

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 18x10b
Oscillator Type	External
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30302fapfp-u5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

M16C/30P Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

1. Overview

The M16C/30P Group of single-chip microcomputers is built using the high-performance silicon gate CMOS process using a M16C/60 Series CPU core and is packaged in a 100-pin plastic molded QFP.

These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed. In addition, these microcomputers contain a multiplier and DMAC which combined with fast instruction processing capability, make it suitable for control of various OA, communication, and industrial equipment which requires high-speed arithmetic/ logic operations.

1.1 Applications

Audio, cameras, TV, home appliance, office/communications/portable/industrial equipment, etc.

1.3 Block Diagram

Figure 1.1 is a M16C/30P Group Block Diagram.

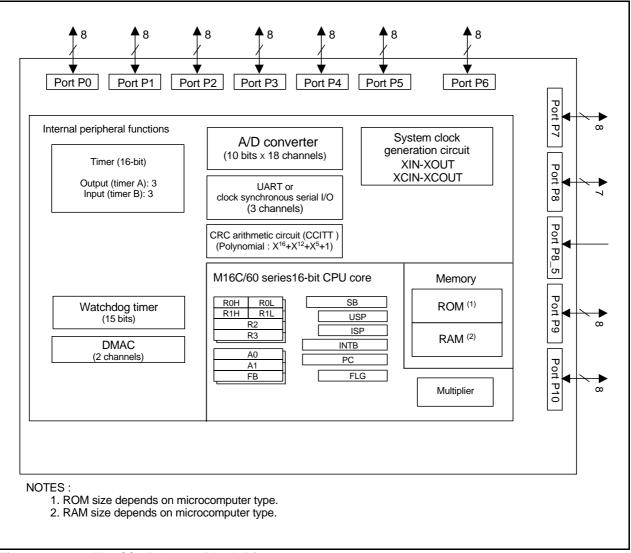


Figure 1.1

M16C/30P Group Block Diagram

1.4 **Product List**

Table 1.2 lists the M16C/30P group products and Figure 1.2 shows the Part No., Memory Size, and Package. Table 1.4 lists Product Code of MASK ROM version for M16C/30P. Figure 1.3 shows the Marking Diagram of Mask ROM Version for M16C/30P (Top View). Table 1.5 lists Product Code of One Time Flash version, Flash Memory version, and ROM-less version for M16C/30P. Figure 1.4 shows the Marking Diagram of One Time Flash version, Flash Memory version, and ROM-less Version for M16C/30P (Top View). Please specify the marking for M16C30P (MASK ROM version) when placing an order for ROM.

Table 1.2 Proc		. (1)			AS OF March 2007
Part No.		ROM Capacity	RAM Capacity	package code (1)	Remarks
M30302MAP-XXXFF	C	96 Kbytes	5 Kbytes	PRQP0100JB-A	Mask ROM version
M30302MAP-XXXG	Р			PLQP0100KB-A	
M30302MCP-XXXF	C	128 Kbytes		PRQP0100JB-A	
M30302MCP-XXXG	Р			PLQP0100KB-A	
M30302MDP-XXXF	C	160 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302MDP-XXXG	P			PLQP0100KB-A	
M30302MEP-XXXFF	C	192 Kbytes	_	PRQP0100JB-A	
M30302MEP-XXXG	Ρ			PLQP0100KB-A	
M30302GAPFP		96 Kbytes	5 Kbytes	PRQP0100JB-A	One Time Flash
M30302GAPGP	(D)			PLQP0100KB-A	version (blank product)
M30302GCPFP		128 Kbytes		PRQP0100JB-A	
M30302GCPGP	(D)			PLQP0100KB-A	
M30302GDPFP		160 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302GDPGP	(D)			PLQP0100KB-A	
M30304GDPFP	(D)		12 Kbytes	PRQP0100JB-A	
M30304GDPGP	(D)			PLQP0100KB-A	
M30302GEPFP		192 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302GEPGP	(D)			PLQP0100KB-A	
M30304GEPFP	(D)		12 Kbytes	PRQP0100JB-A	
M30304GEPGP	(D)			PLQP0100KB-A	
M30302GGPFP	(D)	256 Kbytes	12 Kbytes	PRQP0100JB-A	
M30302GGPGP	(D)			PLQP0100KB-A	
M30302GAP-XXXFF)	96 Kbytes	5 Kbytes	PRQP0100JB-A	One Time Flash
M30302GAPvGP	(D)			PLQP0100KB-A	version (factory programmed
M30302GCP-XXXFF	2	128 Kbytes		PRQP0100JB-A	product)
M30302GCP-XXXG	P (D)	-		PLQP0100KB-A	
M30302GDP-XXXFF	2	160 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302GDP-XXXG	P (D)			PLQP0100KB-A	
M30304GDP-XXXFF	р (D)		12 Kbytes	PRQP0100JB-A	
M30304GDP-XXXG	P (D)			PLQP0100KB-A	
M30302GEP-XXXFF)	192 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302GEP-XXXG	- (D)			PLQP0100KB-A	1
M30304GEP-XXXFF	P (D)		12 Kbytes	PRQP0100JB-A	1
M30304GEP-XXXG	> (D)			PLQP0100KB-A	1
M30302GGP-XXXF	P (D)	256 Kbytes	12 Kbytes	PRQP0100JB-A	1
M30302GGP-XXXG	P (D)			PLQP0100KB-A	1

