interrupt).

Voltage regulator configuration	Main regulator (MR)	Low-power regulator (LPR)
Normal mode	MR ON	LPR ON
Under-drive mode	MR in under-drive mode	LPR in under-drive mode

Table 5. Voltage regulator modes in stop mode

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering

	Pin Number														
		TM32 TM32					FM32 FM32			reset					
LQFP100	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	WLCSP180 ⁽¹⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after reset	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	51	M8	61	72	K7	P9	61	72	K7	VSS	S		-	-	-
-	52	N8	62	73	L8	M8	62	73	L8	VDD	S		-	-	-
-	53	N6	63	74	N6	L8	63	74	N6	PF13	I/O	FT	-	I2C4_SMBA, DFSDM1_DATIN6, FMC_A7, EVENTOUT	-
-	54	R7	64	75	P6	K8	64	75	P6	PF14	I/O	FT	-	I2C4_SCL, DFSDM1_CKIN6, FMC_A8, EVENTOUT	-
-	55	P7	65	76	M8	P8	65	76	M8	PF15	1/0	FT	-	I2C4_SDA, FMC_A9, EVENTOUT	-
-	56	N7	66	77	N7	N8	66	77	N7	PG0	I/O	FT	-	FMC_A10, EVENTOUT	-
-	57	M7	67	78	M7	L7	67	78	M7	PG1	I/O	FT	-	FMC_A11, EVENTOUT	-
37	58	R8	68	79	R8	M7	68	79	R8	PE7	I/O	FT	-	TIM1_ETR, DFSDM1_DATIN2, UART7_RX, QUADSPI_BK2_IO0, FMC_D4, EVENTOUT	-
38	59	P8	69	80	N9	N7	69	80	N9	PE8	I/O	FT	-	TIM1_CH1N, DFSDM1_CKIN2, UART7_TX, QUADSPI_BK2_IO1, FMC_D5, EVENTOUT	-
39	60	P9	70	81	P9	P7	70	81	P9	PE9	I/O	FT	-	TIM1_CH1, DFSDM1_CKOUT, UART7_RTS, QUADSPI_BK2_IO2, FMC_D6, EVENTOUT	-
-	61	M9	71	82	K8	-	71	82	K8	VSS	S	-	-	-	-
-	62	N9	72	83	L9	-	72	83	L9	VDD	S	-	-	-	-

Table 10. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

				Pin N	umbe	ər							/			
		TM32 TM32			1			F768/ F769:		. reset						
LQFP100	LQFP144	UFBGA176	LQFP176	LQFP208	TFBGA216	WLCSP180 ⁽¹⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after reset	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
55	77	P15	96	108	L15	М3	89	108	L15	PD8	I/O	FT	-	DFSDM1_CKIN3, USART3_TX, SPDIF_RX1, FMC_D13, EVENTOUT	-	
56	78	P14	97	109	L14	L3	90	109	L14	PD9	I/O	FT	-	DFSDM1_DATIN3, USART3_RX, FMC_D14, EVENTOUT	-	
57	79	N15	98	110	K15	M2	91	110	K15	PD10	I/O	FT	-	DFSDM1_CKOUT, USART3_CK, FMC_D15, LCD_B3, EVENTOUT	-	
58	80	N14	99	111	N10	K3	92	111	N10	PD11	I/O	FT	-	I2C4_SMBA, USART3_CTS, QUADSPI_BK1_IO0, SAI2_SD_A, FMC_A16/FMC_CLE, EVENTOUT	-	
59	81	N13	100	112	M1 0	J4	93	112	M1 0	PD12	I/O	FT	-	TIM4_CH1, LPTIM1_IN1, I2C4_SCL, USART3_RTS, QUADSPI_BK1_IO1, SAI2_FS_A, FMC_A17/FMC_ALE, EVENTOUT	-	
60	82	M15	101	113	M11	L2	94	113	M11	PD13	I/O	FT	-	TIM4_CH2, LPTIM1_OUT, I2C4_SDA, QUADSPI_BK1_IO3, SAI2_SCK_A, FMC_A18, EVENTOUT	-	
-	83	-	102	114	J10	M1	95	114	J10	VSS	S		-	-	-	
-	84	J13	103	115	J11	-	96	115	J11	VDD	s		-	-	-	
61	85	M14	104	116	L12	L1	97	116	L12	PD14	I/O	FT	-	TIM4_CH3, UART8_CTS, FMC_D0, EVENTOUT	-	
62	86	L14	105	117	К13	K2	98	117	K13	PD15	1/0	FT	-	TIM4_CH4, UART8_RTS, FMC_D1, EVENTOUT	-	
-	-	-	-	118	K12	-	-	-	-	PJ6	I/O	FT	-	LCD_R7, EVENTOUT	-	
-	-	-	-	119	J12	-	-	-	-	PJ7	I/O	FT	-	LCD_G0, EVENTOUT	-	

