

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	216MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SAI, SPDIF, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	168
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	216-TFBGA
Supplier Device Package	216-TFBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f769nih6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 8. Regulator OFF

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is faster than the time for V_{DD} to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach V₁₂ minimum value and until V_{DD} reaches 1.7 V (see *Figure 9*).
- Otherwise, if the time for V_{CAP_1} and V_{CAP_2} to reach V_{12} minimum value is slower than the time for V_{DD} to reach 1.7 V, then PA0 could be asserted low externally (see *Figure 10*).
- If V_{CAP_1} and V_{CAP_2} go below V_{12} minimum value and V_{DD} is higher than 1.7 V, then a reset must be asserted on PA0 pin.
- Note: The minimum value of V_{12} depends on the maximum frequency targeted in the application.

Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising or falling edge on one of the 6 WKUP pins (PA0, PA2, PC1, PC13, PI8, PI11), or an RTC alarm / wakeup / tamper /time stamp event occurs.

The Standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

2.22 V_{BAT} operation

Note:

The V_{BAT} pin allows to power the device V_{BAT} domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present.

 V_{BAT} operation is activated when V_{DD} is not present.

The V_{BAT} pin supplies the RTC, the backup registers and the backup SRAM.

When the microcontroller is supplied from V_{BAT}, external interrupts and RTC alarm/events do not exit it from V_{BAT} operation.

When the PDR_ON pin is connected to V_{SS} (Internal Reset OFF), the V_{BAT} functionality is no more available and the V_{BAT} pin should be connected to VDD.

2.23 Timers and watchdogs

The devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 6 compares the features of the advanced-control, general-purpose and basic timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complem entary output	Max interface clock (MHz)	Max timer clock (MHz) ⁽¹⁾
Advanced -control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	108	216
TIM2, TIM532-bitUp, Down, Up/downAny integer between 1 and 65536Yes		Yes	4	No	54	108/216			
General	TIM3, TIM4	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	54	108/216
	TIM9	16-bit	Up	Any integer between 1 and 65536	No	2	No	108	216
purpose	TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	108	216
	TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No	54	108/216
	TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No	54	108/216
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	54	108/216

Table 6.	Timer	feature	comparison
14010 0.		ioataro	001110011

1. The maximum timer clock is either 108 or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

Figure 13. STM32F76xxx LQFP176 pinout

1. The above figure shows the package top view.

96/255

DocID029041 Rev 4

			Т	able 12.	STM32F	765xx, \$	STM32F functio	767xx, on map	STM32F ping (co	768Ax a ntinued	ind STM)	32F769x	x alterna	ate			
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Po	ort	SYS	12C4/UA RT5/TIM 1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/DFSDM 1/CEC	I2C1/2/3/ 4/USART 1/CEC	SPI1/I2S 1/SPI2/I2 S2/SPI3/ I2S3/SPI 4/5/6	SPI2/I2S 2/SPI3/I2 S3/SAI1/ I2C4/UA RT4/DF SDM1	SPI2/I2S 2/SPI3/I2 S3/SPI6/ USART1/ 2/3/UART 5/DFSDM 1/SPDIF	SPI6/SAI 2/USART 6/UART4/ 5/7/8/OT G_FS/SP DIF	CAN1/2/T IM12/13/ 14/QUAD SPI/FMC/ LCD	SAI2/QU ADSPI/S DMMC2/D FSDM1/O TG2_HS/ OTG1_FS /LCD	I2C4/CAN 3/SDMM C2/ETH	UART7/ FMC/SD MMC1/M DIOS/OT G2_FS	DCMI/L CD/DSI	LCD	SYS
	PC11	-	-	-	DFSDM1_ DATAIN5	-	-	SPI3_MI SO	USART3 _RX	UART4_ RX	QUADSP I_BK2_N CS	-	-	SDMMC _D3	DCMI_D 4	-	EVEN TOUT
	PC12	TRACED	-	-	-	-	-	SPI3_M OSI/I2S3 _SD	USART3 _CK	UART5_T X	-	-	-	SDMMC _CK	DCMI_D 9	-	EVEN TOUT
Port C	PC13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PC14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PC15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PD0	-	-	-	DFSDM1_ CKIN6	-	-	DFSDM1 _DATAIN 7	-	UART4_ RX	CAN1_R X	-	-	FMC_D2	-	-	EVEN TOUT
	PD1	-	-	-	DFSDM1_ DATAIN6	-	-	DFSDM1 _CKIN7	-	UART4_T X	CAN1_T X	-	-	FMC_D3	-	-	EVEN TOUT
	PD2	TRACED 2	-	TIM3_ET R	-	-	-	-	-	UART5_ RX	-	-	-	SDMMC _CMD	DCMI_D 11	-	EVEN TOUT
Det D	PD3	-	-	-	DFSDM1_ CKOUT	-	SPI2_SC K/I2S2_ CK	DFSDM1 _DATAIN 0	USART2 _CTS	-	-	-	-	FMC_CL K	DCMI_D 5	LCD_G7	EVEN TOUT
POILD	PD4	-	-	-	-	-	-	DFSDM1 _CKIN0	USART2 _RTS	-	-	-	-	FMC_N OE	-	-	EVEN TOUT
	PD5	-	-	-	-	-	-	-	USART2 _TX	-	-	-	-	FMC_N WE	-	-	EVEN TOUT
	PD6	-	-	-	DFSDM1_ CKIN4	-	SPI3_M OSI/I2S3 _SD	SAI1_SD _A	USART2 _RX	-	-	DFSDM1_ DATAIN1	SDMMC2 _CK	FMC_N WAIT	DCMI_D 10	LCD_B2	EVEN TOUT
	PD7	-	-	-	DFSDM1_ DATAIN4	-	SPI1_M OSI/I2S1 _SD	DFSDM1 _CKIN1	USART2 _CK	SPDIF_R X0	-	-	SDMMC2 _CMD	FMC_NE	-	-	EVEN TOUT

