

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	128MHz
Connectivity	CANbus, EBI/EMI, FlexRay, I ² C, LINbus, SPI, UART/USART
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	118
Program Memory Size	1.06MB (1.06M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	90K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2388e136f128Iraakxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC238xE Data Sheet Revision History: V1.3 2014-07						
Previous V	ersions:					
V1.2 2012-	06					
V1.1 2011-	10					
V1.0 2010-	12					
Page	Subjects (major changes since last revision)					
9	Added XC2388E-136FxxLR to Basic Device Types					
10	Moved XC2388E-136FxxL from Basic to Special Device Types					
141	Added package type PG-LQFP-144-23					

Trademarks

C166[™], TriCore[™] and DAVE[™] are trademarks of Infineon Technologies AG.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

Table of Contents

Table of Contents

1 1.1 1.2 1.3	Summary of Features7Basic Device Types9Special Device Types10Definition of Feature Variants11
2 2.1 2.2	General Device Information 12 Pin Configuration and Definition 13 Identification Registers 51
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20	Functional Description52Memory Subsystem and Organization52External Bus Controller57Central Processing Unit (CPU)58Memory Protection Unit (MPU)60Memory Checker Module (MCHK)60Interrupt System61On-Chip Debug Support (OCDS)62Capture/Compare Unit (CC2)63Capture/Compare Units CCU6x65General Purpose Timer (GPT12E) Unit67Real Time Clock71A/D Converters73Universal Serial Interface Channel Modules (USIC)74MultiCAN Module76System Timer77Watchdog Timer77Power Management80Instruction Set Summary81
4 4.1 4.1.1	Electrical Parameters 84 General Parameters 84 Absolut Maximum Rating Conditions 84
4.1.2	Operating Conditions
4.1.3	Voltage Range Definition
4.1.4	Pad Timing Definition
4.1.5	Parameter Interpretation
4.2	DC Parameters
4.2.1	DC Parameters for Upper Voltage Area
4.2.2	DC Parameters for Lower Voltage Area
4.2.3	Power Consumption

Summary of Features

Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. This ordering code identifies:

- the function set of the corresponding product type
- the temperature range:
 - SAF-...: -40°C to 85°C
 - SAH-...: -40°C to 110°C
 - SAK-...: -40°C to 125°C
- the package and the type of delivery.

For ordering codes for the XC238xE please contact your sales representative or local distributor.

This document describes several derivatives of the XC238xE group:

Basic Device Types are readily available and **Special Device Types** are only available on request.

As this document refers to all of these derivatives, some descriptions may not apply to a specific product, in particular to the special device types.

For simplicity the term **XC238xE** is used for all derivatives throughout this document.

1.1 Basic Device Types

Basic device types are available and can be ordered through Infineon's direct and/or distribution channels.

Table 1 Synopsis of XC238xE Basic Device Types
--

Derivative ¹⁾	•	PSRAM DSRAM ³⁾	Capt./Comp. Modules	ADC ⁴⁾ Chan.	Interfaces ⁴⁾
XC2388E-136FxxLR		64 Kbytes 24 Kbytes	CC2 CCU60/1/2/3	16 + 8	3 CAN Nodes 8 Serial Chan. 2 FlexRay Nodes

1) xx is a placeholder for the available speed grade (in MHz).

2) Specific information about the on-chip Flash memory in Table 3.

3) All derivatives additionally provide 8 Kbytes SBRAM and 2 Kbytes DPRAM.

 Specific information about the available channels in Table 5. Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1).

