

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Core ProcessorC166SV2Core Size16/32-BitSpeed128MHzConnectivityCANbus, EBI/EMI, FlexRay, I²C, LINbus, SPI, UART/USARTPeripheralsI²S, POR, PWM, WDTNumber of I/O118Program Memory Size1.06MB (1.06M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size90K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x12bOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadTemperature0-C-UPF144-4	Detalls	
Core Size16/32-BitSpeed128MHzConnectivityCANbus, EBI/EMI, FlexRay, I²C, LINbus, SPI, UART/USARTPeripheralsI²S, POR, PWM, WDTNumber of I/O118Program Memory Size1.06MB (1.06M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size90K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x12bOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSurface PackagePG-LQFP-144-4	Product Status	Obsolete
Speed128MHzConnectivityCANbus, EBI/EMI, FlexRay, I²C, LINbus, SPI, UART/USARTPeripheralsI²S, POR, PWM, WDTNumber of I/O118Program Memory Size1.06MB (1.06M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size90K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x12bOscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG_LQFP-144-4	Core Processor	C1665V2
ConnectivityCANbus, EBI/EMI, FlexRay, I²C, LINbus, SPI, UART/USARTPeripheralsI²S, POR, PWM, WDTNumber of I/O118Program Memory Size1.06MB (1.06M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size90K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x12bOscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	Core Size	16/32-Bit
PeripheralsI*S, POR, PWM, WDTNumber of I/O118Program Memory Size1.06MB (1.06M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size90K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x12bOscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	Speed	128MHz
Number of I/O118Program Memory Size1.06MB (1.06M × 8)Program Memory TypeFLASHEEPROM Size-RAM Size90K × 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x12bOscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	Connectivity	CANbus, EBI/EMI, FlexRay, I ² C, LINbus, SPI, UART/USART
Program Memory Size1.06MB (1.06M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size90K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x12bOscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	Peripherals	I ² S, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size90K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x12bOscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	Number of I/O	118
EEPROM Size-RAM Size90K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x12bOscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	Program Memory Size	1.06MB (1.06M x 8)
RAM Size90K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x12bOscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x12bOscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	EEPROM Size	
Data ConvertersA/D 24x12bOscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	RAM Size	90K x 8
Oscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Operating Temperature -40°C ~ 125°C (TA) Mounting Type Surface Mount Package / Case 144-LQFP Exposed Pad Supplier Device Package PG-LQFP-144-4	Data Converters	A/D 24x12b
Mounting Type Surface Mount Package / Case 144-LQFP Exposed Pad Supplier Device Package PG-LQFP-144-4	Oscillator Type	External
Package / Case 144-LQFP Exposed Pad Supplier Device Package PG-LQFP-144-4	Operating Temperature	-40°C ~ 125°C (TA)
Supplier Device Package PG-LQFP-144-4	Mounting Type	Surface Mount
	Package / Case	144-LQFP Exposed Pad
Purchase URL https://www.e-xfl.com/product-detail/infineon-technologies/xc2388e136f128laakxuma1	Supplier Device Package	PG-LQFP-144-4
	Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2388e136f128laakxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance XC238xE (XC2000 Family)

1 Summary of Features

For a quick overview and easy reference, the features of the XC238xE are summarized here.