Pinouts and pin description

STM32F765xx STM32F767xx STM32F768Ax STM32F769xx

Bus	Boundary address	Peripheral
	0xE00F FFFF - 0xFFFF FFFF	Reserved
Cortex-M7	0xE000 0000 - 0xE00F FFFF	Cortex-M7 internal peripherals
	0xD000 0000 - 0xDFFF FFFF	FMC bank 6
	0xC000 0000 - 0xCFFF FFFF	FMC bank 5
	0xA000 2000 - 0xBFFF FFFF	Reserved
	0xA000 1000 - 0xA000 1FFF	Quad-SPI control register
AHB3	0xA000 0000- 0xA000 0FFF	FMC control register
	0x9000 0000 - 0x9FFF FFFF	Quad-SPI
	0x8000 0000 - 0x8FFF FFFF	FMC bank 3
	0x7000 0000 - 0x7FFF FFFF	FMC bank 2
	0x6000 0000 - 0x6FFF FFFF	FMC bank 1
	0x5006 0C00- 0x5FFF FFFF	Reserved
	0x5006 0800 - 0x5006 0BFF	RNG
	0x5005 2000 - 0x5005 FFFF	Reserved
	0x5005 1000 - 0x5005 1FFF	JPEG codec
	0x5005 0000 - 0x5005 03FF	DCMI
ΑΠΟΖ	0x5004 0000- 0x5004 FFFF	Reserved
	0x5000 0000 - 0x5003 FFFF	USB OTG FS

Table 13. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx register boundary addresses⁽¹⁾

5.3 Operating conditions

5.3.1 General operating conditions

Symbol	Parameter	Conditions ⁽¹⁾		Min	n Typ Max			
		Power Scale 3 (VOS[1:0] bits ir PWR_CR register = 0x01), Reg ON, over-drive OFF	ı julator	0	-	144		
		Power Scale 2 (VOS[1:0] bits	Over- drive OFF	0	-	168	MHz	
f _{HCLK}	Internal AHB clock frequency	Regulator ON	Over- drive ON	0	-	180		
		Power Scale 1 (VOS[1:0] bits	Over- drive OFF	0	-	180		
		Regulator ON	Over- drive ON		-	216 ⁽²⁾		
f	Internal ADB1 clock frequency	Over-drive OFF	•	0	-	45		
PCLK1		Over-drive ON	0	-	54			
fpouro	Internal APB2 clock frequency	Over-drive OFF	0	-	90			
PCLK2		Over-drive ON		0	-	108		
V _{DD}	Standard operating voltage	-		1.7 ⁽³⁾	-	3.6		
V (4)(5)	Analog operating voltage (ADC limited to 1.2 M samples)	Must be the same potential as a	1.7 ⁽³⁾	-	2.4			
VDDA	Analog operating voltage (ADC limited to 2.4 M samples)	Must be the same potential as	2.4	-	3.6			
	USB supply voltage (supply	USB not used		1.7	3.3	3.6		
V _{DDUSB}	voltage for PA11,PA12, PB14 and PB15 pins)	USB used	3.0	-	3.6			
V _{BAT}	Backup operating voltage	-	1.65	-	3.6			
V _{DDSDMMC}	SDMMC2 supply voltage (supply voltage for PG[12:9] and PD6 pins)	It can be different from VDD		1.7	-	3.6		
V _{DDDSI}	DSI system operating	-		1.7	-	3.6		