General Device Information

Table	Table 6 Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function	
66	P11.0	O0 / I	St/B	Bit 0 of Port 11, General Purpose Input/Output	
	CCU61_COU T60	O1	St/B	CCU61 Channel 0 Output	
	U3C1_SCLK OUT	O2	St/B	USIC3 Channel 1 Shift Clock Output	
	CCU63_CCP OS0A	1	St/B	CCU63 Position Input 0	
	RxDC0F	I	St/B	CAN Node 0 Receive Data Input	
	U3C1_DX1A	I	St/B	USIC3 Channel 1 Shift Clock Input	
	ESR1_7	I	St/B	ESR1 Trigger Input 7	
67	P2.5	O0 / I	St/B	Bit 5 of Port 2, General Purpose Input/Output	
	U0C0_SCLK OUT	O1	St/B	USIC0 Channel 0 Shift Clock Output	
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output	
	CC2_CC18	O3 / I	St/B	CAPCOM2 CC18IO Capture Inp./ Compare Out.	
	A18	ОН	St/B	External Bus Interface Address Line 18	
	U0C0_DX1D	I	St/B	USIC0 Channel 0 Shift Clock Input	
	ESR1_10	I	St/B	ESR1 Trigger Input 10	
_	U3C1_DX0D	I	St/B	USIC3 Channel 1 Shift Data Input	
68	P4.2	O0 / I	St/B	Bit 2 of Port 4, General Purpose Input/Output	
	U3C0_SCLK OUT	O1	St/B	USIC3 Channel 0 Shift Clock Output	
	TxDC2	02	St/B	CAN Node 2 Transmit Data Output	
	CC2_CC26	O3 / I	St/B	CAPCOM2 CC26IO Capture Inp./ Compare Out.	
	CS2	ОН	St/B	External Bus Interface Chip Select 2 Output	
	T2INA	I	St/B	GPT12E Timer T2 Count/Gate Input	
	CCU62_CCP OS1B	I	St/B	CCU62 Position Input 1	
	U3C0_DX1B	I	St/B	USIC3 Channel 0 Shift Clock Input	

General Device Information

	1	1		Functions (cont'd)		
Pin	Symbol	Ctrl.	Туре			
75	P0.0	O0 / I	St/B	Bit 0 of Port 0, General Purpose Input/Output		
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output		
	CCU61_CC6 0	O3	St/B	CCU61 Channel 0 IOutput		
	A0	ОН	St/B	External Bus Interface Address Line 0		
	U1C0_DX0A	I	St/B	USIC1 Channel 0 Shift Data Input		
	CCU61_CC6 0INA	I	St/B	CCU61 Channel 0 Input		
	ESR1_11	I	St/B	ESR1 Trigger Input 11		
76	P4.5	O0 / I	St/B	Bit 5 of Port 4, General Purpose Input/Output		
	U3C0_DOUT	01	St/B	USIC3 Channel 0 Shift Data Output		
	CC2_CC29	O3 / I	St/B	CAPCOM2 CC29IO Capture Inp./Compare Out.		
	CCU61_CCP OS0A	I	St/B	CCU61 Position Input 0		
	U3C0_DX0B	I	St/B	USIC3 Channel 0 Shift Data Input		
	ESR2_10	I	St/B	ESR2 Trigger Input 10		
77	P4.6	00 / 1	St/B	Bit 6 of Port 4, General Purpose Input/Output		
	U3C0_DOUT	01	St/B	USIC3 Channel 0 Shift Data Output		
	CC2_CC30	O3 / I	St/B	CAPCOM2 CC30IO Capture Inp./ Compare Out.		
	T4INA	I	St/B	GPT12E Timer T4 Count/Gate Input		
	CCU61_CCP OS1A	I	St/B	CCU61 Position Input 1		
78	P2.7	O0 / I	St/B	Bit 7 of Port 2, General Purpose Input/Output		
	U0C1_SELO 0	01	St/B	USIC0 Channel 1 Select/Control 0 Output		
	U0C0_SELO 1	O2	St/B	USIC0 Channel 0 Select/Control 1 Output		
	CC2_CC20	O3 / I	St/B	CAPCOM2 CC20IO Capture Inp./ Compare Out.		
	A20	OH	St/B	External Bus Interface Address Line 20		
	U0C1_DX2C	I	St/B	USIC0 Channel 1 Shift Control Input		
	RxDC1C	I	St/B	CAN Node 1 Receive Data Input		
	ESR2_7	I	St/B	ESR2 Trigger Input 7		