Table 10. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

5

Table 12. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx alternate

							functio	on map	oing (co	ntinued)						
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Po	ort	SYS	12C4/UA RT5/TIM 1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/DFSDM 1/CEC	I2C1/2/3/ 4/USART 1/CEC	SPI1/I2S 1/SPI2/I2 S2/SPI3/ I2S3/SPI 4/5/6	SPI2/I2S 2/SPI3/I2 S3/SAI1/ I2C4/UA RT4/DF SDM1	SPI2/I2S 2/SPI3/I2 S3/SPI6/ USART1/ 2/3/UART 5/DFSDM 1/SPDIF	SPI6/SAI 2/USART 6/UART4/ 5/7/8/OT G_FS/SP DIF	CAN1/2/T IM12/13/ 14/QUAD SPI/FMC/ LCD	SAI2/QU ADSPI/S DMMC2/D FSDM1/O TG2_HS/ OTG1_FS /LCD	I2C4/CAN 3/SDMM C2/ETH	UART7/ FMC/SD MMC1/M DIOS/OT G2_FS	DCMI/L CD/DSI	LCD	SYS
	PA11	-	TIM1_C H4	-	-	-	SPI2_NS S/I2S2_ WS	UART4_ RX	USART1 _CTS	-	CAN1_R X	OTG_FS_ DM	-	-	-	LCD_R4	EVEN TOUT
	PA12	-	TIM1_ET R	-	-	-	SPI2_SC K/I2S2_ CK	UART4_ TX	USART1 _RTS	SAI2_FS _B	CAN1_T X	OTG_FS_ DP	-	-	-	LCD_R5	EVEN TOUT
Port A	PA13	JTMS- SWDIO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PA14	JTCK- SWCLK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PA15	JTDI	TIM2_C H1/TIM2 _ETR	-	-	HDMI- CEC	SPI1_NS S/I2S1_ WS	SPI3_NS S/I2S3_ WS	SPI6_NS S	UART4_ RTS	-	-	CAN3_TX	UART7_ TX	-	-	EVEN TOUT
	PB0	-	TIM1_C H2N	TIM3_C H3	TIM8_CH 2N	-	-	DFSDM1 _CKOUT	-	UART4_ CTS	LCD_R3	OTG_HS_ ULPI_D1	ETH_MII_ RXD2	-	-	LCD_G1	EVEN TOUT
	PB1	-	TIM1_C H3N	TIM3_C H4	TIM8_CH 3N	-	-	DFSDM1 _DATIN1	-	-	LCD_R6	OTG_HS_ ULPI_D2	ETH_MII_ RXD3	-	-	LCD_G0	EVEN TOUT
	PB2	-	-	-	-	-	-	SAI1_SD _A	SPI3_MO SI/I2S3_ SD		QUADSP I_CLK	DFSDM1_ CKIN1	-	-	-	-	EVEN TOUT
Port B	PB3	JTDO/T RACES WO	TIM2_C H2	-	-	-	SPI1_SC K/I2S1_ CK	SPI3_SC K/I2S3_ CK	-	SPI6_SC K	-	SDMMC2 _D2	CAN3_R X	UART7_ RX	-	-	EVEN TOUT
	PB4	NJTRST	-	TIM3_C H1	-	-	SPI1_MI SO	SPI3_MI SO	SPI2_NS S/I2S2_ WS	SPI6_MI SO	-	SDMMC2 _D3	CAN3_TX	UART7_ TX	-	-	EVEN TOUT
	PB5	-	UART5_ RX	TIM3_C H2	-	I2C1_SM BA	SPI1_M OSI/I2S1 _SD	SPI3_M OSI/I2S3 _SD	-	SPI6_MO SI	CAN2_R X	OTG_HS_ ULPI_D7	ETH_PPS _OUT	FMC_SD CKE1	DCMI_D 10	LCD_G7	EVEN TOUT
	PB6	-	UART5_ TX	TIM4_C H1	HDMI- CEC	I2C1_SC L	-	DFSDM1 _DATIN5	USART1 _TX	-	CAN2_T X	QUADSPI _BK1_NC S	I2C4_SC L	FMC_SD NE1	DCMI_D 5	-	EVEN TOUT