- High-performance CPU with five-stage pipeline and MPU
 - 7.8 ns instruction cycle at 128 MHz CPU clock (single-cycle execution)
 - One-cycle 32-bit addition and subtraction with 40-bit result
 - One-cycle multiplication (16 × 16 bit)
 - Background division (32 / 16 bit) in 21 cycles
 - One-cycle multiply-and-accumulate (MAC) instructions
 - Enhanced Boolean bit manipulation facilities
 - Zero-cycle jump execution
 - Additional instructions to support HLL and operating systems
 - Register-based design with multiple variable register banks
 - Fast context switching support with two additional local register banks
 - 16 Kbytes of two-way set-associative Instruction Cache (ICache)
 - 16 Mbytes total linear address space for code and data
 - 1024 Bytes on-chip special function register area (C166 Family compatible)
 - Integrated Memory Protection Unit (MPU)
- Interrupt system with 16 priority levels providing 112 interrupt nodes
 - Selectable external inputs for interrupt generation and wake-up
 - Fastest sample-rate 7.8 ns
- Sixteen-channel interrupt-driven single-cycle data transfer with Peripheral Event Controller (PEC), 24-bit pointers cover total address space
- Clock generation from internal or external clock sources, using on-chip PLL or prescaler
- Hardware CRC-Checker with Programmable Polynomial to Supervise On-Chip Memory Areas
- On-chip memory modules
 - 8 Kbytes on-chip stand-by RAM (SBRAM)
 - 2 Kbytes on-chip dual-port RAM (DPRAM)
 - 24 Kbytes on-chip data SRAM (DSRAM)
 - Up to 64 Kbytes on-chip program/data SRAM (PSRAM)
 - Up to 1 088 Kbytes on-chip program memory (Flash memory)
 - Memory content protection through Error Correction Code (ECC)
- On-Chip Peripheral Modules

Summary of Features

Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. This ordering code identifies:

- the function set of the corresponding product type
- the temperature range:
 - SAF-...: -40°C to 85°C
 - SAH-...: -40°C to 110°C
 - SAK-...: -40°C to 125°C
- the package and the type of delivery.

For ordering codes for the XC238xE please contact your sales representative or local distributor.

This document describes several derivatives of the XC238xE group:

Basic Device Types are readily available and **Special Device Types** are only available on request.

As this document refers to all of these derivatives, some descriptions may not apply to a specific product, in particular to the special device types.

For simplicity the term **XC238xE** is used for all derivatives throughout this document.

1.1 Basic Device Types

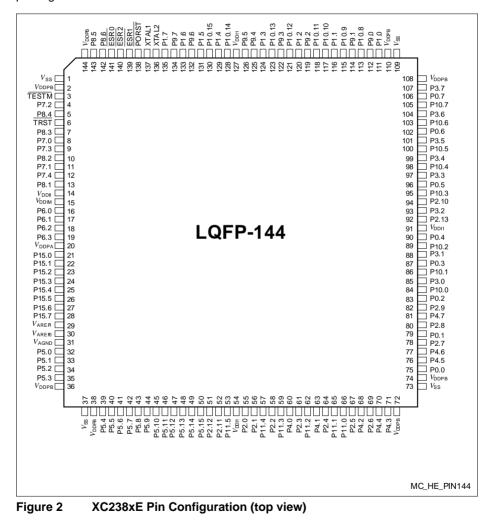
Basic device types are available and can be ordered through Infineon's direct and/or distribution channels.

Table 1 Synopsis of XC238xE Basic Device Types
--

Derivative ¹⁾	•	PSRAM DSRAM ³⁾	Capt./Comp. Modules	ADC ⁴⁾ Chan.	Interfaces ⁴⁾
XC2388E-136FxxLR		64 Kbytes 24 Kbytes	CC2 CCU60/1/2/3	16 + 8	3 CAN Nodes 8 Serial Chan. 2 FlexRay Nodes

1) xx is a placeholder for the available speed grade (in MHz).

2) Specific information about the on-chip Flash memory in Table 3.


3) All derivatives additionally provide 8 Kbytes SBRAM and 2 Kbytes DPRAM.

 Specific information about the available channels in Table 5. Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1).

2.1 Pin Configuration and Definition

The pins of the XC238xE are described in detail in **Table 6**, which includes all alternate functions. For further explanations please refer to the footnotes at the end of the table. The following figure summarizes all pins, showing their locations on the four sides of the package.

Key to Pin Definitions

Ctrl.: The output signal for a port pin is selected by bit field PC in the associated • register Px_IOCRy. Output O0 is selected by setting the respective bit field PC to $1x00_{\rm P}$, output O1 is selected by $1x01_{\rm P}$, etc.