General Device Information

	Table 6 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
20	V _{DDPA}	-	PS/A	Connect decoupling capacitors to adjacent $V_{\rm DDP}/V_{\rm SS}$ pin pairs as close as possible to the pins.		
				Note: The A/D Converters and ports P5, P6 and P15 are fed from supply voltage V_{DDPA} .		
2, 36, 38, 72, 74, 108,	V _{DDPB}	-	PS/B	Digital Pad Supply Voltage for Domain B Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins. Note: The on-chip voltage regulators and all ports except P5, P6 and P15 are fed from supply voltage V_{DDPB} .		
110, 144						
1, 37, 73,	V _{SS}	-	PS/	Digital Ground All V_{SS} pins must be connected to the ground-line or ground-plane.		
109				Note: Also the exposed pad is connected internally to V_{SS} . To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note.		

 To generate the reference clock output for bus timing measurement, f_{SYS} must be selected as source for EXTCLK and P2.8 must be selected as output pin. Also the high-speed clock pad must be enabled. This configuration is referred to as reference clock output signal CLKOUT.

General Device Information

2.2 Identification Registers

The identification registers describe the current version of the XC238xE and of its modules.

Table 7 XC238xE Identification Registers

Short Name	Value	Address	Notes
SCU_IDMANUF	1820 _H	00'F07E _H	
SCU_IDCHIP	4801 _H	00'F07C _H	Step AA
SCU_IDMEM	310F _H	00'F07A _H	
SCU_IDPROG	1313 _H	00'F078 _H	
JTAG_ID	101B'F083 _H		

3 Functional Description

The architecture of the XC238xE combines advantages of RISC, CISC, and DSP processors with an advanced peripheral subsystem in a well-balanced design. On-chip memory blocks allow the design of compact systems-on-silicon with maximum performance suited for computing, control, and communication.

The on-chip memory blocks (program code memory and SRAM, dual-port RAM, data SRAM) and the generic peripherals are connected to the CPU by separate high-speed buses. Another bus, the LXBus, connects additional on-chip resources and external resources. This bus structure enhances overall system performance by enabling the concurrent operation of several subsystems of the XC238xE.

The block diagram gives an overview of the on-chip components and the advanced internal bus structure of the XC238xE.

3.1 Memory Subsystem and Organization

The memory space of the XC238xE is configured in the von Neumann architecture. In this architecture all internal and external resources, including code memory, data memory, registers and I/O ports, are organized in the same linear address space.

Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes
IMB register space	FF'FF00 _H	FF'FFFF _H	256 Bytes	
Reserved	F0'0000 _H	FF'FEFF _H	< 1 Mbyte	Minus IMB registers
Reserved for EPSRAM	E9'0000 _H	EF'FFFF _H	448 Kbytes	Mirrors EPSRAM
Emulated PSRAM	E8'0000 _H	E8'FFFF _H	up to 64 Kbytes	With Flash timing
Reserved for PSRAM	E1'0000 _H	E7'FFFF _H	448 Kbytes	Mirrors PSRAM
PSRAM	E0'0000 _H	E0'FFFF _H	up to 64 Kbytes	Program SRAM
Reserved for Flash	D1'0000 _H	DF'FFFF _H	448 Kbytes	
Flash 4	D0'0000 _H	D0'FFFF _H	64 Kbytes	
Flash 3	CC'0000 _H	CF'FFFF _H	256 Kbytes	
Flash 2	C8'0000 _H	CB'FFFF _H	256 Kbytes	
Flash 1	C4'0000 _H	C7'FFFF _H	256 Kbytes	
Flash 0	C0'0000 _H	C3'FFFF _H	256 Kbytes ³⁾	Minus res. seg.
External memory area	40'0000 _H	BF'FFFF _H	8 Mbytes	
External IO area ⁴⁾	21'0000 _H	3F'FFFF _H	1 984 Kbytes	

Table 8 XC238xE Memory Map ¹⁾

Up to 24 Kbytes of on-chip Data SRAM (DSRAM) are used for storage of general user data. The DSRAM is accessed via a separate interface and is optimized for data access.