Table 1.2 **Product List (1)**

As of March 2007

(D): Under development

(P): Under planning

NOTES:

1. Previous package codes are as follows.

PRQP0100JB-A : 100P6S-A, PLQP0100KB-A : 100P6Q-A

2. Block A (4-Kbytes space) is available in flash memory version.

RENESAS

Product Code

	гаскауе	
U1	Lead-free	-20°C to 85°C
U4		-40°C to 85°C
	3-A (100P6S-A)	
1. Standard R	Renesas Mark	
	N A	1 6 C
M3030)2MDP-XX	
A	U 1 X X X X	X X X — Chip version, product code and date code
		A : Shows chip version. Henceforth, whenever it changes a version,
0		it continues with A, B, and C. U1 : Shows Product code. (See table 1.3 Product Code)
		XXXXXXX : Seven digits
2. Customer's	s Parts Number + F	Renesas catalog name
M3.0.3(02MDP - XX	X F P Part No. (See Figure 1.2 Part No., Memory Size, and Package)
	-	U 1 ——— Chip version and product code
M ¹	16C XXXX	Henceforth, whenever it changes a version,
0		it continues with A, B, and C. U1 : Shows Product code. (See table 1.3 Product Code)
L		Date code seven digits
PLQP0100KE	3-A (100P6Q-A)	
1. Standard F	Renesas Mark	
	M16C	
M 3	0 3 0 2 MD P	Part No. (See Figure 1.2 Part No., Memory Size, and Package)
A U 1	- XXXGP XXXXXXX	- Chip version, product code and date code
		A : Shows chip version. Henceforth, whenever it changes a version,
0		it continues with A, B, and C.
		U1 : Shows Product code. (See table 1.3 Product Code) XXXXXXX : Seven digits
2. Customer'	's Parts Number + I	Renesas catalog name
М 3	0 3 0 2 M D P	— Part No. (See Figure 1.2 Part No., Memory Size, and Package)
A U 1	- XXXGP	Chip version and product code A : Shows chip version.
		Henceforth, whenever it changes a version, it continues with A, B, and C.
0		U1 : Shows Product code. (See table 1.3 Product Code)
L		— Date code seven digits
NOTES: 1. Refer to	o the mark specific	cation form for details of the Mask ROM version marking.
ure 1.3 N	larking Diagra	m of Mask ROM Version for M16C/30P (Top View)

