

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	56800E
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc56f8025vldr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Version History	Description of Change						
Rev. 0	Initial public release.						
Rev. 1	In Table 5-3, changed the ITCN_BASE address from \$00 F060 (incorrect value) to \$00 F0E0 (the correct value).						
	• In Table 10-4, added an entry for flash data retention with less than 100 program/erase cycles (minimum 20 years).						
	• In Table 10-6, changed the device clock speed in STOP mode from 8MHz to 4MHz.						
	• In Table 10-12, changed the typical relaxation oscillator output frequency in Standby mode from 400kHz to 200kHz.						
	Changed input propagation delay values in Table 10-20 as follows:						
	Old values: 1 µs typical, 2 µs maximum						
	New values: 35 ns typical, 45 ns maximum						
Rev. 2	In Table 10-19, changed the maximum ADC internal clock frequency from 8MHz to 5.33MHz.						
	• Replaced the case outline schematics in Figure 11-2, Figure 11-3, and Figure 11-4.						
Rev. 3	Added the following note to the description of the TMS signal in Table 2-3: Note: Always tie the TMS pin to V_{DD} through a 2.2K resistor.						
Rev. 4	Changed the VBA register reset value and updated the footnote in Section 5.6.8.						
	 Changed the STANDBY > STOP I_{DD} values in Table 10-6 as follows: 						
	Typical: was 290μΑ, is 540μΑ Maximum: was 390μΑ, is 650μΑ						
	Changed the POWERDOWN I _{DD} values in Table 10-6 as follows:						
	Typical: was 190μΑ, is 440μΑ Maximum: was 250μΑ, is 550μΑ						
	• Changed footnote 1 in Table 10-12 (was "Output frequency after application of 8MHz trim value, at 125°C.", is "Output frequency after application of factory trim").						
	• Deleted the text "at 125°C" from Figure 10-5.						
	• Changed the maximum input offset voltage in Table 10-20 (was +/- 20 mV, is ±35 mV).						
Rev. 5	• In Table 2-3, change V_{CAP} value from 4.7µF to 2.2µF.						
	Revised Section 7, Security Features.						
	Fixed miscellaneous typos.						

Document Revision History

To/From IPBus Bridge

IPBus

56F8035/56F8025 Data Sheet, Rev. 6

1.5 Product Documentation

The documents listed in **Table 1-2** are required for a complete description and proper design with the 56F8035/56F8025. Documentation is available from local Freescale distributors, Freescale Semiconductor sales offices, Freescale Literature Distribution Centers, or online at:

http://www.freescale.com

Торіс	Description	Order Number
DSP56800E Reference Manual	Detailed description of the 56800E family architecture, 16-bit Digital Signal Controller core processor, and the instruction set	DSP56800ERM
56F802x and 56F803x Peripheral Reference Manual	Detailed description of peripherals of the 56F802x and 56F803x family of devices	MC56F80xxRM
56F802x and 56F803x Serial Bootloader User Guide	Detailed description of the Serial Bootloader in the 56F802x and 56F803x family of devices	56F80xxBLUG
56F8035/56F8025 Technical Data Sheet	Electrical and timing specifications, pin descriptions, and package descriptions (this document)	MC56F8035/56F8025
56F8035/56F8025 Errata	Details any chip issues that might be present	MC56F8035/56F8025E

Table 1-2 56F8035/56F8025 Chip Documentation

1.6 Data Sheet Conventions

This data sheet uses the following conventions:

OVERBARThis is used to indicate a signal that is active when pulled low. For example, the RESET pin is
active when low.

"asserted" A high true (active high) signal is high or a low true (active low) signal is low.

"deasserted" A high true (active high) signal is low or a low true (active low) signal is high.

Examples:	Signal/Symbol	Logic State	Signal State	Voltage ¹
	PIN	True	Asserted	V _{IL} /V _{OL}
	PIN	False	Deasserted	V _{IH} /V _{OH}
	PIN	True	Asserted	V _{IH} /V _{OH}
	PIN	False	Deasserted	V _{IL} /V _{OL}

1. Values for V_{IL}, V_{OL}, V_{IH}, and V_{OH} are defined by individual product specifications.

Part 2 Signal/Connection Descriptions

2.1 Introduction

The input and output signals of the 56F8035/56F8025 are organized into functional groups, as detailed in **Table 2-1**. **Table 2-2** summarizes all device pins. In **Table 2-2**, each table row describes the signal or signals present on a pin, sorted by pin number.