STM32F765xx STM32F767xx STM32F768Ax STM32F769xx

Pinouts and pin description

93/255

DocID029041 Rev 4

Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (Dual bank mode) on ITCM interface (ART disabled), regulator ON

Cumhal	Demonster	Conditions	£ (8411-)	True		Max ⁽¹⁾		Unit	
Symbol	Parameter	Conditions	f _{HCLK} (MHz) Тур		TA= 25 °C	TA=85 °C	TA=105 °C		
			216	191	218	255	-		
			200	178	195	241	269		
			180	164	179	214	236		
		All peripherals enabled ⁽²⁾⁽³⁾	168	147	160	192	212		
	Supply current in RUN mode	chabled	144	121	130	157	175		
			60	60	66	93	111	mA	
			25	28	33	59	77		
I _{DD}			216	93	104	150	-		
			200	87	97	144	171		
			180	83	92	126	148		
		All peripherals disabled ⁽³⁾	168	75	82	114	134		
		disubled	144	65	71	97	115		
			60	35	40	66	84		
			25	16	20	47	64		

1. Guaranteed by characterization results, unless otherwise specified.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

				Тур			x ⁽²⁾			
Symbol	Parameter	Conditions ⁽¹⁾	٦	۲ _A =25 °(C	T _A =85 °C	T _A =105 °C	Unit		
			V _{BAT} = 1.7 V	V _{BAT} = 2.4 V	V _{BAT} = 3.3 V	V _{BAT} =	= 3.6 V			
		Backup SRAM OFF, RTC and LSE OFF	0.03	0.04	0.04	0.2	0.4			
		Backup SRAM ON, RTC and LSE OFF	0.77	0.78	0.83	3.2	7.4			
	Supply current in V _{BAT} mode	Backup SRAM OFF, RTC ON and LSE in low drive mode	0.62	0.8	1.13	4.4	10.2			
		Backup SRAM OFF, RTC ON and LSE in medium low drive mode	0.65	0.83	1.17	4.6	10.6			
		Backup SRAM OFF, RTC ON and LSE in medium high drive mode	0.75	0.94	1.28	5.0	11.4	μA		
		Backup SRAM OFF, RTC ON and LSE in high drive mode	0.9	1.08	1.43	5.5	12.8			
		Backup SRAM ON, RTC ON and LSE in low drive mode	1.35	1.54	1.91	7.3	17.2			
		Backup SRAM ON, RTC ON and LSE in Medium low drive mode	1.38	1.57	1.93	7.9	18.4			
		Backup SRAM ON, RTC ON and LSE in Medium high drive mode	1.53	1.73	2.11	8.0	18.7			
		Backup SRAM ON, RTC ON and LSE in High drive mode	1.67	1.87	2.26	9.0	21.0			

Table 37. Typical and maximum current consumptions in V_{BAT} mode

1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a $\rm C_L$ of 6 pF for typical values.