Package

Operating Ambient Temperature

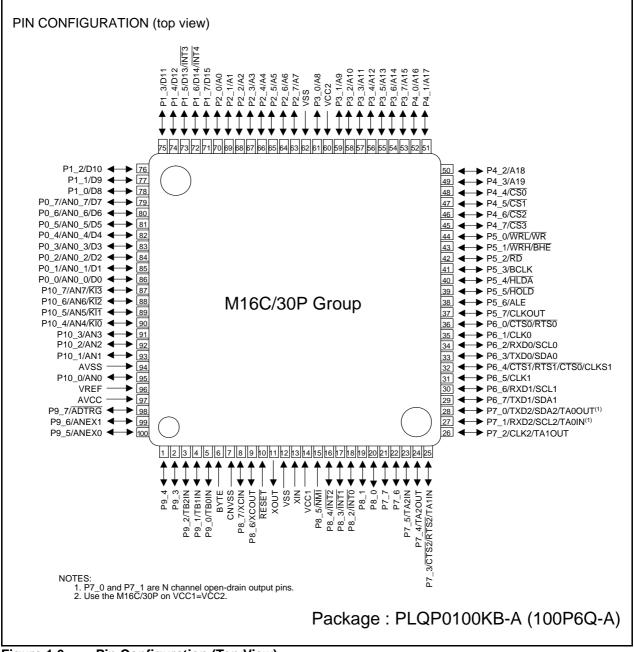


Figure 1.6 Pin Configuration (Top View)

RENESAS

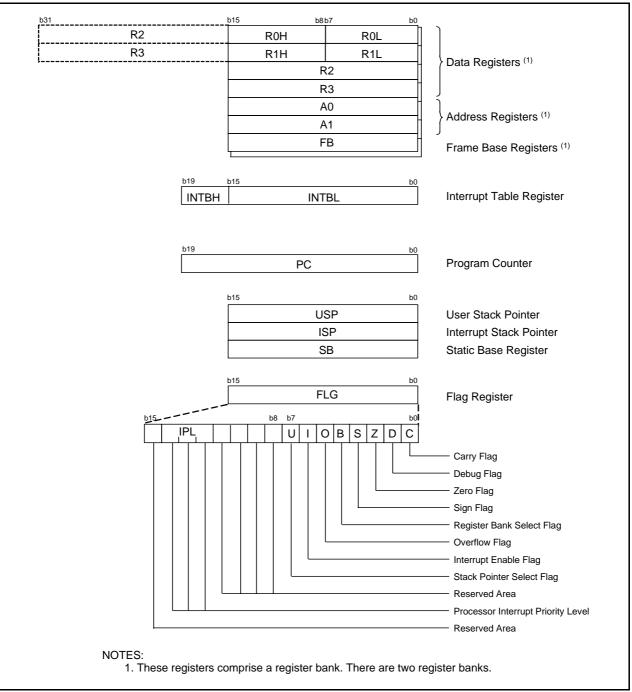

Signal Name	Pin Name	I/O Type	Description
Main clock	XIN	I	I/O pins for the main clock generation circuit. Connect a ceramic
input			resonator or crystal oscillator between XIN and XOUT. To use the
Main clock output	XOUT	0	external clock, input the clock from XIN and leave XOUT open.
Sub clock input	XCIN	Ι	I/O pins for a sub clock oscillation circuit. Connect a crystal oscillator between XCIN and XCOUT. To use the external clock, input the clock
Sub clock output	XCOUT	0	from XCIN and leave XCOUT open.
Clock output	CLKOUT	0	The clock of the same cycle as fC, f8, or f32 is outputted.
INT interrupt input	INT0 to INT4	Ι	Input pins for the INT interrupt.
NMI interrupt input	NMI	Ι	Input pin for the NMI interrupt.
Key input interrupt input	KI0 to KI3	I	Input pins for the key input interrupt.
Timer A	TA0OUT to TA2OUT	I/O	These are timer A0 to timer A2 I/O pins. (however, the output of TA0OUT for the N-channel open drain output.)
	TA0IN to TA2IN	Ι	These are timer A0 to timer A2 input pins.
Timer B	TB0IN to TB2IN	Ι	These are timer B0 to timer B2 input pins.
Serial	CTS0 to CTS2	Ι	These are send control input pins.
interface	RTS0 to RTS2	0	These are receive control output pins.
	CLK0 to CLK2	I/O	These are transfer clock I/O pins.
	RXD0 to RXD2	I	These are serial data input pins.
	TXD0 to TXD2	0	These are serial data output pins. (however, TXD2 for the N-channel open drain output.)
	CLKS1	0	This is output pin for transfer clock output from multiple pins function.
I ² C mode	SDA0 to SDA2	I/O	These are serial data I/O pins. (however, SDA2 for the N-channel open drain output.)
	SCL0 to SCL2	I/O	These are transfer clock I/O pins. (however, SCL2 for the N-channel open drain output.)
Reference voltage input	VREF	Ι	Applies the reference voltage for the A/D converter.
A/D converter	AN0 to AN7, AN0_0 to AN0_7	Ι	Analog input pins for the A/D converter.
	ADTRG	I	This is an A/D trigger input pin.
	ANEX0	I/O	This is the extended analog input pin for the A/D converter, and is the output in external op-amp connection mode.
	ANEX1	Ι	This is the extended analog input pin for the A/D converter.
I/O port	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P9_0 to P9_7,	I/O	8-bit I/O ports in CMOS, having a direction register to select an input or output. Each pin is set as an input port or output port. An input port can be set for a pull-up or for no pull-up in 4-bit unit by program. (however, P7_0 and P7_1 for the N-channel open drain output.)
	P10_0 to P10_7 P8_0 to P8_4, P8_6, P8_7	I/O	I/O ports having equivalent functions to P0.
Input port	P8_5	I	Input pin for the $\overline{\text{NMI}}$ interrupt. Pin states can be read by the P8_5 bit in the P8 register.