Table 31. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Single bank mode, ART ON except prefetch / L1-cache ON)
or SRAM on AXI (L1-cache ON), regulator OFF

Symbol				Тур		Max ⁽¹⁾							
	Parameter	Conditions	f _{HCLK}			TA= 25 °C		TA= 85 °C		TA= 105 °C		Unit	
				IDD12	IDD	IDD12	IDD	IDD12	IDD	IDD12	IUD5 °C IDD 2		
			180	152	1	167	2	200	2	220	2		
	Supply	All Peripherals Enabled ⁽²⁾⁽³⁾	168	136	1	148	2	179	2	198	2		
			144	105	1	115	2	141	2	158	2		
			60	47	1	53	2	79	2	96	2]	
IDD12/	RUN mode		25	22	1	27	2	53	2	70	2	m	
IDD	from V12	12 DD All Peripherals Disabled ⁽³⁾	180	74	1	83	2	116	2	136	2		
	supply		168	65	1	73	2	104	2	123	2]	
			144	50	1	57	2	83	2	100	2]	
			60	22	1	27	2	53	2	70	2		
			25	10	1	14	2	41	2	58	2]	

1. Guaranteed by characterization results.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

Table 32. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (Dual bank mode, ART ON except prefetch / L1-cache ON) or SRAM on AXI (L1-cache ON), regulator OFF

				Тур		Max ⁽¹⁾							
Symbol	Parameter	Conditions	f _{HCLK} (MHz)			TA= 2	TA= 25 °C		TA= 85 °C		TA= 105 °C		
				IDD12	IDD	IDD12	IDD	IDD12	IDD	IDD12	IDD		
			180	152	1	167	2	200	2	220	2		
	Supply	All Peripherals Enabled ⁽²⁾⁽³⁾	168	136	1	148	2	179	2	198	2		
			144	105	1	115	2	141	2	158	2		
			60	47	1	53	2	79	2	96	2		
IDD12/	RUN mode		25	22	1	27	2	53	2	70	2		
IDD	from V12		180	74	1	82	2	114	2	137	2		
	supply	All	168	65	1	73	2	104	2	123	2		
		Peripherals Disabled ⁽³⁾	144	50	1	57	2	83	2	100	2	1	
			60	22	1	27	2	53	2	70	2		
			25	10	1	14	2	41	2	58	2		

				Typ ⁽¹⁾			Max ⁽²⁾		
Symbol	Parameter	Conditions	Ţ	_A = 25 °	с	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			V _{DD} = 1.7 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	V	v _{DD} = 3.3	$ \begin{array}{c} T_A = \\ 105 °C \\ 7 \\ 38^{(3)} \\ 48^{(3)} \\ 55 \\ 56 \\ 57 \\ 59 \\ 65 \\ 65 \\ 68 \\ 68 \\ 68 \\ 68 \end{array} $	
		Backup SRAM OFF, RTC and LSE OFF	1.1	1.9	2.4	5 ⁽³⁾	18 ⁽³⁾	38 ⁽³⁾	
		Backup SRAM ON, RTC and LSE OFF	1.9	2.7	3.2	6 ⁽³⁾	23 ⁽³⁾	48 ⁽³⁾	
	Supply current	Backup SRAM OFF, RTC ON and LSE in low drive mode	1.7	2.7	3.5	7	26	55	
		Backup SRAM OFF, RTC ON and LSE in medium low drive mode	1.7	2.7	3.5	7	26	56	
		Backup SRAM OFF, RTC ON and LSE in medium high drive mode	1.8	2.8	3.6	8	28	57	
אוא_טטי	mode	Backup SRAM OFF, RTC ON and LSE in high drive mode	1.9	2.9	3.7	8	28	59	μΛ
		Backup SRAM ON, RTC ON and LSE in low drive mode	2.4	3.4	4.3	8	31	65	
		Backup SRAM ON, RTC ON and LSE in Medium low drive mode		3.5	4.3	8	31	65	
		Backup SRAM ON, RTC ON and LSE in Medium high drive mode	2.6	3.7	4.5	8	33	68	
		Backup SRAM ON, RTC ON and LSE in High drive mode	2.6	3.7	4.5	9	33	68	