Output signal OH is controlled by hardware.

- **Type**: Indicates the pad type and its power supply domain (A, B, M, 1). •
 - St: Standard pad
 - Sp: Special pad e.g. XTALx
 - DP: Double pad can be used as standard or high speed pad
 - In: Input only pad
 - PS: Power supply pad

Pin	Symbol	Ctrl.	Туре	Function		
3	TESTM	I	In/B	Testmode EnableEnables factory test modes, must be held HIGH fornormal operation (connect to V_{DDPB}).An internal pull-up device will hold this pin highwhen nothing is driving it.		
4	P7.2	00 / I	St/B	Bit 2 of Port 7, General Purpose Input/Output		
	EMUX0	01	St/B	External Analog MUX Control Output 0 (ADC1)		
	CCU62_CCP OS0A	I	St/B	CCU62 Position Input 0		
	TDI_C	IH	St/B	JTAG Test Data Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin high wher nothing is driving it.		
5	P8.4	O0 / I	St/B	Bit 4 of Port 8, General Purpose Input/Output		
	CCU60_COU T61	O1	St/B	CCU60 Channel 1 Output		
	CCU62_CC6 1	O2	St/B	CCU62 Channel 1 Output		
	TMS_D	IH	St/B	JTAG Test Mode Selection Input If JTAG pos. D is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.		
	CCU62_CC6	I	St/B	CCU62 Channel 1 Input		

Table 6 Pin Definitions and Functions

1INB

Pin	Symbol	Ctrl.	Туре	Function
6	TRST	1	In/B	Test-System Reset Input For normal system operation, pin TRST should be held low. A high level at this pin at the rising edge of PORST activates the XC238xE's debug system. In this case, pin TRST must be driven low once to reset the debug system. An internal pull-down device will hold this pin low when nothing is driving it.
7	P8.3	O0 / I	St/B	Bit 3 of Port 8, General Purpose Input/Output
-	CCU60_COU T60	O1	St/B	CCU60 Channel 0 Output
	CCU62_CC6 0	O2	St/B	CCU62 Channel 0 Output
	TDI_D	IH	St/B	JTAG Test Data Input If JTAG pos. D is selected during start-up, an internal pull-up device will hold this pin low when nothing is driving it.
	CCU62_CC6 0INB	I	St/B	CCU62 Channel 0 Input
8	P7.0	O0 / I	St/B	Bit 0 of Port 7, General Purpose Input/Output
	T3OUT	O1	St/B	GPT12E Timer T3 Toggle Latch Output
	T6OUT	O2	St/B	GPT12E Timer T6 Toggle Latch Output
	TDO_A	OH / IH	St/B	JTAG Test Data Output / DAP1 Input/Output If DAP pos. 0 or 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.
	ESR2_1	I	St/B	ESR2 Trigger Input 1

Table	Table 6Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
9	P7.3	O0 / I	St/B	Bit 3 of Port 7, General Purpose Input/Output			
	EMUX1	01	St/B	External Analog MUX Control Output 1 (ADC1)			
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output			
	U0C0_DOUT	O3	St/B	USIC0 Channel 0 Shift Data Output			
	CCU62_CCP OS1A	I	St/B	CCU62 Position Input 1			
	TMS_C	IH	St/B	JTAG Test Mode Selection Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin low when nothing is driving it.			
	U0C1_DX0F	I	St/B	USIC0 Channel 1 Shift Data Input			
10	P8.2	O0 / I	St/B	Bit 2 of Port 8, General Purpose Input/Output			
	CCU60_CC6 2	O1	St/B	CCU60 Channel 2 Output			
	TxDC1	02	St/B	CAN Node 1 Transmit Data Output			
	U1C1_DOUT	O3	St/B	USIC1 Channel 1 Shift Data output			
	CCU60_CC6 2INB	I	St/B	CCU60 Channel 2 Input			
11	P7.1	O0 / I	St/B	Bit 1 of Port 7, General Purpose Input/Output			
	EXTCLK	01	St/B	Programmable Clock Signal Output			
	CCU62_CTR APA	I	St/B	CCU62 Emergency Trap Input			
	BRKIN_C	I	St/B	OCDS Break Signal Input			