Table 1.9Pin Description (2)

I : Input O : Output I/O : Input and output

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. There are two register banks.

2.1 Data Registers (R0, R1, R2 and R3)

The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to R3 are the same as R0.

The R0 register can be separated between high (R0H) and low (R0L) for use as two 8-bit data registers.

R1H and R1L are the same as R0H and R0L. Conversely, R2 and R0 can be combined for use as a 32-bit data register (R2R0). R3R1 is the same as R2R0.

3. Memory

Figure 3.1 is a Memory Map of the M16C/30P group. The address space extends the 1 Mbyte from address 00000h to FFFFFh.

The internal ROM is allocated in a lower address direction beginning with address FFFFFh. For example, a 64-Kbyte internal ROM is allocated to the addresses from F0000h to FFFFFh.

The fixed interrupt vector table is allocated to the addresses from FFFDCh to FFFFFh. Therefore, store the start address of each interrupt routine here.

The internal RAM is allocated in an upper address direction beginning with address 00400h. For example, a 5-Kbyte internal RAM is allocated to the addresses from 00400h to 017FFh. In addition to storing data, the internal RAM also stores the stack used when calling subroutines and when interrupts are generated. The SFR is allocated to the addresses from 00000h to 003FFh. Peripheral function control registers are located here. Of the SFR, any area which has no functions allocated is reserved for future use and cannot be used by users.

The special page vector table is allocated to the addresses from FFE00h to FFFDBh. This vector is used by the JMPS or JSRS instruction. For details, refer to the M16C/60 and M16C/20 Series Software Manual.