Functional Group	Number of Pins
Power Inputs (V _{DD} , V _{DDA})	3
Ground (V _{SS} , V _{SSA})	4
Supply Capacitors	2
Reset ¹	1
Pulse Width Modulator (PWM) Ports ¹	12
Serial Peripheral Interface (SPI) Ports ¹	4
Timer Module A (TMRA) Ports ¹	4
Analog-to-Digital Converter (ADC) Ports ¹	8
Serial Communications Interface 0 (SCI0) Ports ¹	2
Inter-Integrated Circuit Interface (I ² C) Ports ¹	2
Oscillator Signals ¹	2
JTAG/Enhanced On-Chip Emulation (EOnCE) ¹	4

Table 2-1	Functional	Group Pin	Allocations
	i unctional		Anocations

1. Pins may be shared with other peripherals; see Table 2-2.

			Periph	erals:									
Pin #	Pin Name	Signal Name	GPIO	I2C	QSCI	QSPI	ADC	PWM	Quad Timer	Comp	Power & Ground	JTAG	Misc
28	VSS_IO	V _{SS}									V _{SS}		
29	VDD_IO	V _{DD}									V _{DD}		
30	GPIOB0	GPIOB0, SCLK0, SCL	В0	SCL		SCLK0							
31	GPIOA4	GPIOA4, PWM4, TA2, FAULT1	A4					PWM4 FAULT1	TA2				
32	GPIOA2	GPIOA2, PWM2	A2					PWM2					
33	GPIOA3	GPIOA3, PWM3	A3					PWM3					
34	VCAP	V _{CAP}									VCAP		
35	VDD_IO	V _{DD}									V _{DD}		
36	VSS_IO	V _{SS}									V _{SS}		
37	GPIOD5	GPIOD5, XTAL, CLKIN	D5										XTAL CLKIN
38	GPIOD4	GPIOD4, EXTAL	D4										EXTAL
39	GPIOA1	GPIOA1, PWM1	A1					PWM1					
40	GPIOA0	GPIOA0, PWM0	A0					PWM0					
41	TDI	TDI, GPIOD0	D0									TD1	
42	GPIOB11	GPIOB11, CMPBO	B11							CMPBO			
43	TMS	TMS, GPIOD3	D3									TMS	
44	TDO	TDO, GPIOD1	D1									TDO	

Table 2-2 56F8035/56F8025 Pins (Continued)

Table 2-3 56F8035/56F8025 Signal and Package Information for the 44-Pin LQFP

Signal Name	LQFP Pin No.	Туре	State During Reset	Signal Description
GPIOA6	24	Input/ Output	Input, internal pull-up	Port A GPIO — This GPIO pin can be individually programmed as an input or output pin.
(FAULT0)		Input	enabled	Fault0 — This fault input pin is used for disabling selected PWM outputs in cases where fault conditions originate off-chip.
(TA0)				TA0 — Timer A, Channel 0.
				After reset, the default state is GPIOA6. The peripheral functionality is controlled via the SIM. See Section 6.3.16 .
GPIOA8	26	Input/ Output	Input, internal pull-up	Port A GPIO — This GPIO pin can be individually programmed as an input or output pin.
(FAULT1)		Input	enabled	Fault1 — This fault input pin is used for disabling selected PWM outputs in cases where fault conditions originate off-chip.
(TA2)		Input/ Output		TA2 — Timer A, Channel 2.
(CMPAI1)		Input		Comparator A, Input 1 — This is an analog input to Comparator A.
				After reset, the default state is GPIOA8. The peripheral functionality is controlled via the SIM. See Section 6.3.16 .
GPIOA9	5	Input/ Output	Input, internal pull-up	Port A GPIO — This GPIO pin can be individually programmed as an input or output pin.
(FAULT2)		Input	enabled	Fault2 — This fault input pin is used for disabling selected PWM outputs in cases where fault conditions originate off-chip.
(TA3)		Input/ Output		TA2 — Timer A, Channel 3.
(CMPBI1)		Input		Comparator B, Input 1 — This is an analog input to Comparator B.
				After reset, the default state is GPIOA9. The peripheral functionality is controlled via the SIM. See Section 6.3.16 .