2. Guaranteed by characterization results.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate a current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 65: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

An additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Symbol	Parameter	Conditions	I/O toggling frequency (fsw) MHz	Typ V _{DD} = 3.3 V	Typ V _{DD} = 1.8 V	Unit
			2	0.3	0.1	
			8	1.0	0.5]
			25	3.5	1.6	
		$C_{EXT} = 22 \text{ pF}$ $C = C_{INT} + C_S + C_{EXT}$	50	5.9	4.2	- mA
			60	10.0	4.4	
	I/O switching		84	19.12	5.8	
IDDIO	Current		90	19.6	-	
			2	0.3	0.2	
			8	1.3	0.7	
		$C_{EXT} = 33 \text{ pF}$ $C = C_{INT} + C_S + C_{EXT}$	25	3.5	2.3	
			50	10.26	5.19	
			60	16.53	-	1

1. CINT + C_{S_1} PCB board capacitance including the pad pin is estimated to15 pF.

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are in analog input configuration.
- All peripherals are disabled unless otherwise mentioned.
- I/O compensation cell enabled.
- The ART/L1-cache is ON.
- Scale 1 mode selected, internal digital voltage V12 = 1.32 V.
- HCLK is the system clock. f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2.
 The given value is calculated by measuring the difference of current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
 - f_{HCLK} = 216 MHz (Scale 1 + over-drive ON), f_{HCLK} = 168 MHz (Scale 2), f_{HCLK} = 144 MHz (Scale 3)
- Ambient operating temperature is 25 °C and V_{DD}=3.3 V.

		55. Peripiteral			
•	Peripheral	Scale 1	Scale 2	Scale 3	Unit
	GPIOA	2.9	2.8	2.2	
	GPIOB	3.0	2.9	2.2	
	GPIOC	2.9	2.8	2.2	
	GPIOD	3.1	3.0	2.3	
	GPIOE	3.1	3.0	2.3	
	GPIOF	2.9	2.8	2.2	
	GPIOG	2.9	2.8	2.2	
	GPIOH	3.1	3.1	2.4	
	GPIOI	3.0	2.9	2.2	
AHB1	GPIOJ	2.9	2.9	2.2	
(up to	GPIOK	2.8	2.8	2.4	µA/MHz
216 MHz)	CRC	1.0	0.9	0.8	
	BKPSRAM	0.9	0.9	0.7	
	DMA1	3.17 x N + 11.63	3.08 x N + 11.39	2.6 x N + 9.64	
	DMA2	3.33 x N + 12.84	3.27 x N + 11.84	2.75 x N + 10.10	
	DMA2D	77.7	76.3	63.5	
	ETH_MAC ETH_MAC_TX ETH_MAC_RX ETH_MAC_PTP	40.1	39.5	32.8	
	OTG_HS	58.5	57.4	48.1	
	OTG_HS+ULPI	58.5	57.4	48.1	
	DCMI	2.9	2.8	2.1	
AHB2	JPEG	74.8	73.4	61.9	
(up to	RNG	6.7	6.7	5.4	µA/MHz
216 MHz)	USB_OTG_FS	32.4	31.9	26.7	μΑντίντητε
AHB3	FMC	18.6	18.2	15.1	µA/MHz
(up to 216 MHz)	QSPI	22.3	21.8	18.1	
В	us matrix ⁽²⁾	3.94	3.25	2.12	µA/MHz

Table 39. Peripheral current consumption

			It consumption I _{DD} (Typ) ⁽¹⁾	()	
F	Peripheral	Scale 1	Scale 2	Scale 3	Unit
	TIM1	24.1	23.8	19.6	
	TIM8	24.5	24.2	20.0	
	USART1	17.7	17.4	14.3	
	USART6	11.9	11.8	9.4	
	ADC1 ⁽⁵⁾	4.5	4.7	3.5	
	ADC2 ⁽⁵⁾	4.5	4.7	3.3	
	ADC3 ⁽⁵⁾	4.5	4.6	3.3	
	SDMMC1	8.4	8.3	6.9	
	SDMMC2	8.2	8.2	6.4	
	SPI1/I2S1 ⁽³⁾	3.9	3.6	3.1	
APB2	SPI4	3.9	3.6	3.1	
(up to	SYSCFG	2.5	2.2	1.9	µA/MHz
108 MHz)	TIM9	8.0	8.0	6.2	
	TIM10	5.0	5.1	3.7	
	TIM11	6.9	6.9	5.3	
	SPI5	2.7	2.8	1.8	
	SPI6	3.1	3.2	2.2	
	SAI1	3.2	3.3	2.2	
	DFSDM1	10.9	10.7	9.0	
	SAI2	3.9	3.9	2.8	
	MDIO	7.1	7.0	5.8	
	LTDC	51.2	50.3	41.8	
	DSI	8.5	8.4	8.1	