Table	Table 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
79	P0.1	O0 / I	St/B	Bit 1 of Port 0, General Purpose Input/Output				
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output				
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output				
	CCU61_CC6 1	O3	St/B	CCU61 Channel 1 Output				
	A1	OH	St/B	External Bus Interface Address Line 1				
	U1C0_DX0B	I	St/B	USIC1 Channel 0 Shift Data Input				
	CCU61_CC6 1INA	I	St/B	CCU61 Channel 1 Input				
	U1C0_DX1A	I	St/B	USIC1 Channel 0 Shift Clock Input				
80	P2.8	O0 / I	DP/B	Bit 8 of Port 2, General Purpose Input/Output				
	U0C1_SCLK OUT	O1	DP/B	USIC0 Channel 1 Shift Clock Output				
	EXTCLK	O2	DP/B	Programmable Clock Signal Output				
	CC2_CC21	O3 / I	DP/B	CAPCOM2 CC21IO Capture Inp./ Compare Out.				
	A21	OH	DP/B	External Bus Interface Address Line 21				
	U0C1_DX1D	I	DP/B	USIC0 Channel 1 Shift Clock Input				
81	P4.7	O0 / I	St/B	Bit 7 of Port 4, General Purpose Input/Output				
	CC2_CC31	O3 / I	St/B	CAPCOM2 CC31IO Capture Inp./ Compare Out.				
	T4EUDA	I	St/B	GPT12E Timer T4 External Up/Down Control Input				
	CCU61_CCP OS2A	I	St/B	CCU61 Position Input 2				

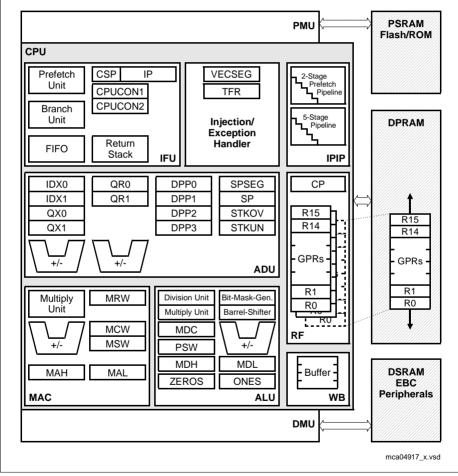
Table	Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
82	P2.9	O0 / I	St/B	Bit 9 of Port 2, General Purpose Input/Output			
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output			
	TxDC1	02	St/B	CAN Node 1 Transmit Data Output			
	CC2_CC22	O3 / I	St/B	CAPCOM2 CC22IO Capture Inp./ Compare Out.			
	A22	ОН	St/B	External Bus Interface Address Line 22			
	CLKIN1	I	St/B	Clock Signal Input 1			
	TCK_A	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. A is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 0 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.			
83	P0.2	O0 / I	St/B	Bit 2 of Port 0, General Purpose Input/Output			
	U1C0_SCLK OUT	01	St/B	USIC1 Channel 0 Shift Clock Output			
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output			
	CCU61_CC6 2	O3	St/B	CCU61 Channel 2 Output			
	A2	ОН	St/B	External Bus Interface Address Line 2			
	U1C0_DX1B	I	St/B	USIC1 Channel 0 Shift Clock Input			
	CCU61_CC6 2INA	I	St/B	CCU61 Channel 2 Input			