Return to Table 2-2

On-Chip Memory	56F8035	56F8025	Use Restrictions
Program Flash (PFLASH)	32K x 16	16K x 16	Erase/Program via Flash interface unit and
	or 64KB	or 32KB	word writes to CDBW
Unified RAM (RAM)	4K x 16	2K x 16	Usable by both the Program and Data
	or 8KB	or 4KB	memory spaces

Table 4-1	Chip	Memory	Configuration	ations
-----------	------	--------	---------------	--------

4.2 Interrupt Vector Table

Table 4-2 provides the 56F8035/56F8025's reset and interrupt priority structure, including on-chip peripherals. The table is organized with higher-priority vectors at the top and lower-priority interrupts lower in the table. As indicated, the priority of an interrupt can be assigned to different levels, allowing some control over interrupt priorities. All level 3 interrupts will be serviced before level 2, and so on. For a selected priority level, the lowest vector number has the highest priority.

The location of the vector table is determined by the Vector Base Address (VBA). Please see Section 5.6.8 for the reset value of the VBA.

By default, the chip reset address and COP reset address will correspond to vector 0 and 1 of the interrupt vector table. In these instances, the first two locations in the vector table must contain branch or JMP instructions. All other entries must contain JSR instructions.

Peripheral	Vector Number	Priority Level	Vector Base Address +	Interrupt Function
core			P:\$00	Reserved for Reset Overlay ²
core			P:\$02	Reserved for COP Reset Overlay
core	2	3	P:\$04	Illegal Instruction
core	3	3	P:\$06	SW Interrupt 3
core	4	3	P:\$08	HW Stack Overflow
core	5	3	P:\$0A	Misaligned Long Word Access
core	6	1-3	P:\$0C	EOnCE Step Counter
core	7	1-3	P:\$0E	EOnCE Breakpoint Unit
core	8	1-3	P:\$10	EOnCE Trace Buffer
core	9	1-3	P:\$12	EOnCE Transmit Register Empty
core	10	1-3	P:\$14	EOnCE Receive Register Full
core	11	2	P:\$16	SW Interrupt 2
core	12	1	P:\$18	SW Interrupt 1
core	13	0	P:\$1A	SW Interrupt 0
	14			Reserved
LVI	15	1-3	P:\$1E	Low-Voltage Detector (Power Sense)
PLL	16	1-3	P:\$20	Phase-Locked Loop

Table 4-2 Interrupt Vector Table Contents¹

Address	Register Acronym	Register Name
X:\$FF FFFB - X:\$FF FFA1		Reserved
X:\$FF FFA0	OCR	Control Register
X:\$FF FF9F		Instruction Step Counter
X:\$FF FF9E	OSCNTR (24 bits)	Instruction Step Counter
X:\$FF FF9D	OSR	Status Register
X:\$FF FF9C	OBASE	Peripheral Base Address Register
X:\$FF FF9B	OTBCR	Trace Buffer Control Register
X:\$FF FF9A	OTBPR	Trace Buffer Pointer Register
X:\$FF FF99		Trace Buffer Register Stages
X:\$FF FF98	OTB (21 - 24 bits/stage)	Trace Buffer Register Stages
X:\$FF FF97		Breakpoint Unit Control Register
X:\$FF FF96	OBCR (24 bits)	Breakpoint Unit Control Register
X:\$FF FF95		Breakpoint Unit Address Register 1
X:\$FF FF94	OBAR1 (24 bits)	Breakpoint Unit Address Register 1
X:\$FF FF93		Breakpoint Unit Address Register 2
X:\$FF FF92	OBAR2 (32 bits)	Breakpoint Unit Address Register 2
X:\$FF FF91		Breakpoint Unit Mask Register 2
X:\$FF FF90	OBMSK (32 bits)	Breakpoint Unit Mask Register 2
X:\$FF FF8F		Reserved
X:\$FF FF8E	OBCNTR	EOnCE Breakpoint Unit Counter
X:\$FF FF8D		Reserved
X:\$FF FF8C		Reserved
X:\$FF FF8B		Reserved
X:\$FF FF8A	OESCR	External Signal Control Register
X:\$FF FF89 - X:\$FF FF00		Reserved

Table 4-7 EOnCE Memory Map (Continued)

4.6 Peripheral Memory-Mapped Registers

On-chip peripheral registers are part of the data memory map on the 56800E series. These locations may be accessed with the same addressing modes used for ordinary Data memory, except all peripheral registers should be read or written using word accesses only.

Table 4-8 summarizes base addresses for the set of peripherals on the 56F8035/56F8025 device. Peripherals are listed in order of the base address.

The following tables list all of the peripheral registers required to control or access the peripherals.