Table 36. Typical and maximum current consumptions in Standby mode

The typical current consumption values are given with PDR OFF (internal reset OFF). When the PDR is OFF (internal reset OFF), the typical current consumption is reduced by additional 1.2 μA.

2. Guaranteed by characterization results, unless otherwise specified.

3. Guaranteed by test in production.

Figure 29. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 43*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{OSC_IN}	Oscillator frequency		4	-	26	MHz
R _F	Feedback resistor		-	200	-	kΩ
I _{DD}	HSE current consumption	V _{DD} =3.3 V, ESR= 30 Ω, C _L =5 pF@25 MHz	-	450	-	114
		V _{DD} =3.3 V, ESR= 30 Ω, C _L =10 pF@25 MHz	-	530	-	μΑ
ACC _{HSE} ⁽²⁾	HSE accuracy		- 500	-	500	ppm
G _m _crit_max	Maximum critical crystal g _m	Startup	-	-	1	mA/V
t _{SU(HSE} ⁽³⁾	Startup time	V_{DD} is stabilized	-	2	-	ms

Tahlo 43	HSE 4-2	26 MH7	oscillator	characte	ristics ⁽¹⁾
1 avie 43.	. ПЗЕ 4-4		USCIIIALUI	unaracie	HSUCS' '

1. Guaranteed by design.

2. This parameter depends on the crystal used in the application. The minimum and maximum values must be respected to comply with USB standard specifications.

t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is guaranteed by characterization results. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Figure 36. MIPI D-PHY HS/LP clock lane transition timing diagram

Figure 37. MIPI D-PHY HS/LP data lane transition timing diagram

5.3.14 MIPI D-PHY PLL characteristics

The parameters given in *Table 53* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Table 53. DSI-PLL characteristics ⁽	1)	
--	---	---	--

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLL_IN}	PLL input clock	-	4	-	100	
f _{PLL_INFIN}	PFD input clock	-	4	-	25	
f _{PLL_OUT}	PLL multiplier output clock	-	31.25	-	500	
f _{VCO_OUT}	PLL VCO output	-	500	-	1000	
t _{LOCK}	PLL lock time	-	-	-	200	μs

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	$\begin{array}{c} \text{CMOS port}^{(2)} \\ \text{I}_{\text{IO}} = +8 \text{ mA} \\ \text{2.7 V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V} \end{array}$	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin except PC14	CMOS port ⁽²⁾ $I_{IO} = -8 \text{ mA}$ 2.7 V $\leq V_{DD} \leq 3.6 \text{ V}$	V _{DD} - 0.4	-	V
V _{OH} ⁽³⁾	Output high level voltage for PC14	CMOS port ⁽²⁾ $I_{IO} = -2 \text{ mA}$ 2.7 V $\leq V_{DD} \leq 3.6 \text{ V}$	V _{DD} – 0.4		
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	$\begin{array}{c} \text{TTL port}^{(2)}\\ \text{I}_{\text{IO}}=+8\text{mA}\\ 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V} \end{array}$	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin except PC14	$\begin{array}{l} \text{TTL port}^{(2)}\\ \text{I}_{\text{IO}} = -8\text{mA}\\ 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V} \end{array}$	2.4	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I_{IO} = +20 mA 2.7 V \leq V _{DD} \leq 3.6 V	-	1.3 ⁽⁴⁾	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin except PC14	I_{IO} = -20 mA 2.7 V \leq V _{DD} \leq 3.6 V	V _{DD} -1.3 ⁽⁴⁾	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I_{IO} = +6 mA 1.8 V ≤ V _{DD} ≤ 3.6 V	-	0.4 ⁽⁴⁾	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin except PC14	I_{IO} = -6 mA 1.8 V \leq V _{DD} \leq 3.6 V	V _{DD} -0.4 ⁽⁴⁾	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	$I_{IO} = +4 \text{ mA}$ $1.7 \text{ V} \le V_{DD} \le 3.6 \text{V}$	-	0.4 ⁽⁵⁾	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin except PC14	$I_{IO} = -4 \text{ mA}$ $1.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{V}$	V _{DD} -0.4 ⁽⁵⁾	-	V
V _{OH} ⁽³⁾	Output high level voltage for PC14	$I_{IO} = -1 \text{ mA}$ 1.7 V \leq V _{DD} \leq 3.6V	V _{DD} -0.4 ⁽⁵⁾	-	