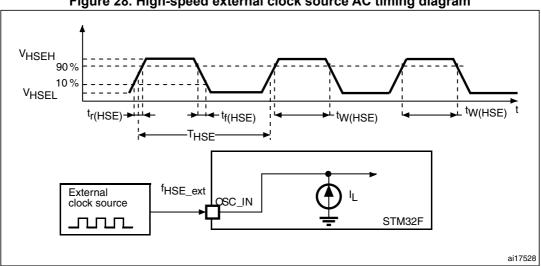
 Table 39. Peripheral current consumption (continued)

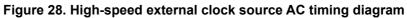
1. When the I/O compensation cell $\,$ is ON, $\rm I_{DD}$ typical value increases by 0.22 mA.

2. The BusMatrix is automatically active when at least one master is ON.

3. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.

4. When the DAC is ON and EN1/2 bits are set in DAC_CR register, add an additional power consumption of 0.75 mA per DAC channel for the analog part.


5. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

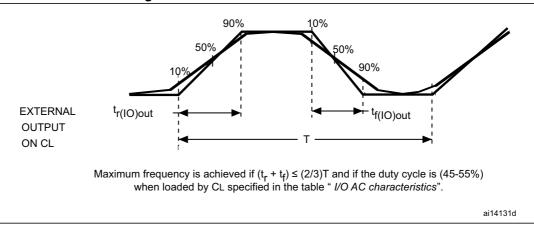


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	
t _{w(LSE)} t _{f(LSE)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(LSE)	Duty cycle	-	30	-	70	%
١L	OSC32_IN Input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$	-	-	±1	μA

Table 42. Low-speed external user clock characteristics

1. Guaranteed by design.

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
			C _L = 30 pF, V _{DD} ≥ 2.7 V	-	-	100 ⁽⁴⁾		
			C _L = 30 pF, V _{DD} ≥ 1.8 V	-	-	50		
	f	Maximum frequency ⁽³⁾	C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	42.5	MHz	
	f _{max(IO)out}	Maximum nequency."	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	180 ⁽⁴⁾	MHZ	
			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	100		
11			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	72.5		
	t _{f(IO)out} /		C _L = 30 pF, V _{DD} ≥ 2.7 V	-	-	4		
			C _L = 30 pF, V _{DD} ≥1.8 V	-	-	6	- ns	
			C _L = 30 pF, V _{DD} ≥1.7 V	-	-	7		
	t _{r(IO)out}		C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	2.5		
			C _L = 10 pF, V _{DD} ≥1.8 V	-	-	3.5		
			C _L = 10 pF, V _{DD} ≥1.7 V	-	-	4		
-	tEXTIpw	Pulse width of external signals detected by the EXTI controller	-	10	-	-	ns	


Table 67. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

1. Guaranteed by design.

2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F76xxx and STM32F77xxx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.