Table 6Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function			
119	P9.2	O0 / I	St/B	Bit 2 of Port 9, General Purpose Input/Output			
	CCU63_CC6 2	01	St/B	CCU63 Channel 2 Output			
	ERAY_TxEN B	O3	St/B	ERAY Transmit Enable Output Channel B			
	CCU63_CC6 2INA	I	St/B	CCU63 Channel 2 Input			
	CAPINB	I	St/B	GPT12E Register CAPREL Capture Input			
120	P1.2	O0 / I	St/B	Bit 2 of Port 1, General Purpose Input/Output			
_	CCU62_CC6 2	01	St/B	CCU62 Channel 2 Output			
	U1C0_SELO 6	O2	St/B	USIC1 Channel 0 Select/Control 6 Output			
	U2C1_SCLK OUT	O3	St/B	USIC2 Channel 1 Shift Clock Output			
	A10	OH	St/B	External Bus Interface Address Line 10			
	ESR1_4	I	St/B	ESR1 Trigger Input 4			
	ERU_2A0	I	St/B	External Request Unit Channel 2 Input A0			
	CCU61_T12 HRB	I	St/B	External Run Control Input for T12 of CCU61			
	CCU62_CC6 2INA	I	St/B	CCU62 Channel 2 Input			
	U2C1_DX0D	I	St/B	USIC2 Channel 1 Shift Data Input			
	U2C1_DX1C	I	St/B	USIC2 Channel 1 Shift Clock Input			

Table	Table 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
124	P1.3	O0 / I	St/B	Bit 3 of Port 1, General Purpose Input/Output				
	CCU62_COU T63	O1	St/B	CCU62 Channel 3 Output				
	U1C0_SELO 7	O2	St/B	USIC1 Channel 0 Select/Control 7 Output				
	U2C0_SELO 4	O3	St/B	USIC2 Channel 0 Select/Control 4 Output				
	A11	OH	St/B	External Bus Interface Address Line 11				
	ESR2_4	I	St/B	ESR2 Trigger Input 4				
	ERU_3A0	I	St/B	External Request Unit Channel 3 Input A0				
	CCU62_T12 HRB	I	St/B	External Run Control Input for T12 of CCU62				
125	P9.4	O0 / I	St/B	Bit 4 of Port 9, General Purpose Input/Output				
	CCU63_COU T61	O1	St/B	CCU63 Channel 1 Output				
	U2C0_DOUT	O2	St/B	USIC2 Channel 0 Shift Data Output				
	CCU62_COU T63	O3	St/B	CCU62 Channel 3 Output				
126	P9.5	O0 / I	St/B	Bit 5 of Port 9, General Purpose Input/Output				
	CCU63_COU T62	O1	St/B	CCU63 Channel 2 Output				
	U2C0_DOUT	O2	St/B	USIC2 Channel 0 Shift Data Output				
	CCU62_COU T62	O3	St/B	CCU62 Channel 2 Output				
	U2C0_DX0E	I	St/B	USIC2 Channel 0 Shift Data Input				
	CCU60_CCP OS2B	I	St/B	CCU60 Position Input 2				

General Device Information

	Table 6 Pin Definitions and Functions (cont'd)								
Pin	Symbol	Ctrl.	Туре	Function					
20	V _{DDPA}	-	- PS/A	Connect decoupling capacitors to adjacent $V_{\rm DDP}/V_{\rm SS}$ pin pairs as close as possible to the pins.					
				Note: The A/D Converters and ports P5, P6 and P15 are fed from supply voltage V_{DDPA} .					
2, 36, 38, 72, 74, 108,	V _{DDPB}	-	PS/B	Digital Pad Supply Voltage for Domain B Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins. Note: The on-chip voltage regulators and all ports except P5, P6 and P15 are fed from supply voltage V_{DDPB} .					
110, 144									
1, 37, 73,	V _{SS}	-	PS/	Digital Ground All V_{SS} pins must be connected to the ground-line or ground-plane.					
109				Note: Also the exposed pad is connected internally to V_{SS} . To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note.					


 To generate the reference clock output for bus timing measurement, f_{SYS} must be selected as source for EXTCLK and P2.8 must be selected as output pin. Also the high-speed clock pad must be enabled. This configuration is referred to as reference clock output signal CLKOUT.