2 Kbytes of on-chip Dual-Port RAM (DPRAM) provide storage for user-defined variables, for the system stack, and for general purpose register banks. A register bank can consist of up to 16 word-wide (R0 to R15) and/or byte-wide (RL0, RH0, ..., RL7, RH7) General Purpose Registers (GPRs).

The upper 256 bytes of the DPRAM are directly bit addressable. When used by a GPR, any location in the DPRAM is bit addressable.

8 Kbytes of on-chip Stand-By SRAM (SBRAM) provide storage for system-relevant user data that must be preserved while the major part of the device is powered down. The SBRAM is accessed via a specific interface and is powered in domain M.

1024 bytes (2 \times **512 bytes)** of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are word-wide registers which are used to control and monitor functions of the different on-chip units. Unused SFR addresses are reserved for future members of the XC2000 Family. In order to ensure upward compatibility they should either not be accessed or written with zeros.

In order to meet the requirements of designs where more memory is required than is available on chip, up to 12 Mbytes (approximately, see **Table 8**) of external RAM and/or ROM can be connected to the microcontroller. The External Bus Interface also provides access to external peripherals.

The on-chip Flash memory stores code, constant data, and control data. The 1 088 Kbytes of on-chip Flash memory consist of 1 module of 64 Kbytes (preferably for data storage) and 4 modules of 256 Kbytes. Each module is organized in 4-Kbyte sectors.

The uppermost 4-Kbyte sector of segment 0 (located in Flash module 0) is used internally to store operation control parameters and protection information.

Note: The actual size of the Flash memory depends on the chosen device type.

Each sector can be separately write protected¹⁾, erased and programmed (in blocks of 128 Bytes). The complete Flash area can be read-protected. A user-defined password sequence temporarily unlocks protected areas. The Flash modules combine 128-bit read access with protected and efficient writing algorithms for programming and erasing. Dynamic error correction provides extremely high read data security for all read access operations. Access to different Flash modules can be executed in parallel. For Flash parameters, please see Section 4.6.

¹⁾ To save control bits, sectors are clustered for protection purposes, they remain separate for programming/erasing.

With this hardware most XC238xE instructions are executed in a single machine cycle of ns @ -MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle, no matter how many bits are shifted. Also, multiplication and most MAC instructions execute in one cycle. All multiple-cycle instructions have been optimized so that they can be executed very fast; for example, a 32-/16-bit division is started within 4 cycles while the remaining cycles are executed in the background. Another pipeline optimization, the branch target prediction, eliminates the execution time of branch instructions if the prediction was correct.

The CPU has a register context consisting of up to three register banks with 16 wordwide GPRs each at its disposal. One of these register banks is physically allocated within the on-chip DPRAM area. A Context Pointer (CP) register determines the base address of the active register bank accessed by the CPU at any time. The number of these register bank copies is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 32 Kwords is provided for storage of temporary data. The system stack can be allocated to any location within the address space (preferably in the on-chip RAM area); it is accessed by the CPU with the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared with the stack pointer value during each stack access to detect stack overflow or underflow.

The high performance of the CPU hardware implementation can be best utilized by the programmer with the highly efficient XC238xE instruction set. This includes the following instruction classes:

- Standard Arithmetic Instructions
- DSP-Oriented Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

Compare Modes	Function
Mode 2	Interrupt-only compare mode; Only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare timer overflow; Only one compare event per timer period is generated
Double Register Mode	Two registers operate on one pin; Pin toggles on each compare match; Several compare events per timer period are possible
Single Event Mode	Generates single edges or pulses; Can be used with any compare mode

Table 9Compare Modes (cont'd)

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the compare mode selected.