3. The maximum frequency is defined in *Figure 39*.

4. For maximum frequencies above 50 MHz and V_{DD} > 2.4 V, the compensation cell should be used.

Figure 39. I/O AC characteristics definition

Symbol		ADC characteristics	,	T	Max	11014
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 30 MHz, 12-bit resolution	-	-	1764	kHz
		-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> for details	-	-	50	kΩ
$R_{ADC}^{(2)(4)}$	Sampling switch resistance	-	-	-	6	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	4	7	pF
↓ (2)	Injection trigger conversion	f _{ADC} = 30 MHz	-	-	0.100	μs
$t_{lat}^{(2)}$	latency		-	-	3 ⁽⁵⁾	1/f _{ADC}
t _{latr} (2)	Regular trigger conversion	f _{ADC} = 30 MHz	-	-	0.067	μs
⁴ atr`´	latency		-	-	2 ⁽⁵⁾	1/f _{ADC}
ts ⁽²⁾	Sampling time	f _{ADC} = 30 MHz	0.100	-	16	μs
IS T		-	3	-	480	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	-	2	3	μs
		f _{ADC} = 30 MHz 12-bit resolution	0.50	-	16.40	μs
		f _{ADC} = 30 MHz 10-bit resolution	0.43	-	16.34	μs
t _{CONV} ⁽²⁾	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	μs
		f _{ADC} = 30 MHz 6-bit resolution	0.30	-	16.20	μs
		9 to 492 (t _S for sampling +n-bit resolution for successive approximation)				
		12-bit resolution Single ADC	-	-	2.4	Msps
$f_{S}^{(2)}$	Sampling rate (f _{ADC} = 36 MHz, and t _S = 3 ADC cycles)	12-bit resolution Interleave Dual ADC mode	-	-	4.5	Msps
		12-bit resolution Interleave Triple ADC mode	-	-	7.2	Msps

Table 71. ADC characteristics (continued)

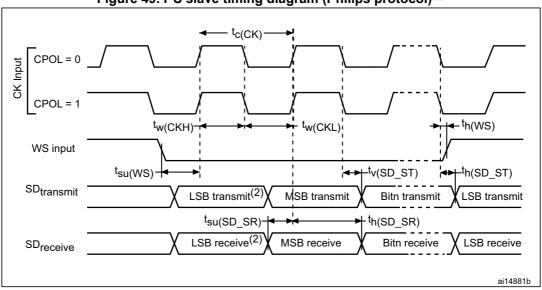
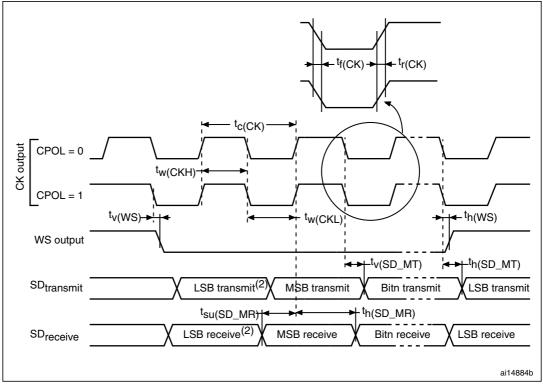



Figure 49. I²S slave timing diagram (Philips protocol)⁽¹⁾

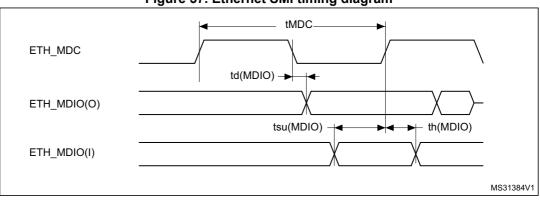
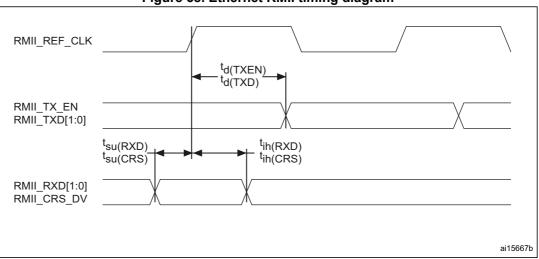

LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 50. I²S master timing diagram (Philips protocol)⁽¹⁾

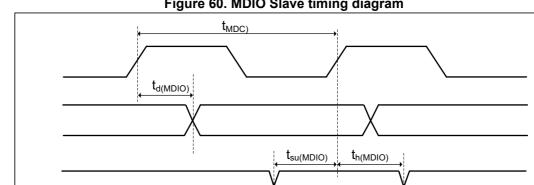
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.


Figure 57. Ethernet SMI timing diagram

Symbol	Parameter	Min	Тур	Мах	Unit
t _{MDC}	MDC cycle time(2.38 MHz)	400	400	403	
T _{d(MDIO)}	Write data valid time	T _{HCLK} + 1	T _{HCLK} + 1.5	T _{HCLK} + 3	ns
t _{su(MDIO)}	Read data setup time	12.5	-	-	115
t _{h(MDIO)}	Read data hold time	0	-	-	

1. Guaranteed by characterization results.

Table 97 gives the list of Ethernet MAC signals for the RMII and *Figure 58* shows the corresponding timing diagram.