Table 66. Output voltage characteristics

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 15*. and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 15 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

- 4. Based on characterization data.
- 5. Guaranteed by design.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 39* and *Table 67*, respectively.

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
			C _L = 30 pF, V _{DD} ≥ 2.7 V	-	-	100 ⁽⁴⁾	
			C _L = 30 pF, V _{DD} ≥ 1.8 V	-	-	50	
	f	Maximum fraguancy $^{(3)}$	C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	42.5	МЦ-
	^I max(IO)out	Maximum frequency.	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	180 ⁽⁴⁾	
11			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	100	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	72.5	
		Output high to low level fall	C _L = 30 pF, V _{DD} ≥ 2.7 V	-	-	4	-
			C _L = 30 pF, V _{DD} ≥1.8 V	-	-	6	
	t _{f(IO)out} /		C _L = 30 pF, V _{DD} ≥1.7 V	-	-	7	
	t _{r(IO)out}	level rise time	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	2.5	115
			C _L = 10 pF, V _{DD} ≥1.8 V	-	-	3.5	
			C _L = 10 pF, V _{DD} ≥1.7 V	-	-	4	
-	tEXTIpw	Pulse width of external signals detected by the EXTI controller	-	10	-	-	ns

Table 67. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

1. Guaranteed by design.

2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F76xxx and STM32F77xxx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.

3. The maximum frequency is defined in *Figure 39*.

4. For maximum frequencies above 50 MHz and V_{DD} > 2.4 V, the compensation cell should be used.

Figure 39. I/O AC characteristics definition

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{VREF+} ⁽²⁾	ADC V _{REF} DC current consumption in conversion mode	-	-	300	500	μA
I _{VDDA} ⁽²⁾	ADC V _{DDA} DC current consumption in conversion mode	-	-	1.6	1.8	mA

Table 71. ADC characteristics (continued)

 V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.18.2: Internal reset OFF).

2. Guaranteed by characterization results.

3. V_{REF^+} is internally connected to V_{DDA} and V_{REF^-} is internally connected to $V_{\mathsf{SSA}}.$

4. R_{ADC} maximum value is given for V_{DD}=1.7 V, and minimum value for V_{DD}=3.3 V.

5. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in Table 71.

Equation 1: R_{AIN} max formula

$$R_{AIN} = \frac{(k-0.5)}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register.

Symbol	Parameter	Test conditions	Тур	Max ⁽¹⁾	Unit
ET	Total unadjusted error	(<u>10 M</u>	±3	±4	
EO	Offset error	$f_{ADC} = 18 \text{ MHz}$ V_D_A = 1.7 to 3.6 V	±2	±3	
EG	Gain error	$V_{REF} = 1.7 \text{ to } 3.6 \text{ V}$	±1	±3	LSB
ED	Differential linearity error	V _{DDA} – V _{REF} < 1.2 V	±1	±2	
EL	Integral linearity error		±2	±3	

Table 72. ADC static accuracy at $f_{ADC} = 18$ MHz

1. Guaranteed by characterization results.

Table 73	. ADC static	accuracy	at f _{ADC} =	= 30 MHz
----------	--------------	----------	-----------------------	----------