Functional Description

3.3 Central Processing Unit (CPU)

The core of the CPU consists of a 5-stage execution pipeline with a 2-stage instructionfetch pipeline, a 16-bit arithmetic and logic unit (ALU), a 32-bit/40-bit multiply and accumulate unit (MAC), a register-file providing three register banks, and dedicated SFRs. The ALU features a multiply-and-divide unit, a bit-mask generator, and a barrel shifter.

Figure 3 CPU Block Diagram

Functional Description

3.6 Interrupt System

The architecture of the XC238xE supports several mechanisms for fast and flexible response to service requests; these can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to be serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

Using a standard interrupt service the current program execution is suspended and a branch to the interrupt vector table is performed. With the PEC just one cycle is 'stolen' from the current CPU activity to perform the PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source pointer, the destination pointer, or both. An individual PEC transfer counter is implicitly decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source-related vector location. PEC services are particularly well suited to supporting the transmission or reception of blocks of data. The XC238xE has eight PEC channels, each with fast interrupt-driven data transfer capabilities.

With a minimum interrupt response time of 7/11¹⁾ CPU clocks, the XC238xE can react quickly to the occurrence of non-deterministic events.

Interrupt Nodes and Source Selection

The interrupt system provides 112 physical nodes with separate control register containing an interrupt request flag, an interrupt enable flag and an interrupt priority bit field. Most interrupt sources are assigned to a dedicated node. A particular subset of interrupt sources shares a set of nodes. The source selection can be programmed using the interrupt source selection (ISSR) registers.

External Request Unit (ERU)

A dedicated External Request Unit (ERU) is provided to route and preprocess selected on-chip peripheral and external interrupt requests. The ERU features 4 programmable input channels with event trigger logic (ETL) a routing matrix and 4 output gating units (OGU). The ETL features rising edge, falling edge, or both edges event detection. The OGU combines the detected interrupt events and provides filtering capabilities depending on a programmable pattern match or miss.

Trap Processing

The XC238xE provides efficient mechanisms to identify and process exceptions or error conditions that arise during run-time, the so-called 'Hardware Traps'. A hardware trap causes an immediate system reaction similar to a standard interrupt service (branching

¹⁾ Depending if the jump cache is used or not.

Functional Description

3.12 A/D Converters

For analog signal measurement, up to two 10-bit A/D converters (ADC0, ADC1) with 16 + 8 multiplexed input channels and a sample and hold circuit have been integrated on-chip. 4 inputs can be converted by both A/D converters. Conversions use the successive approximation method. The sample time (to charge the capacitors) and the conversion time are programmable so that they can be adjusted to the external circuit. The A/D converters can also operate in 8-bit conversion mode, further reducing the conversion time.

Several independent conversion result registers, selectable interrupt requests, and highly flexible conversion sequences provide a high degree of programmability to meet the application requirements. Both modules can be synchronized to allow parallel sampling of two input channels.

For applications that require more analog input channels, external analog multiplexers can be controlled automatically. For applications that require fewer analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converters of the XC238xE support two types of request sources which can be triggered by several internal and external events.

- Parallel requests are activated at the same time and then executed in a predefined sequence.
- Queued requests are executed in a user-defined sequence.

In addition, the conversion of a specific channel can be inserted into a running sequence without disturbing that sequence. All requests are arbitrated according to the priority level assigned to them.

Data reduction features reduce the number of required CPU access operations allowing the precise evaluation of analog inputs (high conversion rate) even at a low CPU speed. Result data can be reduced by limit checking or accumulation of results.

The Peripheral Event Controller (PEC) can be used to control the A/D converters or to automatically store conversion results to a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer. Each A/D converter contains eight result registers which can be concatenated to build a result FIFO. Wait-for-read mode can be enabled for each result register to prevent the loss of conversion data.

In order to decouple analog inputs from digital noise and to avoid input trigger noise, those pins used for analog input can be disconnected from the digital input stages. This can be selected for each pin separately with the Port x Digital Input Disable registers.

The Auto-Power-Down feature of the A/D converters minimizes the power consumption when no conversion is in progress.