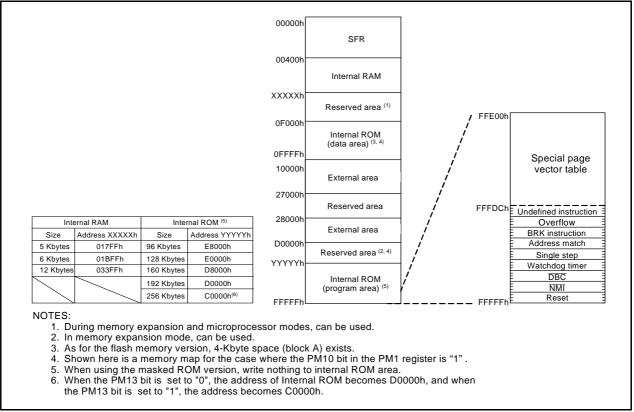


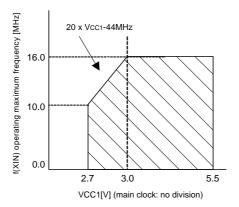
Figure 3.1 Memory Map

O wash a l	Derometor			Linit		
Symbol		Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage (\	/cc1=Vcc2)	2.7	5.0	5.5	V
AVcc	Analog Supply Vo	bltage		Vcc		V
Vss	Supply Voltage		0			V
AVss	Analog Supply Vo	bltage		0		V
Viн	HIGH Input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7	0.8Vcc		Vcc	V
	Voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode)	0.8Vcc		Vcc	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (data input during memory expansion and microprocessor mode)	0.5Vcc		Vcc	V
		P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, XIN, RESET, CNVSS, BYTE	0.8Vcc		Vcc	V
		P7_0, P7_1	0.8Vcc		6.5	V
VIL	LOW Input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7	0		0.2Vcc	V
	Voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode)	0		0.2Vcc	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (data input during memory expansion and microprocessor mode)	0		0.16Vcc	V
		P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, XIN, RESET, CNVSS, BYTE	0		0.2Vcc	V
IOH(peak)	HIGH Peak Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7			-10.0	mA
IOH(avg)	HIGH Average Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7			-5.0	mA
IOL(peak)	LOW Peak Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7			10.0	mA
IOL(avg)	LOW Average Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7			5.0	mA
f(XIN)	Main Clock Input	VCC=3.0V to 5.5V	0		16	MHz
	Oscillation Frequency ⁽⁴⁾	VCC=2.7V to 3.0V	0		20×Vcc1-44	MHz
f(XCIN)	Sub-Clock Oscilla	ation Frequency		32.768	50	kHz
f(BCLK)	CPU Operation C	lock	0		16	MHz

Table 5.2	Recommended Operating Conditions (1)
-----------	--------------------------------------

NOTES:

1. Referenced to Vcc1 = Vcc2 = 2.7 to 5.5V at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified.


2. The Average Output Current is the mean value within 100ms.

The total IoL(peak) for ports P0, P1, P2, P8_6, P8_7, P9 and P10 must be 80mA max. The total IoL(peak) for ports P3, P4, P5, P6, P7 and P8_0 to P8_4 must be 80mA max. The total IOH(peak) for ports P0, P1, and P2 must be -40mA max. The total IOH(peak) for ports P3, P4 and P5 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max.

The total IOH(peak) for ports P8_6, P8_7 and P9 must be -40mA max. Set Average Output Current to 1/2 of peak.

4. Relationship between main clock oscillation frequency, and supply voltage.

Main clock input oscillation frequency

Symbol	Parameter	Measuring Condition	Standard			Unit
Symbol	Falance	Measuring Condition	Min.	Тур.	Max.	Onit
td(P-R)	Time for Internal Power Supply Stabilization During Powering-On	Vcc=2.7V to 5.5V			2	ms
td(R-S)	STOP Release Time				1500	μs
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				1500	μs

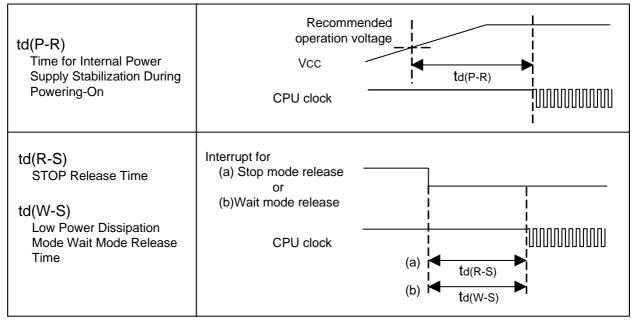


Figure 5.1 Power Supply Circuit Timing Diagram

Symbol	Doromot	Parameter Measuring Condition Standard	Standard		Unit			
Symbol			Measuring Condition		Min.	Тур.	Max.	Unit
Icc	Power Supply Current (Vcc1=Vcc2=4.0V to 5.5V)	In single-chip mode, the output	Mask ROM	f(XIN)=16MHz No division		10	15	mA
		pins are open and other pins are Vss	One Time Flash	f(XIN)=16MHz, No division		10	18	mA
			Flash Memory	f(XIN)=16MHz, No division		12	18	mA
			One Time Flash	f(XIN)=10MHz, VCC1=5.0V		15		mA
			Flash Memory Program	f(XIN)=10MHz, VCC1=5.0V		15		mA
			Flash Memory Erase	f(XIN)=10MHz, VCC1=5.0V		25		mA
			Mask ROM	f(XCIN)=32kHz Low power dissipation mode, ROM ⁽³⁾		25		μA
			One Time Flash	f(XCIN)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μA
				f(XCIN)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		350		μA
			Flash Memory	f(XCIN)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μA
				f(XCIN)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		420		μA
			Mask ROM One Time Flash Flash Memory	f(XCIN)=32kHz Wait mode ⁽²⁾ , Oscillation capability High		7.5		μA
			r asir memory	f(XCIN)=32kHz Wait mode ⁽²⁾ , Oscillation capability Low		2.0		μΑ
				Stop mode Topr =25°C		0.8	3.0	μA

Table 5.10 Electrical Characteristics (2) (1)

NOTES:
1. Referenced to Vcc1=Vcc2=4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(XIN)=16MHz unless otherwise specified.
2. With one timer operated using fC32.
3. This indicates the memory in which the program to be executed exists.