The default Watchdog Timer interval after power-up is 6.5 ms (@ 10 MHz).

3.17 Clock Generation

The Clock Generation Unit can generate the system clock signal f_{SYS} for the XC238xE from a number of external or internal clock sources:

- External clock signals with pad voltage or core voltage levels
- External crystal or resonator using the on-chip oscillator
- On-chip clock source for operation without crystal/resonator
- Wake-up clock (ultra-low-power) to further reduce power consumption

The programmable on-chip PLL with multiple prescalers generates a clock signal for maximum system performance from standard crystals, a clock input signal, or from the on-chip clock source. See also **Section 4.7.2**.

The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency falls below a certain limit or stops completely. In this case, the system can be supplied with an emergency clock to enable operation even after an external clock failure.

All available clock signals can be output on one of two selectable pins.

3.18 Parallel Ports

The XC238xE provides up to 119 I/O lines which are organized into 11 input/output ports and 2 input ports. All port lines are bit-addressable, and all input/output lines can be individually (bit-wise) configured via port control registers. This configuration selects the direction (input/output), push/pull or open-drain operation, activation of pull devices, and edge characteristics (shape) and driver characteristics (output current) of the port drivers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. During the internal reset, all port pins are configured as inputs without pull devices active.

All port lines have alternate input or output functions associated with them. These alternate functions can be programmed to be assigned to various port pins to support the best utilization for a given application. For this reason, certain functions appear several times in **Table 10**.

All port lines that are not used for alternate functions may be used as general purpose I/O lines.

Port	Width	I/O	Connected Modules
P0	8	I/O	EBC (A7A0), CCU6, USIC, CAN
P1	8	I/O	EBC (A15A8), CCU6, USIC
P2	14	I/O	EBC (READY, BHE, A23A16, AD15AD13, D15D13), CAN, CC2, GPT12E, USIC, DAP/JTAG
P3	8	I/O	CAN, USIC
P4	8	I/O	EBC (CS4CS0), CC2, CAN, GPT12E, USIC
P5	16	I	Analog Inputs, CCU6, DAP/JTAG, GPT12E, CAN
P6	4	I/O	ADC, CAN, GPT12E
P7	5	I/O	CAN, GPT12E, SCU, DAP/JTAG, CCU6, ADC, USIC
P8		I/O	CCU6, DAP/JTAG, USIC
P9	8	I/O	CCU6, DAP/JTAG, CAN, ERAY
P10	16	I/O	EBC (ALE, RD, WR, AD12AD0, D12D0), CCU6, USIC, DAP/JTAG, CAN, ERAY
P11	6	I/O	CCU6, USIC, CAN
P15	8	I	Analog Inputs, GPT12E

Table 10Summary of the XC238xE's Ports

3.20 Instruction Set Summary

Table 11 lists the instructions of the XC238xE.

The addressing modes that can be used with a specific instruction, the function of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "**Instruction Set Manual**".

This document also provides a detailed description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16- \times 16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise exclusive OR, (word/byte operands)	2/4
BCLR/BSET	Clear/Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND/BOR/BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/BFLDL	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL/SHR	Shift left/right direct word GPR	2