Broken wire detection for each channel and a multiplexer test mode provide information to verify the proper operation of the analog signal sources (e.g. a sensor system).

4.3 Analog/Digital Converter Parameters

These parameters describe the conditions for optimum ADC performance. *Note: Operating Conditions apply.*

Table 20 ADC Parameters for All Voltage Ranges

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Switched capacitance at an analog input	C _{AINSW} CC	_	9	20	pF	not subject to production test
Total capacitance at an analog input	C _{AINT} CC	-	20	30	pF	not subject to production test
Switched capacitance at the reference input	C _{AREFSW} CC	-	15	30	pF	not subject to production test
Total capacitance at the reference input	C _{AREFT} CC	-	20	40	pF	not subject to production test
Broken wire detection delay against VAGND ²⁾	t _{BWG} CC	-	-	50	3)	
Broken wire detection delay against VAREF ²⁾	t _{BWR} CC	-	-	50	4)	
Conversion time for 8-bit result ²⁾	t _{c8} CC	$(10 + STC) \times t_{ADCI}$ + 2 x t_{SYS}				
Conversion time for 10-bit result ²⁾	<i>t</i> _{c10} CC	(12 + S + 2 x t _S	TC) x t _{AE} _{YS}	DCI		
Conversion time for 12-bit result ²⁾	<i>t</i> _{c12} CC	(16 + STC) x t _{ADCI} + 2 x t _{SYS}				
Analog reference ground	V_{AGND} SR	V _{SS} - 0.05	-	1.5	V	
Analog input voltage range	$V_{\rm AIN}{ m SR}$	$V_{\rm AGND}$	-	V_{AREF}	V	5)
Analog reference voltage	V_{AREF} SR	V _{AGND} + 1.0	_	V _{DDPA} + 0.05	V	

 These parameter values cover the complete operating range. Under relaxed operating conditions (room temperature, nominal supply voltage) the typical values can be used for calculation.

4.4 System Parameters

The following parameters specify several aspects which are important when integrating the XC238xE into an application system.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Short-term deviation of internal clock source frequency ¹⁾	∆f _{INT} CC	-1	-	1	%	⊿ <i>T</i> _J ≤ 10 °C
Internal clock source frequency	$f_{\rm INT}$ CC	4.8	5.0	5.2	MHz	
Wakeup clock source	f _{₩U} CC	400	-	700	kHz	FREQSEL= 00
frequency ²⁾		210	-	390	kHz	FREQSEL= 01
		140	-	260	kHz	FREQSEL= 10
		110	-	200	kHz	FREQSEL= 11
Startup time from power- on with code execution from Flash	t _{SPO} CC	1.9	2.5	3.7	ms	$f_{\rm WU}$ = 500 kHz
Startup time from standby mode with code execution from Flash	t _{SSB} CC	3.1	4.0	5.2	ms	$f_{\rm WU}$ = 140 kHz
		1.9	2.4	3.6	ms	$f_{\rm WU}$ = 500 kHz
Startup time from stopover mode with code execution from PSRAM	t _{SSO} CC	11 / <i>f</i> _{WU} ³⁾	_	12 / ƒ _{WU} ³)	μS	
Core voltage (PVC) supervision level	V _{PVC} CC	V _{LV} - 0.03	V _{LV}	V _{LV} + 0.07	V	5)
Supply watchdog (SWD) supervision level	V _{SWD} CC	V _{LV} - 0.10 ⁶⁾	$V_{\rm LV}$	V _{LV} + 0.15	V	Lower voltage range ⁵⁾
		V _{LV} - 0.15	$V_{\rm LV}$	V _{LV} + 0.15	V	Upper voltage range ⁵⁾

Table 24 Various System Parameters

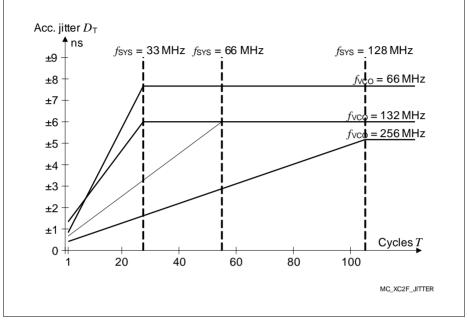


Figure 17 Approximated Accumulated PLL Jitter

Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed $C_L = 20 \text{ pF}$.