VCC1=VCC2=5V

Timing Requirements

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 5.19 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Star	Standard		
	Parameter		Max.	Unit	
tc(TB)	TBiIN Input Cycle Time (counted on one edge)	100		ns	
tw(TBH)	TBiIN Input HIGH Pulse Width (counted on one edge)	40		ns	
tw(TBL)	TBiIN Input LOW Pulse Width (counted on one edge)	40		ns	
tc(TB)	TBiIN Input Cycle Time (counted on both edges)	200		ns	
tw(TBH)	TBiIN Input HIGH Pulse Width (counted on both edges)	80		ns	
tw(TBL)	TBiIN Input LOW Pulse Width (counted on both edges)	80		ns	

Table 5.20 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	Unit	
	Farameter	Min.	Max.	Unit
tc(TB)	TBiIN Input Cycle Time	400		ns
tw(TBH)	TBiIN Input HIGH Pulse Width	200		ns
tw(TBL)	TBiIN Input LOW Pulse Width	200		ns

Table 5.21 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Stan	Unit		
Symbol	Falameter	Min.	Max.	Offic	
tc(TB)	TBiIN Input Cycle Time	400		ns	
tw(TBH)	TBilN Input HIGH Pulse Width	200		ns	
tw(TBL)	TBiIN Input LOW Pulse Width	200		ns	

Table 5.22 A/D Trigger Input

Symbol	Parameter	Stan	Unit	
Symbol	Falameter		Max.	Unit
tc(AD)	ADTRG Input Cycle Time	1000		ns
tw(ADL)	ADTRG input LOW Pulse Width	125		ns

Table 5.23 Serial Interface

Symbol	Parameter	Stan	Unit		
Symbol	Falametei	Min.	Max.	Offic	
tc(CK)	CLKi Input Cycle Time 200				
tw(CKH)	CLKi Input HIGH Pulse Width 100				
tw(CKL)	CLKi Input LOW Pulse Width 100				
td(C-Q)	TXDi Output Delay Time		80 ns		
th(C-Q)	TXDi Hold Time	0	ns		
tsu(D-C)	RXDi Input Setup Time	70		ns	
th(C-D)	RXDi Input Hold Time 90				

Table 5.24 External Interrupt INTi Input

Symbol	Parameter	Stan	Unit	
Symbol	Symbol Parameter		Max.	Onit
tw(INH)	INTi Input HIGH Pulse Width	250		ns
tw(INL)	INTi Input LOW Pulse Width	250		ns

VCC1=VCC2=5V

Switching Characteristics

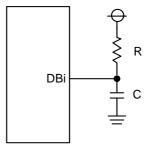
(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.26	Memory Expansion and Microprocessor Modes (for 1 wait setting and external area
	access)