Symbol	Parameter	Test conditions	Тур	Max ⁽¹⁾	Unit
ET	Total unadjusted error		±2	±5	
EO	Offset error	f _{ADC} = 30 MHz, R _{AIN} < 10 kΩ	±1.5	±2.5	
EG	Gain error	$V_{DDA} = 2.4$ to 3.6 V,	±1.5	±4	LSB
ED	Differential linearity error	V _{REF} = 1.7 to 3.6 V,	±1	±2	
EL	Integral linearity error		±1.5	±3	

1. Guaranteed by characterization results.

The SDA and SCL I/O requirements are met with the following restrictions:

- The SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.
- The 20mA output drive requirement in Fast-mode Plus is not supported. This limits the maximum load Cload supported in Fm+, which is given by these formulas:

Tr(SDA/SCL)=0.8473xRpxCload

 $R_p(min)= (VDD-V_{OL}(max))/I_{OL}(max)$

Where Rp is the I2C lines pull-up. Refer to Section 5.3.20: I/O port characteristics for the I2C I/Os characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to *Table 84* for the analog filter characteristics:

Symbol	Parameter	Min	Мах	Unit
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	70 ⁽³⁾	ns

Table 84. I2C analog filter characteristics⁽¹⁾

1. Guaranteed by characterization results.

2. Spikes with widths below $t_{AF(min)}$ are filtered.

3. Spikes with widths above $t_{AF(max)}$ are not filtered.

Figure 71. NAND controller waveforms for common memory read access

Figure 72. NAND controller waveforms for common memory write access

Table 112. Switching characteristics for NAND Flash read cycles⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(N0E)}	FMC_NOE low width	4T _{HCLK} -0.5	4T _{HCLK} + 0.5	
t _{su(D-NOE)}	FMC_D[15-0] valid data before FMC_NOE high	11	-	
t _{h(NOE-D)}	FMC_D[15-0] valid data after FMC_NOE high	0	-	ns
t _{d(ALE-NOE)}	FMC_ALE valid before FMC_NOE low	-	3T _{HCLK} + 1	
t _{h(NOE-ALE)}	FMC_NWE high to FMC_ALE invalid	4T _{HCLK} – 2	-	

1. Guaranteed by characterization results.

Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} + 0.5	
t _{su(SDCLKH _Data)}	Data input setup time	1.5	-	
t _{h(SDCLKH_Data)}	Data input hold time	1.5	-	
t _{d(SDCLKL_Add)}	Address valid time	-	3.5	
t _{d(SDCLKL} - SDNE)	Chip select valid time	-	1.5	ne
t _{h(SDCLKL_SDNE)}	Chip select hold time	0.5	-	115
t _{d(SDCLKL_SDNRAS)}	SDNRAS valid time	-	1	
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	0.5	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	0.5	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	

Table 114. SDRAM read timings⁽¹⁾

1. Guaranteed by characterization results.

Table 115. LPSDR SDRAM read timings⁽¹⁾

Symbol	Parameter	Min	Мах	Unit	
t _{W(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} + 0.5		
t _{su(SDCLKH_Data)}	Data input setup time	0	-		
t _{h(SDCLKH_Data)}	Data input hold time	Data input hold time 4.5			
t _{d(SDCLKL_Add)}	Address valid time	-	2.5		
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	2.5	200	
t _{h(SDCLKL_SDNE)}	Chip select hold time	0	-	115	
t _{d(SDCLKL_SDNRAS}	SDNRAS valid time	-	0.5		
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	0	-		
t _d (SDCLKL_SDNCAS)	SDNCAS valid time	-	1.5		
t _{h(SDCLKL_SDNCAS)}	n(SDCLKL_SDNCAS) SDNCAS hold time		-		

1. Guaranteed by characterization results.

5.3.36 SD/SDIO MMC card host interface (SDMMC) characteristics

Unless otherwise specified, the parameters given in *Table 123* for the SDIO/MMC interface are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 5.3.20: I/O port characteristics for more details on the input/output characteristics.

Figure 81. SDIO high-speed mode

Figure 82. SD default mode

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

6.1 LQFP100 14x 14 mm, low-profile quad flat package information

Figure 83. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline

1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
A	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	21.800	22.000	22.200	0.8583	0.8661	0.874
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953
D3	-	17.500	-	-	0.689	-
E	21.800	22.000	22.200	0.8583	0.8661	0.8740
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953
E3	-	17.500	-	-	0.6890	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 126. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