		-	-
Peripheral	Prefix	Base Address	Table Number
Timer A	TMRA	X:\$00 F000	4-9

Table 4-8 Data Memory Peripheral Base Address Map Summary

Table 4-23 Programmable Interval Timer 2 Registers Address Map (Continued) (PIT2_BASE = \$00 F1B0)

Register Acronym	Address Offset	Register Description					
PIT2_MOD	\$1	Modulo Register					
PIT2_CNTR	\$2	Counter Register					

Table 4-24 Digital-to-Analog Converter 0 Registers Address Map (DAC0_BASE = \$00 F1C0)

Register Acronym	Address Offset	Register Description
DAC0_CTRL	\$0	Control Register
DAC0_DATA	\$1	Data Register
DAC0_STEP	\$2	Step Register
DAC0_MINVAL	\$3	Minimum Value Register
DAC0_MAXVAL	\$4	Maximum Value Register

Table 4-25 Digital-to-Analog Converter 0 Registers Address Map (DAC1_BASE = \$00 F1D0)

Register Acronym	Address Offset	Register Description
DAC1_CTRL	\$0	Control Register
DAC1_DATA	\$1	Data Register
DAC1_STEP	\$2	Step Register
DAC1_MINVAL	\$3	Minimum Value Register
DAC1_MAXVAL	\$4	Maximum Value Register

Table 4-26 Comparator A Registers Address Map (CMPA_BASE = \$00 F1E0)

Register Acronym	Address Offset	Register Description
CMPA_CTRL	\$0	Control Register
CMPA_STAT	\$1	Status Register
CMPA_FILT	\$2	Filter Register

Table 4-27 Comparator B Registers Address Map (CMPB_BASE = \$00 F1F0)

Register Acronym	Address Offset	Register Description					
CMPB_CTRL	\$0	Control Register					
CMPB_STAT	\$1	Status Register					

5.6.1.5 EOnCE Transmit Register Empty Interrupt Priority Level (TX_REG IPL)— Bits 7–6

This field is used to set the interrupt priority level for the EOnCE Transmit Register Empty IRQ. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

5.6.1.6 EOnCE Trace Buffer Interrupt Priority Level (TRBUF IPL)— Bits 5–4

This field is used to set the interrupt priority level for the EOnCE Trace Buffer IRQ. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

5.6.1.7 EOnCE Breakpoint Unit Interrupt Priority Level (BKPT_U IPL)— Bits 3–2

This field is used to set the interrupt priority level for the EOnCE Breakpoint Unit IRQ. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

5.6.1.8 EOnCE Step Counter Interrupt Priority Level (STPCNT IPL)— Bits 1–0

This field is used to set the interrupt priority level for the EOnCE Step Counter IRQ. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

IPIC_VALUE[1:0]	Current Interrupt Priority Level	Required Nested Exception Priority
00	No interrupt or SWILP	Priorities 0, 1, 2, 3
01	Priority 0	Priorities 1, 2, 3
10	Priority 1	Priorities 2, 3
11	Priority 2 or 3	Priority 3

Table 5-4 Interrupt Priority Encoding

5.6.19.3 Vector Number - Vector Address Bus (VAB)—Bits 12–6

This *read-only* field shows bits [7:1] of the Vector Address Bus used at the time the last IRQ was taken. In the case of a Fast Interrupt, it shows the lower address bits of the jump address. This field is only updated when the 56800E core jumps to a new interrupt service routine.

Note: Nested interrupts may cause this field to be updated before the original interrupt service routine can read it.

5.6.19.4 Interrupt Disable (INT_DIS)—Bit 5

This bit allows all interrupts to be disabled.

- 0 = Normal operation (default)
- 1 =All interrupts disabled

5.6.19.5 Reserved—Bits 4-2

This bit field is reserved. Each bit must be set to 1.

5.6.19.6 Reserved—Bits 1–0

This bit field is reserved. Each bit must be set to 0.

5.7 Resets

5.7.1 General

Table 5-5 Reset Summary

Reset	Priority	Source	Characteristics
Core Reset		RST	Core reset from the SIM

6.3.12 Stop Disable Register 1 (SD1)

See Section 6.3.11 for general information about Stop Disable Registers.

Base + \$F	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Read	0	PIT2_	PIT1_	PIT0_	0	0	0	0	0	0	0	0	TA3_	TA2_	TA1_	TA0_		
Write		SD	SD	SD	SD	SD									SD	SD	SD	SD
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Figure 6-13 Stop Disable Register 1 (SD1)

6.3.12.1 Reserved—Bit 15

This bit field is reserved. It must be set to 0.