Table 11 Instruction Set Summary

4.1.2 Operating Conditions

The following operating conditions must not be exceeded to ensure correct operation of the XC238xE. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Note: Typical parameter values refer to room temperature and nominal supply voltage, minimum/maximum parameter values also include conditions of minimum/maximum temperature and minimum/maximum supply voltage. Additional details are described where applicable.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Voltage Regulator Buffer Capacitance for DMP_M	$C_{\rm EVRM} \ { m SR}$	1.0	-	4.7	μF	1)
Voltage Regulator Buffer Capacitance for DMP_1	$C_{\rm EVR1}$ SR	0.68	-	2.2	μF	1)2)
External Load Capacitance	$C_{L} \operatorname{SR}$	-	20 ³⁾	-	pF	pin out driver= default
System frequency	$f_{\rm SYS}{\rm SR}$	-	-	128	MHz	5)
Overload current for analog inputs ⁶⁾	I _{OVA} SR	-2	-	5	mA	not subject to production test
Overload current for digital inputs ⁶⁾	I _{OVD} SR	-5	-	5	mA	not subject to production test
Overload current coupling factor for analog inputs ⁷⁾	K _{OVA} CC	-	2.5 x 10 ⁻⁴	1.5 x 10 ⁻³	-	<i>I</i> _{OV} < 0 mA; not subject to production test
		_	1.0 x 10 ⁻⁶	1.0 x 10 ⁻⁴	-	<i>I</i> _{OV} > 0 mA; not subject to production test
Overload current coupling factor for digital I/O pins	K _{OVD} CC	_	1.0 x 10 ⁻²	3.0 x 10 ⁻²		<i>I</i> _{OV} < 0 mA; not subject to production test
		_	1.0 x 10 ⁻⁴	5.0 x 10 ⁻³		<i>I</i> _{OV} > 0 mA; not subject to production test

Table 13 Operating Conditions

4.1.3 Voltage Range Definition

The XC238xE timing depends on the supply voltage. If such a dependency exists the timing values are given for 2 voltage areas commonly used. The voltage areas are defined in the following tables.

Table 14 Upper Voltage Range Definition

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDP}{\rm SR}$	4.5	5	5.5	V	$f_{\rm SYS} \le 100 \; \rm MHz$
		4.75	5	5.25	V	f _{SYS} ≤ 128 MHz

Table 15 Lower Voltage Range Definition

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDP}{ m SR}$	3.0	3.3	4.5	V	

4.1.4 Pad Timing Definition

If not otherwise noted, all timing parameters are tested and are valid for the corresponding output pins operating in strong driver, fast edge mode. See also "Pad Properties" on Page 118.

4.1.5 Parameter Interpretation

The parameters listed in the following include both the characteristics of the XC238xE and its demands on the system. To aid in correctly interpreting the parameters when evaluating them for a design, they are marked accordingly in the column "Symbol":

CC (Controller Characteristics):

The logic of the XC238xE provides signals with the specified characteristics.

SR (System Requirement):

The external system must provide signals with the specified characteristics to the XC238xE.

- 2) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the digital result and the time to load the result register with the conversion result. Values for the basic clock t_{ADCI} depend on programming.
- The broken wire detection delay against V_{AGND} is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 500 μs. Result below 10% (66_H).
- 4) The broken wire detection delay against V_{AREF} is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 10 μs. This function is influenced by leakage current, in particular at high temperature. Result above 80% (332_µ).
- V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Input resistance of the selected analog channel	R _{AIN} CC	-	0.9	1.5	kΩ	not subject to production test
Input resistance of the reference input	R _{AREF} CC	-	0.5	1	kΩ	not subject to production test
Differential Non-Linearity Error ²⁾³⁾⁴⁾⁵⁾	EA _{DNL} CC	-	1.5	3.0	LSB	not subject to production test
Gain Error ²⁾³⁾⁴⁾⁵⁾	EA _{GAIN} CC	-	0.5	3.5	LSB	not subject to production test
Integral Non-Linearity 2)3)4)5)	EA _{INL} CC	-	1.5	3.0	LSB	not subject to production test
Offset Error ²⁾³⁾⁴⁾⁵⁾	EA _{OFF} CC	-	1.0	4.0	LSB	not subject to production test
Total Unadjusted Error ³⁾⁴⁾	TUE CC	-	2.5	4	LSB	6)
Analog clock frequency	$f_{\rm ADCI}{\rm SR}$	2	-	20	MHz	Std. reference input (V_{AREF})
		2	-	17.5	MHz	Alt. reference input (CH0)
Wakeup time from analog powerdown, fast mode	t _{WAF} CC	-	-	7	μS	
Wakeup time from analog powerdown, slow mode	t _{WAS} CC	_	-	11.5	μS	