1. Guaranteed by characterization results.

Table 99.	MDIO	Slave	timina	parameters
		Oldve	unning	parameters

Symbol	Parameter		Тур	Max	Unit
F _{sDC}	Management Data clock	-	-	40	MHz
t _{d(MDIO)}	Management Data input/output output valid time	7	8	20	
t _{su(MDIO)}	Management Data input/output setup time	4	-	-	ns
t _{h(MDIO)}	Management Data input/output hold time	1	-	-	

The MDIO controller is mapped on APB2 domain. The frequency of the APB bus should at least 1.5 times the MDC frequency: F_{PCLK2} ≥ 1.5 * F_{MDC}

CAN (controller area network) interface

Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate function characteristics (CANx_TX and CANx_RX).

5.3.30 **FMC** characteristics

Unless otherwise specified, the parameters given in Table 100 to Table 113 for the FMC interface are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5V_{DD}

MSv40460V1

1. Guaranteed by characterization results.

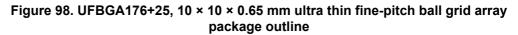
Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	9T _{HCLK} – 1	9T _{HCLK} + 1	
t _{w(NWE)}	FMC_NWE low time	7T _{HCLK} – 0.5	7T _{HCLK} + 0.5	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} + 2	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} – 1	-	

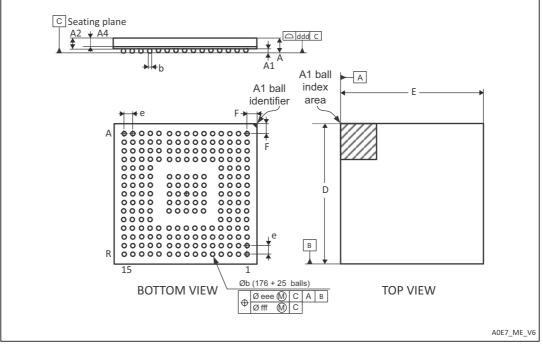
1. Guaranteed by characterization results.

Synchronous waveforms and timings

Figure 65 through *Figure 68* represent synchronous waveforms and *Table 108* through *Table 111* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- BurstAccessMode = FMC_BurstAccessMode_Enable;
- MemoryType = FMC_MemoryType_CRAM;
- WriteBurst = FMC_WriteBurst_Enable;
- CLKDivision = 1;
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
- CL = 30 pF on data and address lines. CL = 10 pF on FMC_CLK unless otherwise specified.


In all the timing tables, the $T_{\mbox{HCLK}}$ is the HCLK clock period.


- For 2.7 Vs V_{DD}s 3.6 V, maximum FMC_CLK = 100 MHz at CL=20 pF or 90 MHz at CL=30 pF (on FMC_CLK).
- For 1.71 V \leq V_{DD}<2.7 V, maximum FMC_CLK = 70 MHz at CL=10 pF (on FMC_CLK).

Package information

6.6 UFBGA176+25, 10 x 10, 0.65 mm ultra thin fine-pitch ball grid array package information

1. Drawing is not to scale.

Table 131. UFBGA176+25,	10 × 10 × 0.65 mm ultra thin fine-pitch ball grid array
	package mechanical data

Cumb ol		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	0.460	0.530	0.600	0.0181	0.0209	0.0236	
A1	0.050	0.080	0.110	0.002	0.0031	0.0043	
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197	
b	0.230	0.280	0.330	0.0091	0.0110	0.0130	
D	9.950	10.000	10.050	0.3917	0.3937	0.3957	
Е	9.950	10.000	10.050	0.3917	0.3937	0.3957	
е	-	0.650	-	-	0.0256	-	
F	0.400	0.450	0.500	0.0157	0.0177	0.0197	
ddd	-	-	0.080	-	-	0.0031	
eee	-	-	0.150	-	-	0.0059	
fff	-	-	0.080	-	-	0.0031	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