6.3.12.2 Programmable Interval Timer 2 Clock Stop Disable (PIT2_SD)—Bit 14

- 0 = The clock is disabled during Stop mode
- 1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE1 register

6.3.12.3 Programmable Interval Timer 1 Clock Stop Disable (PIT1_SD)—Bit 13

- 0 = The clock is disabled during Stop mode
- 1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE1 register

6.3.12.4 Programmable Interval Timer 0 Clock Stop Disable (PIT0_SD)—Bit 12

- 0 = The clock is disabled during Stop mode
- 1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE1 register

6.3.12.5 Reserved—Bits 11-4

This bit field is reserved. Each bit must be set to 0.

6.3.12.6 Quad Timer A, Channel 3 Clock Stop Disable (TA3_SD)—Bit 3

- 0 = The clock is disabled during Stop mode
- 1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE1 register

6.3.12.7 Quad Timer A, Channel 2 Clock Stop Disable (TA2_SD)—Bit 2

- 0 = The clock is disabled during Stop mode
- 1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE1 register

GPIO Function	Peripheral Function	LQFP Package Pin	Notes						
GPIOD0	TDI	41	Defaults to TDI						
GPIOD1	TDO	44	Defaults to TDO						
GPIOD2	тск	19	Defaults to TCK						
GPIOD3	TMS	43	Defaults to TMS						
GPIOD4	EXTAL	38	Defaults to D4						
GPIOD5	XTAL / CLKIN	37	SIM register SIM_GPSCD is used to select between XTAL and CLKIN. Defaults to D5						

8.3 Reset Values

Tables **8-1** and **8-2** detail registers for the 56F8035/56F8025; Figures **8-1** through **8-4** summarize register maps and reset values.

Add. Offset	Register Acronym		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
\$0	GPIOD_PUPEN	R W RS	0	0	0	0	0	0	0	0	1	1	PU[15:0]						
\$1	GPIOD_DATA	R W RS	0	0	0	0	0	0	0	0	0	0	D[15:0]						
\$2	GPIOD_DDIR	R W RS	0	0	0	0	0	0	0	0	0	0	0	0	DD[⁻ 0	15:0] 0	0	0	
\$3	GPIOD_PEREN	R W RS	0	0	0	0	0	0	0	0	0	0	0	0	PE[⁷	15:0] 1	1	1	
\$4	GPIOD_IASSRT	R W RS	0	0	0	0	0	0	0	0	0	0	IA[15:0]					0	
\$5	GPIOD_IEN	R W RS	0	0	0	0	0	0	0	0	0	0	0	0	IEN[0	15:0] 0	0	0	
\$6	GPIOD_IEPOL	R W RS	0	0	0	0	0	0	0	0	0	0	0	0	IEPOI 0	_[15:0] 0	0	0	
\$7	GPIOD_IPEND	R W RS	0	0	0	0	0	0	0	0	0	0	0	0	IPR[0	15:0] 0	0	0	
\$8	GPIOD_IEDGE	R W RS	0	0	0	0	0	0	0	0	0	0	0	0	IES[0	15:0] 0	0	0	
\$9	GPIOD_PPOUTM	R W RS	0	0	0	0	0	0	0	0	1	1	1	1	OEN 1	[15:0] 1	1	1	
\$A	GPIOD_RDATA	R W RS	0	0	0	0	0	0	0	0	X	X	X	R/	W DA	TA[15 X	5:0] X	X	
\$В	GPIOD_DRIVE	R W RS	0	0	0	0	0	0	0	0	0	0	DRIVE[15:0]					0	
		R	0	Read	l as 0														

Figure 8-4 GPIOD Register Map Summary

56F8035/56F8025 Data Sheet, Rev. 6

RS

Reset

10.4 Flash Memory Characteristics

Table 10-9 Flash Timing Parameters

Characteristic	Symbol	Min	Тур	Мах	Unit
Program time ¹	Tprog	20	—	40	μs
Erase time ²	Terase	20	—	_	ms
Mass erase time	Tme	100	—	—	ms

1. There is additional overhead which is part of the programming sequence. See the **56F802x and 56F803x Peripheral Reference Manual** for details.