The maximum peak-to-peak noise on the pad supply voltage (measured between V_{DDPB} pin 144 and V_{SS} pin 1) is limited to a peak-to-peak voltage of V_{PP} = 50 mV. This can be achieved by appropriate blocking of the supply voltage as close as possible to the supply pins and using PCB supply and ground planes.

4.6.2.2 Wakeup Clock

When wakeup operation is selected (SYSCON0.CLKSEL = 00_B), the system clock is derived from the low-frequency wakeup clock source:

 $f_{SYS} = f_{WU}$.

In this mode, a basic functionality can be maintained without requiring an external clock source and while minimizing the power consumption.

4.6.2.3 Selecting and Changing the Operating Frequency

When selecting a clock source and the clock generation method, the required parameters must be carefully written to the respective bitfields, to avoid unintended intermediate states.

Many applications change the frequency of the system clock (f_{SYS}) during operation in order to optimize system performance and power consumption. Changing the operating frequency also changes the switching currents, which influences the power supply.

To ensure proper operation of the on-chip EVRs while they generate the core voltage, the operating frequency shall only be changed in certain steps. This prevents overshoots and undershoots of the supply voltage.

To avoid the indicated problems, recommended sequences are provided which ensure the intended operation of the clock system interacting with the power system. Please refer to the Programmer's Guide.

Note: The term CLKOUT refers to the reference clock output signal which is generated by selecting f_{SYS} as the source signal for the clock output signal EXTCLK on pin P2.8 and by enabling the high-speed clock driver on this pin.

Variable Memory Cycles

External bus cycles of the XC238xE are executed in five consecutive cycle phases (AB, C, D, E, F). The duration of each cycle phase is programmable (via the TCONCSx registers) to adapt the external bus cycles to the respective external module (memory, peripheral, etc.).

The duration of the access phase can optionally be controlled by the external module using the READY handshake input.

This table provides a summary of the phases and the ranges for their length.

Table 34	Programmable Bus C	vcle Phases ((see timing	diagrams)
	Trogrammable Duo og	yolo i naoco (alugianio

Bus Cycle Phase	Parameter	Valid Values	Unit
Address setup phase, the standard duration of this phase (1 \dots 2 TCS) can be extended by 0 \dots 3 TCS if the address window is changed	tpAB	1 2 (5)	TCS
Command delay phase	tpC	03	TCS
Write Data setup/MUX Tristate phase	tpD	0 1	TCS
Access phase	tpE	1 32	TCS
Address/Write Data hold phase	tpF	0 3	TCS

Note: The bandwidth of a parameter (from minimum to maximum value) covers the whole operating range (temperature, voltage) as well as process variations. Within a given device, however, this bandwidth is smaller than the specified range. This is also due to interdependencies between certain parameters. Some of these interdependencies are described in additional notes (see standard timing).

Note: Operating Conditions apply; $C_L = 20 \text{ pF}$.

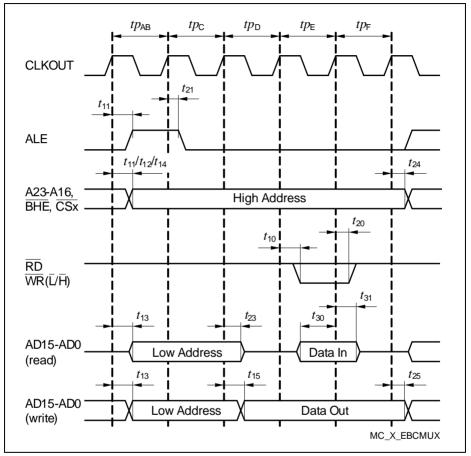


Figure 20 Multiplexed Bus Cycle