Table 21 ADC Parameters for Upper Voltage Range

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Wakeup time from analog powerdown, fast mode	t _{WAF} CC	-	-	8.5	μS	
Wakeup time from analog powerdown, slow mode	t _{WAS} CC	-	-	15	μS	

Table 22 ADC Parameters for Lower Voltage Range (cont'd)

 These parameter values cover the complete operating range. Under relaxed operating conditions (room temperature, nominal supply voltage) the typical values can be used for calculation.

- 2) The sum of DNL/INL/GAIN/OFF errors does not exceed the related TUE total unadjusted error.
- If a reduced analog reference voltage between 1 V and V_{DDPA} / 2 is used, there is an additional decrease of the ADC speed and accuracy.
- 4) If the analog reference voltage is below V_{DDPA} but still in the range of V_{DDPA} / 2 and V_{DDPA}, the ADC errors increase. Reducing the reference voltage by a factor k (k < 1) increases TUE, DNL, INL, Gain and Offset errors by a factor 1/k.</p>
- 5) If the analog reference voltage is above V_{DDPA} , the ADC errors increase.

6) TUE is based on 12-bit conversions.

TUE is tested at $V_{AREF} = V_{DDPA} = 3.3 \text{ V}$, $V_{AGND} = 0 \text{ V}$. It is verified by design for all other voltages within the defined voltage range. The specified TUE is valid only if the absolute sum of input overload currents on analog port pins (see I_{OV} specification) does not exceed 10 mA, and if V_{AREF} and V_{AGND} remain stable during the measurement time.

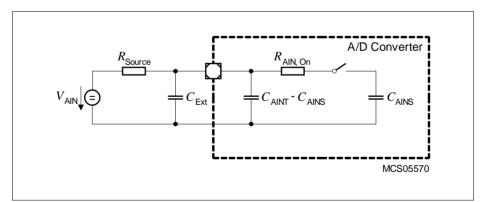


Figure 13 Equivalent Circuitry for Analog Inputs

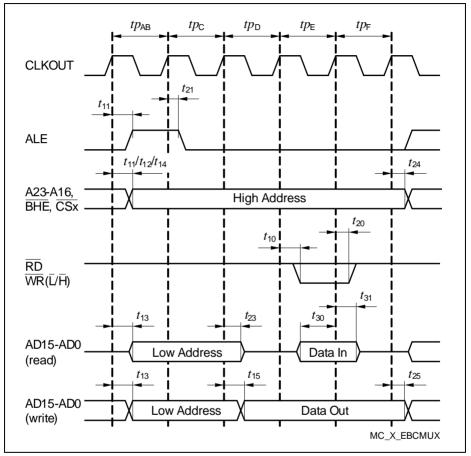


Figure 20 Multiplexed Bus Cycle

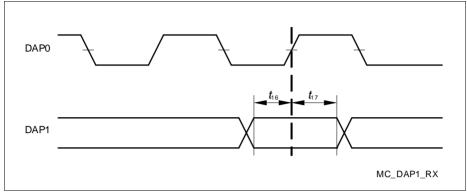


Figure 26 DAP Timing Host to Device

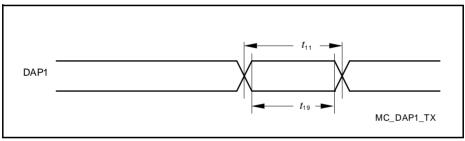


Figure 27 DAP Timing Device to Host

Note: The transmission timing is determined by the receiving debugger by evaluating the sync-request synchronization pattern telegram.