2. Specifies page erase time. There are 512 bytes per page in the Program Flash memory.

10.5 External Clock Operation Timing

Characteristic	Symbol	Min	Тур	Мах	Unit
Frequency of operation (external clock driver) ²	f _{osc}	4	8	8	MHz
Clock Pulse Width ³	t _{PW}	6.25	_	—	ns
External Clock Input Rise Time ⁴	t _{rise}	—	_	3	ns
External Clock Input Fall Time ⁵	t _{fall}	_	_	3	ns

Table 10-10 External Clock Operation Timing Requirements¹

1. Parameters listed are guaranteed by design.

2. See Figure 10-4 for details on using the recommended connection of an external clock driver.

3. The chip may not function if the high or low pulse width is smaller than 6.25ns.

4. External clock input rise time is measured from 10% to 90%.

5. External clock input fall time is measured from 90% to 10%.

Note: The midpoint is $V_{IL} + (V_{IH} - V_{IL})/2$.

Figure 10-4 External Clock Timing

Figure 10-8 SPI Master Timing (CPHA = 1)

Table 10-18 JTAG Timing

Characteristic	Symbol	Min	Мах	Unit	See Figure
TCK frequency of operation ¹	f _{OP}	DC	SYS_CLK/8	MHz	10-15
TCK clock pulse width	t _{PW}	50	—	ns	10-15
TMS, TDI data set-up time	t _{DS}	5	—	ns	10-16
TMS, TDI data hold time	t _{DH}	5	—	ns	10-16
TCK low to TDO data valid	t _{DV}	—	30	ns	10-16
TCK low to TDO tri-state	t _{TS}	—	30	ns	10-16

1. TCK frequency of operation must be less than 1/8 the processor rate.

Figure 10-15 Test Clock Input Timing Diagram

Figure 10-16 Test Access Port Timing Diagram

56F8035/56F8025 Data Sheet, Rev. 6

Figure 11-3 56F8035/56F8025 44-Pin LQFP Mechanical Information (2 of 3)

Please see **www.freescale.com** for the most current case outline.

- Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the V_{DD} and V_{SS} circuits.
- Take special care to minimize noise levels on the V_{REF} , V_{DDA} , and V_{SSA} pins
- Using separate power planes for V_{DD} and V_{DDA} and separate ground planes for V_{SS} and V_{SSA} are recommended. Connect the separate analog and digital power and ground planes as close as possible to power supply outputs. If both analog circuit and digital circuit are powered by the same power supply, it is advisable to connect a small inductor or ferrite bead in serial with both V_{DDA} and V_{SSA} traces.
- It is highly desirable to physically separate analog components from noisy digital components by ground planes. Do not place an analog trace in parallel with digital traces. It is also desirable to place an analog ground trace around an analog signal trace to isolate it from digital traces.
- Because the Flash memory is programmed through the JTAG/EOnCE port, QSPI, QSCI, or I²C, the designer should provide an interface to this port if in-circuit Flash programming is desired
- If desired, connect an external RC circuit to the $\overline{\text{RESET}}$ pin. The Resistor value should be in the range of 4.7k—10k; the Capacitor value should be in the range of 0.22µf 4.7µf.
- Add a 3.3k external pull-up on the TMS pin of the JTAG port to keep EOnce in a restate during normal operation if JTAG converter is not present
- During reset and after reset but before I/O initialization, all I/O pins are at input state with internal pull-up enable. The typical value of internal pull-up is around 110K. These internal pull-ups can be disabled by software.
- To eliminate PCB trace impedance effect, each ADC input should have a 33pf-10 ohm RC filter
- Device GPIOs have only a down (substrate) diode on the GPIO circuit. Devices do not have a positive clamp diode because GPIOs use a floating gate structure to tolerate 5V input. The absolute maximum clamp current is -20mA at V_{in} less than 0V. The continuous clamp current is -2mA at V_{in} less than 0V. If positive voltage spikes are a concern, a positive clamp is recommended.

Part 13 Ordering Information

Table 13-1 lists the pertinent information needed to place an order. Consult a Freescale Semiconductor sales office or authorized distributor to determine availability and to order devices.

Device	Supply Voltage	Package Type	Pin Count	Frequency (MHz)	Ambient Temperature Range	Order Number
MC56F8035	3.0–3.6 V	Low-Profile Quad Flat Pack (LQFP)	44	32	-40° to + 105° C	MC56F8035VLD*
MC56F8025	3.0–3.6 V	Low-Profile Quad Flat Pack (LQFP)	44	32	-40° to + 105° C	MC56F8025VLD*
MC56F8025	3.0–3.6 V	Low-Profile Quad Flat Pack (LQFP)	44	32	-40° to + 125° C	MC56F8025MLD*

Table 13-1 56F8035/56F8025 Ordering Information

* This package is RoHS compliant.