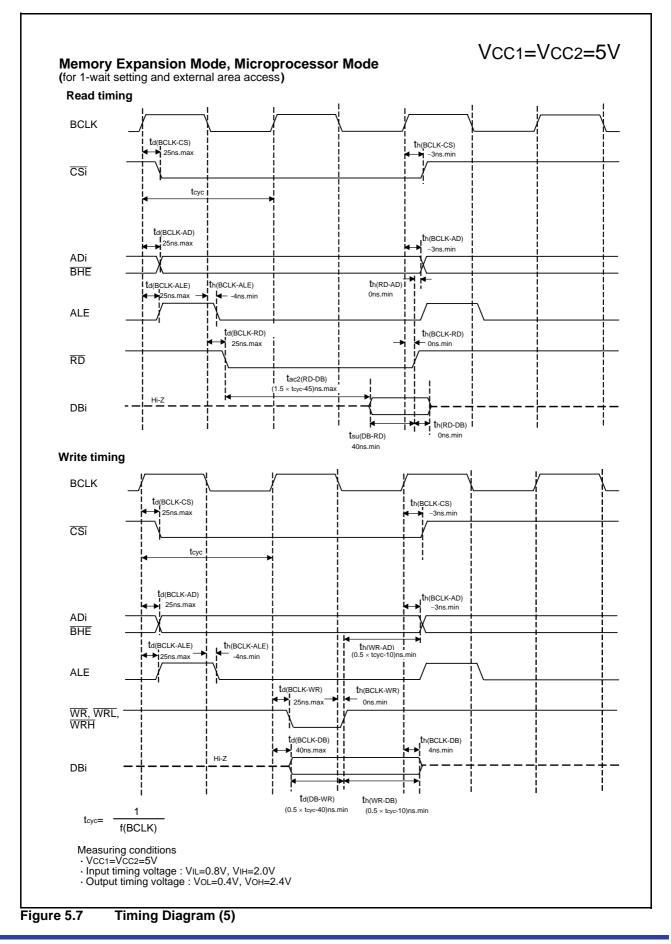
Cumbal	Parameter		Stan	dard	Unit		
Symbol	Falameter		Min.	Max.			
td(BCLK-AD)	Address Output Delay Time			25	ns		
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		-3		ns		
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns		
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns		
td(BCLK-CS)	Chip Select Output Delay Time			25	ns		
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		-3		ns		
td(BCLK-ALE)	ALE Signal Output Delay Time	15					
th(BCLK-ALE)	ALE Signal Output Hold Time	-4					
td(BCLK-RD)	RD Signal Output Delay Time	Durput Delay Time See Figure 5.2					
th(BCLK-RD)	RD Signal Output Hold Time	i igure 5.2	0		ns		
td(BCLK-WR)	WR Signal Output Delay Time		ns				
th(BCLK-WR)	WR Signal Output Hold Time		0		ns		
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns		
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) (3)		ns				
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns		
th(WR-DB)	Data Output Hold Time (in relation to WR) ⁽³⁾		(NOTE 2)		ns		
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns		

NOTES:

1. Calculated according to the BCLK frequency as follows:


 $\frac{(n-0.5)x10^9}{f(BCLK)} - 40[ns] \qquad n \text{ is ``1'' for 1-wait setting, } f(BCLK) \text{ is 12.5MHz or less.}$

2. Calculated according to the BCLK frequency as follows:


$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1-VoL / Vcc1) by a circuit of the right figure. For example, when VoL = 0.2Vcc1, C = 30pF, R = 1kΩ, hold time of output "L" level is t = -30pF X 1kΩ X ln(1-0.2Vcc1 / Vcc1)

= 6.7ns.

VCC1=VCC2=3V

Timing Requirements

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 5.29 External Clock Input (XIN input)

Symbol	Parameter	Stan	Unit	
Symbol	Falametei		Max.	Onit
tc	External Clock Input Cycle Time	(NOTE 2)		ns
ťw(H)	External Clock Input HIGH Pulse Width	(NOTE 3)		ns
tw(L)	External Clock Input LOW Pulse Width	(NOTE 3)		ns
tr	External Clock Rise Time		(NOTE 4)	ns
tr	External Clock Fall Time		(NOTE 4)	ns

NOTES:

- 1. The condition is Vcc1=Vcc2=2.7 to 3.0V.
- 2. Calculated according to the Vcc1 voltage as follows:

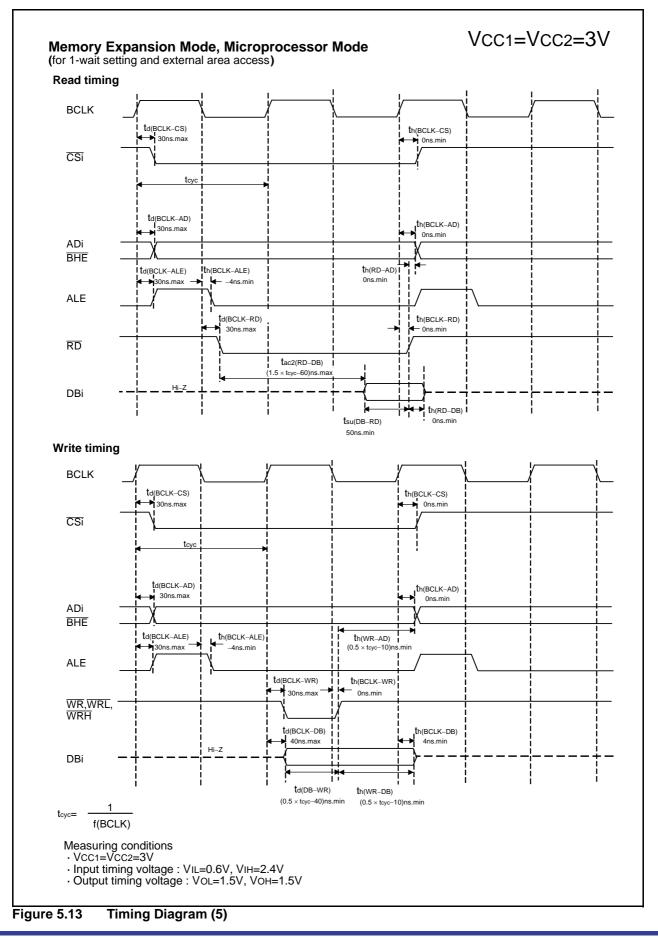
$$\frac{10^{-6}}{20 \times Vcc_{1} - 44}$$
 [ns]

3. Calculated according to the Vcc1 voltage as follows:

$$\frac{10^{-6}}{20 \times Vcc_{1}-44} \times 0.4$$
 [ns]

4. Calculated according to the VCC1 voltage as follows: $-10 \times Vcc1 + 45$ [ns]

Table 5.30 Memory Expansion Mode and Microprocessor Mode


Symbol	Parameter	Stan	Unit			
Symbol	Farameter	Min.	Max.	Unit		
tac1(RD-DB)	Data Input Access Time (for setting with no wait) (NOTE 1)					
tac2(RD-DB)	Data Input Access Time (for setting with wait) (NOTE 2)					
tsu(DB-RD)	Data Input Setup Time	50	ns			
tsu(RDY-BCLK)	RDY Input Setup Time	40	ns			
tsu(HOLD-BCLK)	HOLD Input Setup Time	50	ns			
th(RD-DB)	Data Input Hold Time	0 r				
th(BCLK-RDY)	RDY Input Hold Time	0 ns				
th(BCLK-HOLD)	HOLD Input Hold Time	0	ns			

NOTES:

1. Calculated according to the BCLK frequency as follows:

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)x10^9}{f(BCLK)} - 60[ns]$$
 n is "2" for 1-wait setting

F	REVISION HISTORY		RY	M16C/30P Group Datasheet		
Rev. Date		Description		Description		
Rev.	Dale	Page		Summary		
1.20	Oct 17, 2006	1	Note is pa	lote is partly deleted.		
		2	Table 1.1	Performance Outline of M16C/30P Group is partly added.		
		4	Table 1.2	Product List is partly revised.		
		5	Figure 1.2	2 Type No., Memory Size, and Package is added.		
		7		Product Code of One Time Flash version, Flash Memory ver-		
		17		ROM-less version for M16C/30P is partly added. 1 Memory Map is partly added.		
		19	-			
				SFR Information (2) is partly added.		
		23		Absolute Maximum Ratings is partly added.		
		27	Table 5.7	One Time Flash Version Electrical Characteristics and One Time Flash Version Program Voltage and Read Operation characteristics is added.		
		30	Table 5.1	0 Electrical Characteristics (2) is partly added.		
		42	Table 5.2	8 Electrical Characteristics (2) is partly added.		
1.21	Nov 02 2006	7	Table 1.4 Product Code of One Time Flash version, Flash Memory version, and ROM-less version for M16C/30P is partly revised.			
1.22	Mar 30, 2007	4	Table 1.2 Product List (1) is partly revised.			
		5	Table 1.3	Product List (2) is partly revised.		
		19	Table 4.2	SFR Information (2) is partly revised.		

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scule as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document, such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the data the discovered in this document, but Renesas as an evel and inferent information in the data current for the purpose of any data programs. Algorithms, and application is activate and the data that the data discovered in this document, but Renesas as and the data different information in the data discovered in this document, but Renesas as such as the development of the purpose of any damages incurred as a set easonable care in compling the information in this document, but Renesas as and the data different information in the data discovered in the data discovered in the data discovered in the data durate internation in the data different information inclata din the data different informat

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com